
Complex 2004 Proceedings of the 7th Asia-Pacific
Conference on Complex Systems

Cairns Convention Centre, Cairns, Australia
6-10th December 2004

A Multiple-Output Program Tree Structure in
Genetic Programming

Yun Zhang and Mengjie Zhang
School of Mathematics, Statistics & Computer Science

Victoria University of Wellington,
P.O.Box 600, Wellington, New Zealand

Email: {yz, mengjie}@mcs.vuw.ac.nz

Abstract
This paper presents a new program tree structure in genetic programming which outputs

multiple related values, hence serves as a more coherent multiclass classifier. The multiple
outputting effect of the tree is achieved by making it simulate a kind of directed acyclic
graph. The approach is examined and compared with the basic genetic programming ap-
proach on four multiclass object classification tasks with varying difficulty. The results
show that the new approach greatly outperforms the basic genetic programming approach
on all the tasks.

1. Introduction
Genetic programming (GP) is an optimization technique that learns by following a genetic beam
search on a set of candidate solutions (Koza, 1992). Different representations of the solution
result in different families of GP. Linear GP manipulates on solutions in the form of sequence
of imperative instructions (C, machine code), whereas tree-based GP manipulates on tree struc-
tured programs (Lisp). It has been shown that the two different representations have their own
strength and weakness.

This paper focuses on the tree-based GP, in which solutions are in the form of program trees
that are similar with the one shown in Figure 1, though often much bigger. When being eval-
uated, the program tree takes inputs from leaf nodes, applies functions on them feedforwardly,
finally releases a single output from the tree root. In the standard tree-based GP presented
in (Koza, 1992), all program trees and subtrees have the same data type to ensure that free
crossover and mutation yield valid trees. In principle, this “typeless” constraint should not
reduce the computational power of the genetic program tree, as the system is still Turing com-
plete. However, many application problems, particularly those involving matrices and lists, are
hard to be represented without types (Hopper and Reierson).

In other words, under the closure property, the genetic program tree can only work as a
many-to-one function over an identical datatype. This will cause problems when the tasks natu-
rally desire many-to-many solutions. A typical example of this case is multiclass classification,
whose solution is in the form of a classifier that could determine which class a particular exam-
ple belongs to over multiple classes based on some input values. With multiple outputs, one can

Complex 2004 The 7th Asia-Pacific Conference on Complex Systems

consider each of the outputs corresponding to a distinct class. Multi-layer feed forward neu-
ral networks, the current dominator of this area, usually uses exactly this approach (Rumelhart
et al., 1986).

The research of applying the standard tree based GP on multiclass classification is an active
area. Previous works are mainly focused on how to transform the single output value of the
program into a class label over multiple classes (Loveard and Ciesielski, 2001; Zhang and
Smart, 2004). Solutions are mostly to partition the range of the program output into regions,
one per class, then consider the class corresponding to the region that the output value lies in as
the result. The range partitioning, which needs to decide both region boundaries and the class
ordering, can either be manually predefined, which would require domain knowledge and/or
expensive trials, or automatically learnt, which would be time consuming and often result in
unnecessarily complex programs.

The undesirable range partitioning problem could be eliminated with a multiple-output so-
lution representation of genetic programs. Along this track, one old idea was to use a sequence
of independent programs, one regarding each output, to gain a multiple-output effect. How-
ever the independency over outputs does not reflect the relationship/relavance between different
classes.

Another idea was to use the multiple roots tree (MRtree) structure, as shown in Figure 2.
This structure is actually the loppy directed acyclic graph (LDAG), with nodes of no in-edges
considered leaves, and nodes of no out-edges considered roots. “Loppy” means that we do
desire cycles if one ignores the directions of arrows, which will overcome the problem of using a
sequence of program trees, as addressed above. However, evolving this structure by the standard
tree-based GP is difficult. Firstly, the initial solution space of MRtree is hard to generate. One
needs to consider the reuse of nodes and the acyclic property. Secondly, applying tree-based
crossover and mutation to MRTrees would yield invalid child programs.

5 z

+ x

×

(5 + z)× x

Figure 1. Standard Program
Tree (SDtree)

−

5 x z

+ ÷ y

× -

((5 + z)× (x÷ z) , (x÷ z)− y)

Figure 2. Multiple Roots
Program Tree (MRtree)

This paper introduces a new structure called Modi. Its name refers to the idea of making the
program tree work as a modifying component that computes outputs by modifying a predefined
output structure, in contrast to the traditional outputting based program tree structure, which
releases the output from the root node of the program tree. The elite of Modi is that, it is
structurally equivalent to the standard program trees (SDTree) thus preserves the consistency of
crossover and mutation, yet it is functionally equivalent to the MRTree thus reasonably outputs
a list of values.

The rest of the paper is organized as follows. Section 2 describes the new program structure,
Modi. Section 3 describes the experiment configuration and image data sets. Section 4 presents
the results with discussions. Section 5 draws the main conclusions and gives future working

Complex 2004 The 7th Asia-Pacific Conference on Complex Systems

directions.

2. The Modi Program Tree Structure

2.1 Modi Program Structure
The Modi program structure has two main parts: (a) a program tree, and (b) an associated output
vector for holding outputs, as shown in Figure 3.

(b)

%

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

���
���
���
���

�����
�����
�����

�����
�����
�����

	�	
	�	
	�	

�

�

�

−

%
0

3
−

*

X

Z3.95.3 1.6

4.7 W

Y

+
0

1

2
if>0

0

0

0

0

cls0

cls1

cls2

cls3

(a)

X

Figure 3. An example Modi program structure. (a) Modi program tree; (b) Output vector.

Similarly to the standard program tree structure, the Modi tree also has a root node, internal
nodes and leaf nodes. Feature terminals (slashed squares) and random constants (clear squares)
form the leaf nodes. Operations in the function set form the root and internal nodes (circles).

Unlike the standard program tree structure, which outputs just one value (often a floating
point number) through the root, our Modi program structure takes the output vector as the
output space, hence produces multiple values, each of which corresponds to a single class in the
multiclass classification problem.

The two parts of the Modi structure, the output vector and the Modi program tree, are not
structurally connected but connected through some special function nodes, Modi nodes (grey
circles). A Modi node has two roles: (1) It updates an element in the output vector that the
node is pre-associated with, by adding its node value to the value of the vector element; (2) It
passes the value of its right child node to its parent, so that the program tree can be continuously
preserved.

Note that the output vector is considered virtual (that is why it is dashed in the figure),
meaning that it does not physically “exist” (i.e. take up memory) other than the moment when
the program is being evaluated. This means, during GP’s evolutionary learning, output vectors
of all programs “disappear” and only Modi program trees are active. Only in the program
evaluation time, is the output vector realized and receives updating from the program tree.

2.2 Evaluating the Modi Program
Figure 4 shows what happens while the example program is evaluated. Before the evaluation
starts, the virtual output vector is initialized with zeros. During the evaluation, each non-Modi
node passes its value to its parent, exactly the same as in the standard program tree. Modi nodes
work differently. Each Modi node firstly uses its node value to update the output vector (shown
as curved solid arrows), instead of passing the node value to its parent node as in the standard
program tree (that is why the connection between modi nodes and their parents are shown in

Complex 2004 The 7th Asia-Pacific Conference on Complex Systems

fine un-arrowed lines). Modi nodes then passes on the value of its right child to its parent node
(shown as dashed arrows). The consequence of the program evaluation is that the output vector
gets properly updated by Modi nodes in the program tree. Multiple floating point numbers are
then produced, each of which corresponds to a class. Finally, a voting strategy is applied to
those outputs. The winner class (the one with the maximum value) is considered to be the class
of the input pattern.

%

{=0+0.34+9.2}
9.54

{=0+(−4.1)}
−4.1

13.6
{=0+13.6}

−3.7
{=0+(−3.7)}

�����
�����

�

�

���
���
���

���
���
���

�����
�����
�����

���
���
���

�����
�����
���
���

�����
�����
�����

���
���
���

−

%
0

3
−

*

X

3.95.3 1.6

4.7 W

cls3 YZ

+
0

1

2
if>0

0+

0+

0+

0+

ca
t

pi
g

do
g

ra
t

cls0

cls1

cls2

X

Figure 4. Evaluation of the example Modi program structure.

Consider a four class classification task with possible classes {rat,cat,dog,pig} and
an object to be classified – doggie, represented by an input vector that consists of six ex-
tracted feature values [V,U,W,X,Y,Z]=[0.6,5.7,8.4,2.8,13.6,0.2]. Assuming
the Modi program shown in Figure 3 is the learnt classifier, feeding the input vector into the
classifier would modify the output vector to [9.54,-4.1,13.6,-3.7], as shown in the
left part of figure 4. Given this result, doggie is classified into the third class dog, as the third
output 13.6 is the winner.

2.3 The DAG (MRtree) Simulation Effect of Modi

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

0+0+

1 3
−

20
% if>0

3.9

Z X 4.7Y

5.3 *%

1.6 W

+
0

−

class0 class1 class2 class3

0+ 0+

Figure 5. Modi simulated graph/network classifier.

Figure 5 is just a tidy-up redrawing of Figure 4 with the structural-used-only fine grey line
removed. The figure clearly shows that the dynamic running effect of the Modi program actu-
ally simulates the MRTree that is a loppy Directed Acyclic Graph, although the real structure
of Modi is just a normal tree plus a vector. Similarly to the multi-layer feed forward neural net-
works, which are also a kind of DAG, the Modi simulated DAG also has multiple layers, where
leaf nodes form the input space, internal nodes extract higher level features, and output nodes

Complex 2004 The 7th Asia-Pacific Conference on Complex Systems

are associated with class labels. However, it allows unbalanced structure, over-bipartite con-
nections, and non-full connections between neighboring layers, which makes the representation
much more flexible.

By the effect of loppy, the simulated MRtree structure also allows the reuse of child nodes.
Every right most child of the Modi node is reused by the Modi node itself and the parent of
the Modi node, resulting in a two-way reuse. Multi-way reuse is also possible by a sequence
of hierarchically connected Modi nodes, as shown at the bottom right corner around the feature
terminal node W.

2.4 Modi Program Generation and Modi Rate µ
Compared with SDTree, the initial generation process of Modi trees has one more step to con-
sider, namely the distribution of Modi nodes. This includes two points:

point1: How to choose Modi nodes, and

point2: How to assign output vector’s cell indices to the Modi nodes we would have chosen.

The solution of the first point consists of three rules: 1) All leaf nodes are not Modi since a
Modi node requires at least one child; 2) The root node is always Modi, so that we can guarantee
that no part of the Modi tree is useless, as we do not make explicit use of the value released
from the tree root; 3) For intermediate nodes, the probability of a node to be set to Modi is
defined by an offline settable constant µ, the Modi Rate. Modi Rate is a predefined setting of
the GP evolutionary learning system. It is in the form of a real number µ ∈ [0, 1], which refers
to the probability of an intermediate node to be set as Modi. In other words, µ is the expected
percentage of Modi nodes over all intermediate nodes in programs of the initial population. The
higher the Modi Rate, the more function nodes in initial programs would be Modi.

The solution of the second point is just a uniform distribution. Cell indices of the output
vector are assigned uniformly across all Modi nodes. With this solution, it is possible to produce
Modi programs that do nothing on some of the output vector cells, in which case the output value
from those cells would always be zero.

2.5 Modi Characteristics Summary
The Modi program has two major properties: 1) It can produce multiple related outputs, thus
classifiers of this kind can determine the class of the input object by simply voting as in neural
networks. In this way, the complex translation from a single floating point value to multiple
class labels can be avoided. 2) During the evolution, the Modi program structure is just like a
standard program tree, thus take the advantages of the standard GP systems.

3. Experimental Configuration

3.1 Image Data Sets
In the following experiments, we used four data sets providing object classification problems of
varying difficulty. Example images are shown in Figure 6.

The first set of images (Figure 6a) was generated to give well defined objects against a
relatively clean background. The pixels of the objects were produced using a Gaussian generator
with different means and variances for each class. Three classes of 960 small objects were cut

Complex 2004 The 7th Asia-Pacific Conference on Complex Systems

(a) Shapes (b) (c) (d)

Figure 6. Sample Data sets. (a) Shapes; (b) Coins; (c) Digits15; (d) Digits30.

out from those images to form the classification data set. The three classes are: black circles,
grey squares, and light circles. For presentation convenience, this data set is referred to as
shape.

The second set of images (Figure 6b) contains scanned 5 cent and 10 cent New Zealand
coins. The coins were located in different places with different orientations and appeared in
different sides (head and tail). In addition, the background was cluttered. We need to distinguish
different coins with different sides and different rotations from the background. Five classes of
801 object cutouts were created: 160 5-cent heads, 160 5-cent tails, 160 10-cent heads, 160 10-
cent tails, and the cluttered background (161 cutouts). Compared with the shape data set, the
classification problem in this data set is much harder. Although these are still regular, man-made
objects, the problem is very hard due to the noisy background and the low resolution.

The third and the fourth data sets are two digit recognition tasks, each consisting of 1000
digit examples. Each digit example is a 7×7 bitmap image object. In the two tasks, the goal
is to automatically recognize which of the 10 classes (digits 0, 1, 2, ..., 9) each pattern (digit
example) belongs to. Note that all the digit patterns have been corrupted by noise. In the two
tasks (Figures 6c and 6d), 15% and 30% of pixels, chosen at random, have been flipped. In data
set 3, while some patterns can be clearly recognized by human eyes such as “0”, “2”, “5”, “7”,
and possibly “4”, it is not easy to distinguish between “6”, “8”and “3”, even “1” and “5”. The
task data set 4 is even more difficult — human eyes cannot recognize majority of the patterns,
particularly “8”, “9” and “3”, “5” and “6”, and even “1”, “2” and “0”. In addition, the number
of classes is much larger than that in tasks 1 and 2, making the two tasks even more difficult.

For all the four data sets, the objects were equally split into three separate data sets: one
third for the training set used directly for learning the genetic program classifiers, one third
for the validation set for controlling overfitting, and one third for the test set for measuring the
performance of the learned program classifiers.

3.2 GP System Customization
In this approach, the feature terminals consisted of four local statistical features extracted from
the object cutout examples in the first two tasks, and just 49 pixel values in the third and fourth
tasks. The function set consisted of the four standard arithmetic operators and a conditional
operator. The division operator represents a “protected” division in which a divide by zero
gives a result of zero. The conditional operator returns its second argument if its first argument
is negative, and otherwise returns its third argument.

The ramped half-and-half method (Banzhaf et al., 1998; Koza, 1994) was used to generate
the initial population and for the mutation operator. The proportional selection mechanism

Complex 2004 The 7th Asia-Pacific Conference on Complex Systems

and the reproduction, crossover and mutation operators (Banzhaf et al., 1998) were used in the
learning process. We used reproduction, mutation, and cross over rates of 10%, 30%, and 60%,
respectively. The program depth was initialized from 3-6, and can be increased to 7 during
evolution. The population size was 500. The evolutionary process was run for a maximum of
50 generations, unless it found a program that solved the problem perfectly (100% accuracy),
at which point the evolution was terminated early.

3.3 Other Configurations
1. all experimental results presented are an average over 50 runs on an identical experimental

setting and a different starting point.

2. The new approach (Modi-GP) will be compared with a basic GP approach (Basic-GP).
The Basic-GP is the standard tree based GP approach, which uses Static Range Selec-
tion (Loveard and Ciesielski, 2001) as the classification strategy for converting the single
output value of the learnt genetic program to class labels.

4. Results and Discussion

4.1 Overall Classification Performance
The new Modi approach and the basic GP approach are compared under the same experimental
setting on the four datasets described previously. The best results are shown in Table 1. For
the shape data set, both approaches did pretty well as the task is relatively easy. In particular,
the Modi approach almost achieved perfect results. For the coin data set, as the task is harder,
the Modi approach achieved 93.89% accuracy, 8.67% higher than the basic GP approach. For
the two digit data sets, the Modi approach performed much better than the basic GP, with im-
provements of more than 10%. In particular, for task four, where even human eyes could only
recognize a small part of the digit examples, the GP approach with Modi program structure
can achieve 54.45% on the classification accuracy, meaning that over half of the digits were
correctly recognized. These results suggest that the new Modi approach can perform better
than the basic GP approach for these object classification programs, particularly for relatively
difficult tasks.

Table 1. A comparison of results between the new Modi approach and the basic GP approach.

Methods/ Data Sets
Improvement Shape Coin Digit15 Digit30
Modi-GP (%) 99.77 93.89 68.11 54.46
Basic-GP (%) 99.40 85.22 56.85 44.09

Improvement (%) 0.37 8.67 11.26 10.37

Note that we also examined this approach on other data sets and the results showed a similar
pattern. Details can be seen from Appendix 1.

Complex 2004 The 7th Asia-Pacific Conference on Complex Systems

4.2 The Effect of Modi Rate µ
To investigate the effect of Modi rates in the Modi patched GP system, we did four groups of
experiments on the four data sets using different Modi rates ranging from 0.0 to 1.0. Modi
rate of 0.0 means that in the initial population, only the root node of each tree is a Modi node
(although there could be more by the learning); Modi rate of 1.0 would mean that all non-leaf
nodes are Modi nodes.

The results are shown in Figure 7 in terms of the improvement of the Modi approach over
the basic GP approach. It shows that the Modi rate does affect the performance. However,
the influence of Modi rates is not consistently proportional across different tasks, provided by
that curves in the figure are not parallel with each other. Experiments have also shown that too
big and too small Modi rates are not good, though rates in the middle range would not cause
big distinction on the result of the learning. In other words, blindly pick up one modi rate in
the middle range could guarantee an improvement over the basic GP approach. According to
our future observation over experimenting on 15 different datasets (see appendix), a modi rate
between 0.3–0.6 is a good range to start searching on. This can be considered as a heuristic for
the exhaustive search over different Modi rates.

In a theoretical sense, the “middle-range modi rates are good” observation suggests that in
the initial population, programs with neither too many modi nodes nor too few modi nodes are
convenient for GP to start evolving on. This is reasonable because the interpretation of the modi
rate is just the expected percentage of reuses and the expected times of output vector updating
in the initial programs. Too low reuse and output vector updating definitely reduce the power of
the program, whereas too high case makes the reusing and updating effect unnecessarily messy.

�����

����

����

�����

�����

��� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� ���

��������	Im
pr

ov
em

en
t o

n
C

la
ss

ifi
ca

tio
n

A
cc

ur
ac

y
(%

)

����

����

�������

�������

Figure 7. Effect of different Modi rates.

4.3 Analysis of the Results
The result of the two digit datasets are worse than the shape and the coin datasets. This is
mainly due to the difficulty of the classification problem, plus that the program size (program
tree depth) was set to be too small. A small program size causes two problems: (1) The evolved
program would not have enough leaf nodes for handling input features, particularly when the
number of input features is large, say 49 for the digits. Modi’s reusability helps on this problem,
though cannot generally fix it. 2) The probability of producing sufficient Modi nodes so that

Complex 2004 The 7th Asia-Pacific Conference on Complex Systems

they all together go across the entire output vector would be very small, particularly when
there are a large number of classes to be classified, say 10 for the digits. This problem reveals
a disadvantage of the Modi structure, that is, it could require a larger program size than the
standard program tree structure.

We originally expected a small Modi rate from 0.0 to 0.1 would lead to very bad results.
However, the effect of Modi rates in the experiments was not as large as we expected. This is
because we used a large size of population (500), so that the population as a whole provides
sufficient Modi nodes that the best evolved program can use.

4.4 Efficiency Analysis
While the running times of the best evolved programs of both GP systems in testing (classifi-
cation) are similar, Modi-GP is more time consuming than Basic-GP in terms of the training
time. Theoretically there are two possible reasons for the slow training time: 1) the running of
a single evolution is slower; 2) Modi-GP converges slower on a data set, namely it needs more
evolutions to reach a satisfactory training state (say, perfect classification accuracy). Modi-GP
falls into the first case. For the second one, it is actually the other way round.

Modi-GP is relatively slower for a single evolution because the most time consuming part
in each evolution is to evaluate the fitness of each program in the population. However the
program tree evaluating of modi tree is in general slower than the SDTree. This is because the
modi nodes in the new structure have an extra task to do, which is to update the output vector.

For the second point, we happily observed that, Modi-GP actually converges much faster
than Basic-GP in our experiments. For simple classification tasks such as the shape data set,
Modi-GP can terminate on just a couple of evolutions. By applying the No Free Lunch Theo-
rem inversely, we theoretically conclude that Modi-GP is more appropriate than Basic-GP on
multiclass classification, which is consistent with our experimental results.

Although Modi-GP is able to converge faster to the optimal solution, for hard problems such
as the digit data sets, in which both Modi-GP and Basic-GP are not able to terminate within the
fifty generation limits, the training time of Modi-GP is higher than Basic-GP.

5. Conclusions
This paper describes a virtual program tree structure that simulates the effect of loppy directed
acyclic graphs. While the programs with this structure makes multiple related outputs, the
actual structure remains the standard tree and thus is naturally evolvable by the tree-based GP
systems.

The structure was applied to a typical application domain that naturally fits in better with
many-to-many solutions, namely multiclass classification. With the new multiple-output pro-
gram tree, the awkward translation of the single number into multiple class labels was success-
fully avoided. This new approach was examined and compared with the basic GP approach
on four object classification problems of increasing difficulty. Results showed that the new
approach outperformed the basic approach on all the tasks.

The results also showed that different Modi rates lead to different results. Neither too small
nor too large Modi rates were good. However, there did not seem to exist an efficient and
reliable way of choosing a good Modi rate for a particular problem. Rates between 0.3 – 0.6
seemed to be a good range to start.

Although developed for object classification problems, this approach is expected to be gen-
eral and can be applied to other problems, where multiple outputs are desired.

Complex 2004 The 7th Asia-Pacific Conference on Complex Systems

5.1 Future Work
The following points could be considered and investigated in the future:

• Note that the Modi structure gives us a proper subset simulation of the MRtree, but not
a full set simulation. This means that the Modi structure can simulate some, but not all
program structures of the MRtree. This is due to the fact that, in Modi, reuse connections
(connections that cause child sharing) are simulated by the way Modi nodes pass values.
Whether or not it is terribly functionally hurt needs to be further investigated in the future.

• For digit tasks, we will investigate a larger program size and examine whether the perfor-
mance can be improved.

• We will investigate other solutions of the Modi node distribution problem other than just
a uniform distribution. It is worth considering whether it is better to add more heuristic
controls in the solution for fairer assignment.

• We would also like to investigate ways of extending the Modi idea to evolve neural net-
works and belief networks, thus producing a kind of Skinnerian creature other than the
pure GP based Darwinian creature.

Acknowledgements
We would like to thank Malcolm Lett and Will Smart in our genetic programming group and
members in the AI research group particularly Peter Andreae and Marcus Frean for a number
of useful discussions.

References
Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Genetic Program-

ming: An Introduction on the Automatic Evolution of computer programs and its Applica-
tions. San Francisco, Calif. : Morgan Kaufmann Publishers; Heidelburg : Dpunkt-verlag,
1998. Subject: Genetic programming (Computer science); ISBN: 1-55860-510-X.

Daniel Howard, Simon C. Roberts, and Richard Brankin. Target detection in SAR imagery by
genetic programming. Advances in Engineering Software, 30:303–311, 1999.

John R. Koza. Genetic Programming I: on the programming of computers by means of natural
selection. Cambridge, Mass. : MIT Press, London, England, 1992.

John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. Cam-
bridge, Mass. : MIT Press, London, England, 1994.

Nicholas J. Hopper and Mitchell L. Reierson. Genetic Programming: Impact of types on essen-
tially typeless problems in GP University of Minnesota, Morris.

Thomas Loveard and Victor Ciesielski. Representing classification problems in genetic pro-
gramming. In Proceedings of the Congress on Evolutionary Computation, volume 2, pages
1070–1077, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul, Ko-
rea, 27-30 May 2001. IEEE Press.

Complex 2004 The 7th Asia-Pacific Conference on Complex Systems

D.J.C. MacKay: Information Theory, Inference, and Learning Algorithms, Cambridge Univer-
sity Press (2003).

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. In D. E. Rumelhart, J. L. McClelland, and the PDP research group, editors,
Parallel distributed Processing, Explorations in the Microstructure of Cognition, Volume
1: Foundations, chapter 8. The MIT Press, Cambridge, Massachusetts, London, England,
1986.

Will Smart and Mengjie Zhang. Classification strategies for image classification in genetic
programming. In Donald Bailey, editor, Proceeding of Image and Vision Computing Con-
ference, pages 402–407, Palmerston North, New Zealand, November 2003.

Mengjie Zhang, Victor Ciesielski, and Peter Andreae. A domain independent window-approach
to multiclass object detection using genetic programming. EURASIP Journal on Signal
Processing, Special Issue on Genetic and Evolutionary Computation for Signal Processing
and Image Analysis, 2003(8):841–859, 2003.

Mengjie Zhang and Will Smart. Multiclass object classification using genetic programming.
In Guenther R. Raidl, Stefano Cagnoni, Jurgen Branke, David W. Corne, Rolf Drech-
sler, Yaochu Jin, Colin Johnson, Penousal Machado, Elena Marchiori, Franz Rothlauf,
George D. Smith, and Giovanni Squillero, editors, Applications of Evolutionary Comput-
ing, EvoWorkshops2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoS-
TOC, volume 3005 of LNCS, pages 367–376, Coimbra, Portugal, 5-7 April 2004. Springer
Verlag.

Complex 2004 The 7th Asia-Pacific Conference on Complex Systems

Appendix 1 Further Experiments and Results
This appendix describes more results of our new Modi approach compared with the standard GP
approach on additional classification data sets. These results shows exactly the same patterns,
which strongly support the conclusions previously made by additional evidence.

Appendix 11 Additional Data Sets
For further testing the behaviour of Modi patched GP, we examined and compared the new Modi
GP approach with the basic GP approach over 15 data sets. These include two simple shape data
sets (squ-3 and squ-4), four New Zealand coin data sets (c-5c, c-10c, cEasy and
cHard), and nine digit data sets (dig00, dig05, dig10, dig15, dig20, dig30,
dig40, dig50 and dig60).

The six object classification tasks in the two shape and the four coin data sets are similar to
those presented in section 3. Each of the nine digit recognition tasks involves a file (a collection)
of binary digit images. Each file contains 100 examples for each of the 10 digits (0, 1, ..., 9),
making a total number of 1000 digit examples. Each digit example is an image of 7×7 bitmap.
These tasks were chosen to provide classification problems of increasing difficulty. In all of
these recognition problems, the goal is to automatically recognize which of the 10 classes (digits
0, 1, 2, ..., 9) each pattern (digit example) belongs to. Except for the first file which contains
clean patterns, all data patterns in the other eight files have been corrupted by noise. The amount
of noise in different files was randomly generated based on the percentage of flipped pixels and
was given by the two numbers nn in the data set names, as described above.

Figure 8. Sample images in the digit recognition tasks.

Sample images/objects in the nine digit data sets are shown in Figure 8. The nine lines of
digit examples correspond to the recognition tasks in the nine data sets. The first three tasks, one
with clean data and two with only 5% and 10% of flipped rates, are relatively straightforward
for human eyes, though there is still some difficulty in distinguishing between “3” and “9”.
With the increase of the flipped rate in these patterns such as task 4 and task 5, it becomes more

Complex 2004 The 7th Asia-Pacific Conference on Complex Systems

difficult to classify these digit patterns, even if humans can still recognize the majority. From
task 6 to task 9, however, it is very difficult, even impossible, for human eyes to make good
discrimination.

Appendix 12 Results on All 15 Data Sets
The results on the 15 data sets are shown as plotted in Figure 9, as an overall view of the
effectiveness of Modi-GP compared with Basic-GP in terms of the classification accuracy. The
bottom square labelled curve is for Basic-GP; The top clusters are Modi-GP with different modi
rates µ, as labelled. It can be seen from these curves, Modi-GP generally performs better than
Basic-GP, presented as the cluster is roughly above the Basic-GP curve. Modi rate does affect
the performance as the curves with different Modi rates are clustered but not strictly overlapped.
However, the influence is not much comparing with the improvement from Basic-GP, shown by
the big gap between the clustered curve and the Basic-GP curve.

�

��

��

��

��

���

��	
� ��	
� �

� �
��� ����� ����� ����� ����
 ����� ����
 ����� ����� ����� ���
� �����

��������	
�
����������
����
�����	���������

�
�

�
�
��
��

��
�
�
��
�
�
�
�

�
�
��
�
�

�����
��

��������

��������

��������

��������

��������

�������

��������

��������

��������

��������

��������

��������

��������

��������

Figure 9. Effectiveness: overall view

Figure 10 shows a comparison of the best results achieved by the two GP approaches. The
improvement of the Modi GP with the best Modi rates over Basic-GP is also shown by the
bottom curve, called the difference curve. The precise data value is also presented, shown in the
table beneath the graphical region.

-20

0

20

40

60

80

100

��������	
�
����������
����
�����	���������

�
�

�
�
��
��

��
�
�
��
�
�
�
�

�
�
��
�
�

BasicGP 99.71 99.40 99.57 99.47 95.74 85.22 78.00 69.63 63.07 56.85 54.76 44.09 36.92 30.95 26.47

ModiGP: best mu 99.94 99.77 99.74 99.91 99.17 93.89 82.00 78.14 73.04 68.11 63.16 54.46 45.58 39.61 32.49

Diff: ModiGP - BasicGP 0.23 0.37 0.17 0.44 3.43 8.67 4.00 8.51 9.97 11.26 8.40 10.37 8.66 8.66 6.02

squ-3 squ-4 c-5c c-10c cEasy cHard dig00 dig05 dig10 dig15 dig20 dig30 dig40 dig50 dig60

Figure 10. Modi-GP with best and worst modi rates for each classification task.

The results are very consistent with those presented in the main text, which support our
conclusions.

