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1
Genetic and Evolutionary Computation
for Image Processing and Analysis

Stefano Cagnoni, Evelyne Lutton, and Gustavo Olague

1.1. What is this book about?

After a long incubation in academia and in very specialized industrial environ-
ments, in the last ten to fifteen years research and development of image processing
and computer vision applications have become mainstream industrial activities.
Apart from the entertainment industry, where video games and special effects for
movies are a billionaire business, in most production environments automated
visual inspection tools have a relevant role in optimizing cost and quality of the
production chain as well.

However, such pervasiveness of image processing and computer vision appli-
cations in the real world does not mean that solutions to all possible problems
in those fields are available at all. Designing a computer application to whatever
field implies solving a number of problems, mostly deriving from the variability
which typically characterizes instances of the same real-world problem. Whenever
the description of a problem is dimensionally large, having one or more of its
attributes out of the “normality” range becomes almost inevitable. Real-world ap-
plications therefore usually have to deal with high-dimensional data, characterized
by a high degree of uncertainty. In response to this, real-world applications need
to be complex enough to be able to deal with large datasets, while also being robust
enough to deal with data variability. This is particularly true for image processing
and computer vision applications.

A rather wide range of well-established and well-explored image processing
and computer vision tools is actually available, which provides effective solutions
to rather specific problems in limited domains, such as industrial inspection in
controlled environments. However, even for those problems, the design and tun-
ing of image processing or computer vision systems is still a rather lengthy pro-
cess, which goes through empirical trial-and-error stages, and whose effectiveness
is mostly based on the skills and experience of the designer in the specific field of
application. The situation is made even worse by the number of parameters which
typically need to be tuned to optimize the performance of a vision system.
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The techniques which are comprised under the term “soft computing”
(namely, neural networks, genetic and evolutionary computation, fuzzy logic, and
probabilistic networks) provide effective tools which deal specifically with the
aforementioned problems. In this book, we focus on genetic and evolutionary
computation (GEC) and try to offer a comprehensive view of how the techniques it
encompasses can solve some of the problems which have to be tackled in designing
image processing and computer vision applications to real-world problems.

In the rest of this chapter, we will offer a brief overview of the contents of
the book. First, we will provide a quick introduction to the main EC paradigms,
in order to allow subsequent chapters to concentrate more specifically on the de-
scription of each application and on the peculiarities of the approach they describe
rather than on the basic approaches. Then, we will illustrate how the book, which
does not necessarily require sequential reading, has been organized, to make it
easier for readers to navigate through it and to find the topics which are more
interesting to them.

1.2. When and how can genetic and evolutionary computation help?

From the point of view of artificial intelligence (AI), which focuses on mimicking
the high-level “intelligent” processes which characterize living beings, genetic and
evolutionary computation, as the other soft computing paradigms, is a way to pro-
vide computers with natural skills (self-improvement, learning, generalization, ro-
bustness to variability, adaptivity, etc.) based on nature-inspired paradigms. This
point of view might seem too utopian to many, who might look upon natural pro-
cesses, and even more on their imitation, as ill-defined and hardly deterministic
process, which could be only partially kept under control by their users. However,
things might look more convincing to a more down-to-earth audience, even if
much less “romantic” and fascinating to others, if we turn to a more “mathemat-
ical” point of view stating that evolutionary computation comprises a wide set of
powerful search and optimization methods, loosely inspired by the evolutionary
processes which can be observed in nature. A third, intermediate, and very prac-
tical point of view, which is the one by which this book is addressing the topic, is
an “engineering” point of view: GEC provides designers with a useful set of tools,
inspired by natural evolution, which can help designing or refining the design of
solutions to hard real-world problems.

Several factors are involved in the design of good solution to practical projects;
the most important of which is definitely having extended “a priori” knowledge on
the domain of interest. If one had full knowledge about the domain of interest, de-
signing a solution would “just” require that the laws regulating its phenomenon
be modeled in some manageable way. However, this is virtually never the case. As
measurement theory teaches us, even the most indirect interaction with a phe-
nomenon we are measuring is somehow able to alter the measure we are making.
Therefore, having full knowledge of a problem domain means at least taking into
account such perturbations. However, in general, the problem is by far more com-
plicated. The representation we adopt is almost inevitably incomplete, as what we
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actually observe derives from the overlap of several other concurrent events, most
of which are unknown or unpredictable, with the phenomenon with which we are
dealing. To make things worse, many problems do not allow for precise mathe-
matical models to be defined, but they can be described only through extremely
general concepts, whose instances are characterized by high variability.

In such situations (virtually always), there is no hope of finding a solution
which will be equally good for all instances of the problem. Therefore, the actual
skill of a designer is to find a good compromise which will be “good enough” in
all or in most situations. This means being able to find the best solution, not only
based on knowledge of the problem, but also relying on experimental clues which
can be derived from observations, for the part of the problem for which knowledge
is too limited or unavailable. These are typically skills that humans possess, at least
as far as the domain of the problem is of limited extension, or subject to possible
partial simplifications based (again) on knowledge.

When this is not the case, or when a nonexpert is facing such problems, the
so-called meta-heuristics can provide effective help. Such a term refers to search
methods which operate at a higher level of abstraction with respect to the prob-
lem under consideration, and can therefore be applied to a variety of tasks with-
out requiring explicit knowledge (or requiring very limited knowledge) about the
problem domain. Most often, these methods fit a general model to a dataset which
describes the problem, by minimizing an error function or maximizing some score
related to the quality of the solution they are searching, based on the performance
of candidate solutions on a set of instances of the problem to be solved. This can
be interpreted as “inductive learning,” if one feels more comfortable with the AI
point of view, or as “function optimization,” if one prefers to use a more math-
ematical point of view. Among meta-heuristics, GEC techniques have attracted
growing interest from several scientific communities. There are several reasons for
that interest, which would require a ponderous book to be discussed extensively. In
this section, we will just give a very general justification, which, however, is already
by itself a good reason to approach such techniques.

In exploring a search space, that is, the domain of a function for which we
are seeking some “interesting” points, such as the global maximum or minimum,
there are two “extreme” strategies which can be adopted: blind/random search and
greedy search. In the former, one explores the search space by randomly moving
from one point to another relying just on luck. In the latter, one moves to the
best point, which is accessible from the last visited one. In fact, resorting to some
search method implies that we can only have knowledge about a limited portion of
the search space at one time, which is typically a neighborhood of the last visited
point. In random search, therefore, no sort of domain knowledge is exploited,
and the space is just “explored,” while in greedy search, search is exclusively based
on the exploitation of some, previously acquired or presently accessible (local)
knowledge. For this reason, the problem of devising a good search strategy is often
referred to as the “exploitation versus exploration dilemma.”

On the one hand, random search is the only way of exploring domains in
which randomness is dominating and no assumptions can be made on the location
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of good points based on local information. On the other hand, as soon as the
search domain presents some regularities, exploiting local information can be cru-
cial for success.

As will be shown in the next section, in which the main GEC paradigms
will be described, each of these has both exploration (random) and exploitation
(knowledge-based) components, associated to specific user-defined parameters
which the user can set. This makes GEC paradigms particularly flexible, as they
allow users to balance exploitation and exploration as needed.1 This translates
into highly effective and efficient searches by which good solutions can be found
quickly.

The paradigms covered in the next sections are a nonexhaustive sample of
GEC techniques, but wide enough to let the reader understand their basic princi-
ples and the algorithm variants which have been sometimes used by the authors of
the following chapters.

1.3. A quick overview of genetic and evolutionary
computation paradigms

The transposition into computers of the famous Darwin’s theory consists of
roughly imitating with programs the capability of a population of living organ-
isms to adapt to its environment with selection/reproduction mechanisms. In the
last forty years, various stochastic optimization methods have been based on this
principle. Artificial Darwinism or evolutionary algorithms is a common name for
these techniques, among which the reader may be more familiar with genetic algo-
rithms, evolution strategies, or genetic programming.

The common components of these techniques are populations (that represent
sample points of a search space) that evolve under the action of stochastic oper-
ators. Evolution is usually organized into generations and copies in a very simple
way the natural genetics. The engine of this evolution is made of

(i) selection, linked to a measurement of the quality of an individual with
respect to the problem to be solved,

(ii) genetic operators, usually mutation and crossover or recombination, that
produce individuals of a new generation.

The efficiency of an evolutionary algorithm strongly depends on the param-
eter setting: successive populations (generations) have to converge toward what
is wished, that is, most often the global optimum of a performance function. A
large part of theoretical research on evolutionary algorithms is devoted to this
delicate problem of convergence, as well as to trying to figure out what prob-
lem is easy or difficult for an evolutionary algorithm. Theoretical answers exist;
these algorithms converge [2, 12, 26, 40, 55]; but other important practical ques-
tions, like convergence speed, remain open. One can therefore say that the inter-
est into evolutionary techniques is reasonably funded theoretically, which justifies
forty years of successful experimental developments.

1On the actual meaning of “as needed” in the case of genetic and evolutionary search, much can
be debated, but let us keep our discussion as general as possible.
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Moreover, evolutionary techniques are zero-order stochastic optimization
methods, that is, no continuity nor derivability properties are needed: the only in-
formation which is required is the value of the function to be optimized at the sam-
ple points (sometimes, even an approximation can be used). These methods are
thus particularly adapted to very irregular, complex, or badly conditioned func-
tions. Their computation time, however, can be long.

Evolutionary techniques are usually recommended when other more classical
and rapid methods fail (for very large search spaces, mixed variables, when there
are many local optima, or when functions are too irregular). Other problems, like
dynamic or interactive problems, can also be addressed with evolutionary algo-
rithms; and finally, these methods can be successfully hybridized with classical op-
timization methods (e.g., gradient descent, tabu search).

Despite the attractive simplicity of an evolutionary process, building an effi-
cient evolutionary algorithm is a difficult task, as an evolutionary stochastic pro-
cess is very sensitive to parameter and algorithm setting. The elaboration of an
efficient evolutionary algorithm is based on a good knowledge of the problem to
be solved, as well as on a good understanding of the evolution mechanisms. A
“black box” approach is definitely not recommended.

Industrial “success-stories” are numerous and various,2 also in the domain of
image analysis and robot vision.

1.4. Basic concepts of artificial evolution

Evolutionary algorithms have borrowed (and considerably simplified!) some prin-
ciples of natural genetics. We thus talk about individuals that represent solutions
or points of a search space, also called environment. On this environment, a maxi-
mum of a fitness function or evaluation function is then searched.

Individuals are usually represented as codes (real, binary, of fixed or vari-
able size, simple or complex), they are chromosomes or genomes, that is, genotypes.
The corresponding solutions (i.e., the vectors of the search space) are phenotypes.
An evolutionary algorithm evolves its population in a way that makes individuals
more and more adapted to the environment. In other terms, the fitness function is
maximized.

What is described below is a basic canvas; a “canonic” evolutionary algorithm.
Real-life applications are of course much more complex, with the main problem
being to adapt, or even create, operators that correspond to the problem at hand.

1.4.1. The evolution loop

The first element is a generation loop of populations of individuals, with each
individual corresponding to a potential solution to the considered problem (see
Figure 1.1 and [17, 5, 11, 16, 38]).

2See [17, pages 126–129] for examples of applications developed before 1989, and on http://
evonet.lri.fr or [1, 10, 21, 29, 43, 54] for more recent applications.

http://evonet.lri.fr
http://evonet.lri.fr
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Selection

Elitism

Parents

Crossover
mutation

Extraction
of the solution

Initialization
of the population

Offspring

Figure 1.1. Organigram of a simple evolutionary algorithm.

Initialization is usually random (other strategies are sometimes used, partic-
ularly in complex or high-dimensional search spaces). Initial solutions (obtained,
e.g., using a classical optimization technique) can also be integrated into the ini-
tial population. If the initial population content has theoretically no importance
(the limit distribution of such a stochastic process is always the same), it is no-
ticed experimentally that initialization has a big influence on variance of the results
and speed of convergence. It is often very efficient to inject “a priori” information
about the problem at the initialization stage.

Selection decides which individuals of the current population are going to
reproduce. It is based on the notion of “quality” of an individual, embedded in the
fitness function.

The main parameter of selection is the selective pressure, usually defined as
the quotient of the probability of selecting the best individual over the probability
of selecting an average individual. The selective pressure has a strong influence
on the genetic diversity of the population, and consequently on the efficiency of
the whole algorithm. For instance, an excessive selection pressure may produce a
rapid concentration of the population in the vicinity of its best individuals, with a
risk of premature convergence toward a local optimum.

The simplest selection is the proportional selection, implemented with a biased
random shot, where the probability of selecting an individual is directly propor-
tional to its fitness value:

P(i) = fitness(i)(∑PopSize
k=1 fitness(k)

) . (1.1)

This scheme does not allow to control the selective pressure. Other—and more
efficient—selection schemes are, for example,

(i) scaling, that linearly scales the fitness function at each generation in or-
der to get a maximal fitness that is C times the average fitness of the
current population. C measures the selective pressure, usually fixed be-
tween 1.2 and 2 [17];
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(ii) ranking, that allocates to each individual a probability that is propor-
tional to its rank in a sorted list according to fitness;

(iii) tournament, that randomly selects T individuals in the population (in-
dependently to their fitness values) and chooses the best. The selective
pressure is linked to the size T of the tournament.

Reproduction generates offspring. In the canonic scheme “à la Goldberg”
[17], 2 parents produce 2 children; a number of parents equal to the desired num-
ber of offspring is thus selected. Of course, many other less-conventional schemes
can be programmed (2 parents for 1 child, n parents for p children, etc.).

The two main variation operators are crossover, or recombination, that recom-
bines genes of parents, and mutation, that slightly perturbs the genome. These op-
erations are randomly applied, based on two parameters: crossover probability pc
and mutation probability pm.

Intuitively, selection and crossover tend to concentrate the population near
“good” individuals (information exploitation). On the contrary, mutation limits
the attraction of the best individuals in order to let the population explore other
areas of the search space.

Evaluation computes (or estimates) the quality of new individuals. This oper-
ator is the only one that uses the function to be optimized. No hypothesis is made
on this function, except for the fact that it must be used to define a probability or
at least a rank for each solution.

Replacement controls the composition of generation n + 1. Elitism is often
recommended for optimization tasks in order to keep the best individuals from a
population into the next one. Usual strategies directly transmit a given percentage
of the best individual in the next population (e.g., generation gap of [27]). Evolu-
tion strategies (μ, λ) and (μ + λ) [4, 22, 23] produce λ offspring of a population of
μ individuals. The “ , ” strategy controls elitism via the difference μ− λ (the μ− λ
best individuals are kept and completed by λ offspring), while the “+” strategy is
more adaptive: from an intermediate population of size μ+ λ, made of the current
population of size μ and λ offspring, the μ best individuals are selected for the next
generation.

In the case of parallel implementations, it is sometimes useful to use another
scheme instead of the one based on generations: the steady state scheme adds di-
rectly each new individual in the current population via a replacement operator
(reverse selection) that replaces bad individuals of the current population by new
ones.

Stopping the evolution process at the right moment is crucial from a prac-
tical viewpoint; but if little or no information is available about the value of the
searched optimum, it is difficult to know when to stop. A usual strategy is to stop
evolution after a fixed number of generations, or when stagnation occurs. It is also
possible to test the dispersion of the population. A good control of the stopping
criterion obviously influences the efficiency of the algorithm, and is as important
as a good setting of evolution parameters (population size, crossover and mutation
probabilities, selective pressure, replacement percentage, etc.).
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Offspring

Offspring
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Parents

Parents

1

2

1

2

1

2

1 point crossover

2 points crossover

Uniform crossover

Figure 1.2. Binary crossover.

An evolutionary algorithm (EA) is a partially blind search algorithm, whose
blind/random component has to be cleverly tuned, as a function of what is known
as “a priori” about the problem to be solved: too much randomness is time con-
suming, and too little may let the process be blocked in a local optimum.

1.4.2. Representations and operators

Genetic operators directly depend on the choice of the representation, which, for
example, makes the difference between genetic algorithms, evolution strategies,
genetic programming, and grammatical evolution. We quickly present below the
most usual representations, operators, selection and replacement schemes. Many
other schemes for nonstandard search spaces can be found in the literature as for
instance, list or graph spaces.

1.4.2.1. Discrete representation

Genetic Algorithms are based on the use of a binary representation of solutions,
extended later to discrete representations.3

Each individual of the population is represented by a fixed-size string, with
the characters (genes) being chosen from a finite alphabet. This representation is
obviously suitable for discrete combinatorial problems, but continuous problems
can be addressed this way thanks to a sampling of the search space. In this case, the
sampling precision (related to the chromosome length) is an important parameter
of the method [34].

The most classical crossover operators used in optimization tasks are
described in Figure 1.2. The one-point crossover randomly chooses a position on
the chromosome and then exchanges chain parts around this point. The two-point
crossover also exchanges portions of chromosomes, but selects two points for the
exchange. Finally, the uniform crossover is a multipoint generalization of the previ-
ous one: each gene of an offspring is randomly chosen between the parents’ genes

3Even if there exists now real encoded genetic algorithms, the discrete encoding is the historical
characteristic of the “genetic algorithms trend.”



Stefano Cagnoni et al. 9
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Figure 1.3. Binary mutation.

at the same position. Other specialized crossovers exist, like in the case of travelling
salesman problems or scheduling problems, which take into account the specific
structure of the gene encoding.

The classical binary mutation flips each bit of the chromosome with a prob-
ability pm (see Figure 1.3). The mutation probability pm is usually very low and
constant along the evolution, but some schemes exist where the mutation proba-
bility decreases along generations.4

1.4.2.2. Continuous representation

The continuous representation, or real representation, is historically related to
evolution strategies. This approach performs a search in Rn or in a part of it. The
associated genetic operators are either extensions to continuous space of discrete
operators, or directly continuous operators.

The discrete crossover is a mixing of real genes of a chromosome, without
change of their content. The previous binary crossover operators (one point, two
points, uniform) can thus be adapted in a straightforward manner.

The benefit of continuous representation is surely better exploited with spe-
cialized operators, that is, continuous crossover that mixes more intimately the
components of the parents vectors to produce new individuals. The barycentric
crossover, also called arithmetic, produces an offspring x′ from a couple (x, y) of
Rn thanks to a uniform random shot of a constant α in [0, 1] (or [−ε, 1 + ε] for
the BLX-ε crossover) such that

∀i ∈ 1, . . . ,n, x′i = αxi + (1− α)yi. (1.2)

The constant α can be chosen once for all coordinates of x′, or independently for
each coordinate.

The generalization to a crossover of more than 2 parents, or even the entire
population set (“global” crossover) is straightforward [45].

Many mutation operators have been proposed for the real representation. The
most classical is the Gaussian mutation, that adds a Gaussian noise to the compo-
nents of the individual. It requires that an additional parameter, σ , the standard
deviation of the noise, be tuned:

∀i ∈ 1, . . . ,n, x′i = xi +N(0, σ). (1.3)

4It has been theoretically proved that a mutation-only genetic algorithm converges towards the
global optimum of the search space only if pm decreases according to a logarithmic rate [12].
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Figure 1.4. Example of a tree representation of the function ((cos(x) + 2∗ y)∗ (1 + x)).

Tuning σ is relatively complex (too small, it slows down evolution; too large, it
affects negatively the convergence of the algorithm). Various strategies that make
σ vary along evolution have been tested: σ as a function of time or fitness value, as
a function of the direction of search (anisotropic mutations), or even self-adaptive
(i.e., with σ being considered an additional parameter, i.e., evolved by the algo-
rithm). Other studies have been performed on the use of non-Gaussian noise.

1.4.2.3. Trees representations

Genetic programming (GP) corresponds to a representation of variable-length
structures as trees. GP has been initially designed to handle LISP programs [29], in
order to create programs able to solve problems for which they were not explicitly
programmed. The richness and versatility of the variable-size tree representation
(see Figure 1.4) are at the origin of the success of GP. Many optimization, com-
mand or control problems can be formulated as a program induction problem.
Recently in the computer vision domain, genetic programming has been shown to
achieve human competitive results [53].

A GP algorithm explores a search space of recursive programs made of ele-
ments of a function set, of a variable set, and of a terminal set (data, constants).5

Individuals of the population are programs that, when executed, produce the so-
lution to the problem at hand.

Crossovers are often subtree exchanges. Mutations are more complex, and
several mutations have to be used, producing different types of perturbations on
the genome structure: suppression/addition of a node, modification of the content
of a node, mutation of the constants (continuous values), and mutation of discrete
variables.

Applications of genetic programming are numerous, for example, in optimal
control, in trajectory and action planning in robotics, or in symbolic regression
(search for a mathematical formula that approximates a finite set of samples).

5A current problem of GP is the so-called bloat, that is, the saturation of the memory space due to
a disproportionate growth of the trees sizes along evolution. A good way to avoid this effect is to limit
genome sizes [32, 48].
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1.5. Doing more than optimization

Evolving a population on a search space according to the previous principles allows
not only to localize the global optimum of a complex function (theoretical proofs
exist, see [2, 12, 26, 40, 55]), but also to gain more information on the function
and its search space.

For instance, if the function to be optimized is multimodal, slight modifica-
tions of the evolution loop allow to make the population converge into subpop-
ulations localized on “niches” corresponding to each optimum. These methods
control the diversity of the population, or implement a resource-sharing mech-
anism between neighbor individuals [17, 18] to favor the emergence of distinct
species. The definition of an interchromosomes distance is then necessary.

It is also possible to consider a problem as a collective learning task, with the
searched solution being built from the whole set of individuals of an evolved pop-
ulation, and not only from its single best individual. The most famous techniques
of this type are classifier systems [7], the Parisian approach [9, 41], cooperative
coevolution [42], and techniques based on social insect colonies, like ant colony
algorithms (ACO) [13, 14].

The Parisian approach has, for example, produced applications in text re-
trieval [30, 31], in art and design [8, 15], or even real-time applications (stereo
vision using the “fly algorithm” [36]), which is noticeable for algorithms that have
the reputation of being big CPU time consumers!

Moreover, in some applications, the precise identification of quantities to be
optimized is sometimes difficult, especially in cases where there exist several judg-
ment criteria, possibly contradictory (e.g., maximize the resistance of a mechan-
ical part, while minimizing its weight and its cost). These optimizations are even
more complex to handle if there is no way of estimating the relative importance of
each criterion. One thus consider multicriterion optimization, without giving any
priority to the various criteria. The solution to a multicriterion problem is thus
a set, the Pareto front, of optimal compromises. The idea of using evolutionary
techniques to find the Pareto front of a multicriterion problem is quite natural,
and based on a small modification of the classical evolutionary scheme. More pre-
cisely, the selection operator is adapted in order to push the population toward the
Pareto front, while maintaining diversity to provide a good sampling of the front.
Once again, diversity control is a key point. A comparative study of evolutionary
methods for multicriteria optimization can be found in [56].

Finally, if what we wish to optimize is not measurable with a mathematical
function or a computer procedure (e.g., the simple notion of “being satisfied”),
one has to put a human in the evolutionary loop, that is, consider interactive evo-
lutionary algorithms. The first studies in this domain [3, 46, 47, 51] were oriented
toward artistic design (e.g., numerical images or 3D shapes synthesis). Much work
concerns now various application domains, where quantities to be optimized are
linked to subjective rating (visual or auditive). Characteristic work are, for in-
stance, [50] for adapting hearing aids, [28] for the control of robot arm to pro-
vide smooth and human-like movements, or [39] for the design of HTML pages.
A review of this broad topic can be found in [49] or in [44].
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1.6. Contents

In this section, we briefly introduce the contents of the book, according to the
logical subdivision of the volume into three main sections, which are dedicated to
low-level, midlevel, and high-level visions, respectively.

1.6.1. Low-level vision

Early stages of image processing—low-level vision tasks—have been largely in-
vestigated for many years. Typical tasks are image filtering, smoothing, enhance-
ment or denoising, lightness computation, edge and singular point detection, re-
sampling, quantization, and compression. Low-level processing usually takes into
account close neighborhood relations in images, morphologic properties, or even
3D geometry (including problems of camera distortion and partial occlusion).

This topic remains, however, a source of challenging problems, as the quality
of outputs is crucial for the whole computer vision chain. Sophisticated mathe-
matical theories and statistical methods have been developed in recent years, that
are a source of complex optimization problems. Additionally, new constraints for
embedded, real-time computer vision systems necessitate robust and flexible as
well as cost-effective algorithms.

In this section of the book, various examples show the benefit of using artifi-
cial evolution techniques to tackle complex low-level tasks, impossible to address
with classical optimization techniques, improving versatility, precision, and ro-
bustness of results. We will see also in the sequel that real-time or quasireal-time
processing can be attained with evolutionary techniques, in spite of the computa-
tion time-gluttony reputation of these techniques.

The first chapter, entitled “Evolutionary multifractal signal/image denoising”
by Lutton and Levy Vehel, deals with enhancement or denoising of complex signals
and images, based on the analysis of local Hölder regularity (multifractal denois-
ing). This method is adapted to irregular signals that are very difficult to handle
with classical filtering techniques. Once again, the problem of denoising has been
turned into an optimization one: searching for a signal with a prescribed regularity
that is as near as possible to the original (noisy) one. Two strategies are considered:
using evolution as a pure stochastic optimizer, or using interactive evolution for a
metaoptimization task. Both strategies are complementary as they allow to address
different aspects of signal/image denoising.

The second chapter, entitled “Submachine-code genetic programming for bi-
nary image analysis” by Cagnoni, Mordonini, and Adorni, addresses issues re-
lated to quasireal-time image processing. The authors present a solution that ex-
ploits in a clever way the intrinsic parallelism of bitwise instructions of sequen-
tial CPUs in traditional computer architectures. In other words, genetic program-
ming is used to optimize a set of binary functions, that are used as binary classi-
fiers (submachine-code genetic programming, SmcGP). The application consid-
ered is license-plate recognition, which is composed of two tasks: license-plate lo-
calization in the image (region-based segmentation), and low-resolution character
recognition. Both are formulated as classification tasks. GP-based techniques are
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compared to neural net techniques for the same tasks. SmcGP classifiers are almost
as precise as the LVQ neural net used as reference classifier, but with processing
times that are about 10 times faster. Using SmcGP in the preprocessing stage of a
license-plate recognition system has also been proved to improve robustness. Ad-
ditionally, the functions evolved with SmcGP can be easily integrated in embedded
systems, as Boolean classification functions as those evolved by SmcGP can be di-
rectly implemented in digital hardware.

The third chapter, entitled “Halftone image generation using evolutionary
computation” by Tanaka and Aguirre, investigates the problem of generating half-
tone images. Using a genetic algorithm has been proven to be beneficial. However,
as this technique is computationally expensive, it is necessary to build improved
GA schemes for practical implementations. Compromises have to be found in
order to be able to use GA-based techniques in practical implementations. This
chapter is a good example of an adaptation of the genetic operators and evolution
scheme to specificities of the genome (image blocks specialized operators, fine de-
sign of the functions to be optimized, and multiobjective approach).

The fourth chapter, entitled “Evolving image operators directly in hardware”
by Sekanina and Martinek, considers the problem of automatic designing of im-
age filters based on an evolvable hardware system (FPGA). The idea is to be able
to automatically design filters when corrupted, and original images are supplied
by the user. The learning problem is turned into an optimization problem, that is
to find the filter that minimizes the difference between the corrupted and origi-
nal images of the training set. The filters are combined from elementary compo-
nents (minimum, maximum, average, and other logic functions over two pixels)
using Cartesian genetic programming. Examples are provided for noise removal
and edge detection tasks. The originality of this work is that everything is im-
plemented on hardware, that is, the filters as well as the evolutionary algorithm
itself. The advantage of such an implementation is the performance (a filter can
be evolved in 20 seconds on an FPGA operating a 100 MHz!), and for some ap-
plications it is thus possible to approach real-time evolutionary design. A precise
analysis of the influence of parameters setting on quality and generality of filters
and on the time of evolution is also presented.

The fifth chapter, entitled “Variable-length compositional genetic algorithms
for the efficient implementation of morphological filters in an embedded image
processor” by Sillitoe and Magnusson, is also related to high-speed binary image
processing and embedded vision systems. This chapter describes the implementa-
tion of morphological image filters using a variable-length steady-state GA on a
high-speed image processor. A specific mechanism to maintain diversity has been
developed to cope with the rugged fitness landscape induced by the processor ar-
chitecture. The aim of the optimization procedure is to map the original filter
specification into a reduced sequence of machine-specific operators and connec-
tives. This chapter addresses an interesting point about variable-length genomes:
the so-called “compositional operator” is applied only when a stagnation is de-
tected, which has a consequence that evolution of genome content has the priority
over structure evolution. In the fitness evaluation, there is also an additional term
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that promotes individuals which implement elements of the solution not com-
monly found in the current population.

The sixth chapter, entitled “Autonomous model-based corner detection us-
ing affine evolutionary algorithms” by Olague and Hernández, is an example of
an approach based on a versatile nonlinear corner model whose parameters are
estimated via an optimization procedure (resolution of an inverse problem) based
on an EA. Additionally, new genetic operators based on homogeneous matrix rep-
resentations have been designed according to the specific corner model. Compar-
isons have been done with other optimization methods proving that EA provides
a more robust estimation technique. This is an example of the capability of EA
to handle nonlinear models, which allow to cope with more complex photogram-
metric models.

1.6.2. Midlevel vision

Midlevel vision algorithms, as the name suggests, provide the necessary connec-
tion between low-level algorithms and high-level ones. The former are aimed at
emulating the innate specificity of human perception, which includes processing
tasks occurring mostly at an unconscious level, while the latter, which can be re-
lated to cognitive tasks rather than to perceptual ones, implement the conscious
interpretation of the scene under observation, based not only on information ex-
tracted by perceptual elements, but mainly on knowledge-based processes based
on the observer’s own experience.

The aim of midlevel tasks is, therefore, to translate perceptual representation
of the image into a symbolic representation on which high-level reasoning pro-
cesses can operate to achieve full understanding of the contents of the scene repre-
sented within the image.

Image segmentation is definitely the most relevant and recurring task within
midlevel algorithms, and can almost be identified with the whole class, if its def-
inition as “grouping of perceptual information according to some uniformity/
classification criterion” is given the slightly more flexible interpretation as “inte-
gration of basic image elements into “more meaningful” and complex structures
to which a symbolic meaning can be attached.” Another popular application of
midlevel vision is image registration.

The chapters in this section describe several ways in which the design of mi-
dlevel vision algorithms can be supported by different EC techniques, in different
domains of application. They show how problems can be tackled by computer
vision-centered approaches, in which EC techniques are used essentially as opti-
mization tools, as well as by EC-centered approaches in which problems are ob-
served from a substantially different point of view, directly induced by the features
of the EC technique which is adopted.

In the chapter entitled “Evolution of an abstract image representation by a
population of feature detectors,” Bocchi presents an artificial life-inspired
approach based on an evolutionary network of entities which identify and track
“key” points in the image. Each entity “learns” to localize one of the features which
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are present in the image, and coordinates with neighboring entities to describe the
spatial relationships among the features. The population implements both a short-
term migration of the units to dislocate on an unknown image, and a long-term
adaptation to improve the fitness of the population to the environment which is
present on all images in the data set. Once adaptation is complete, the feature vec-
tors associated to each entity represent the features which have been identified in
the image set, and the topological relations among those features in the image are
mirrored in the neighborhood relations among the corresponding individuals. A
sample toy problem is used to show the basic properties of the population, where
the population learns to reproduce a hand-written letter, while an application to
the biomedical domain (identification of bones in a hand radiogram) measures
the performances of the architecture in a real-world problem.

The chapter by Ballerini, entitled “Genetic snakes: active contour models by
genetic algorithms,” reviews and extends the definition of “genetic snakes,” active
contour models optimized with a procedure based on genetic algorithms. Orig-
inally developed for application to problems in computer vision and computer
graphics, snakes have been extensively applied in medical image analysis in prob-
lems including segmentation, shape representation, matching, and motion track-
ing, and have achieved considerable popularity. However, the application of snakes
to extract region of interest suffers from some limitations. In fact, a snake is an
energy-minimizing spline, and the classical model employs variational calculus to
iteratively minimize the energy. There may be a number of problems associated
with this approach such as algorithm initialization, existence of local minima, and
selection of model parameters. “Genetic snakes” have been shown to be able to
overcome some limits of the classical snakes and have been successfully applied
to segment different kinds of images. In the chapter under consideration, new
problem-specific energy functionals are used in the fitness function driving the
evolution of snakes. Experimental results on synthetic images as well as on real
images are conducted with encouraging results.

Ciesielski, Song, and Lam, in the chapter entitled “Visual texture classification
and segmentation by genetic programming,” show that genetic programming can
be used for texture classification in three ways: (a) as a classification technique for
feature vectors generated by conventional feature extraction algorithms, (b) as a
one-step method that bypasses feature extraction and generates classifiers directly
from image pixels, and (c) as a method of generating novel feature extraction pro-
grams. All of the above approaches have been tested on a number of difficult prob-
lems drawn from the Brodatz texture library. Authors show, in particular, how the
one-step classifiers can be used for fast, accurate texture segmentation. In doing so,
they show that the use of the genetic programming techniques can overcome some
of the drawbacks, which are briefly listed here, affecting the application of tradi-
tional texture analysis techniques. Firstly, it is impossible to define a universal set
of optimal texture features, which causes the need for a trial- and error-process for
each new texture classification/segmentation task, to find a feature set that works
well. Secondly, some of the approaches generate an enormous number of features
which calls for effective techniques for dimensionality reduction in feature space.
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Thirdly, most of the texture feature extraction algorithms are computationally ex-
pensive and require the generation of Fourier-type transforms or other complex
intermediate data structures and then additional computation on these structures.

Another evolutionary approach to texture classification is presented by Koep-
pen and Garcia, in the chapter entitled “A framework for the adaptation of im-
age operators.” The chapter describes a framework, which allows for the design of
texture filters for fault detection. The framework is based on the 2D-lookup algo-
rithm, where two filter output images and a 2D-lookup matrix are used as inputs.
The algorithm runs through all pixel positions in both images, and takes the gray
value pair at the corresponding position as coordinates in the matrix. The value
stored in this matrix position is used as the return value in the result image at the
actual position. Having n operators available, there are n∗(n− 1)/2 possible ways
to select a pair of operators, and this number grows even more if the operation
allows for internal parameter settings. An evolutionary procedure is used to se-
lect the best operation pair. The chapter also introduces a generic design method
which builds more complex operators from simple ones, which is based on genetic
programming, the best established procedure so far to allow for such an optimiza-
tion as well. The framework can be extended in various ways; two of which are also
presented in the chapter.

In the chapter entitled “A practical review on the applicability of different
evolutionary algorithms to 3D feature-based image registration,” Cordón, Damas,
and Santamarı́a introduce image registration (IR), the process of finding the opti-
mal spatial transformation (e.g., rigid, similarity, affine, etc.) achieving the best
fitting/overlaying between two (or more) different images related by the latter
transformation, measured by a similarity metric function. IR is presently a very
active research area in the computer vision community. The chapter discusses the
basic problem and its components, and addresses the recent interest on applying
evolutionary algorithms to image registration, considering different approaches
to the problem and describing the most relevant applications. A practical review
focusing on feature-based IR considering both evolutionary and nonevolutionary
approaches is also developed. The review is supported by a broad experimentation
of those IR methods on the registration of some magnetic resonance images of hu-
man brains. To the best of our knowledge, this is the first review which compares
different evolutionary and nonevolutionary techniques reporting results obtained
on the same test images.

The chapter by Duarte, Sánchez, Fernández, and Montemayor, entitled “Im-
age segmentation hybridizing variable neighborhood search and memetic algo-
rithms,” introduces a new hybrid evolutionary algorithm as a graph-based im-
age segmentation technique to improve quality results. The method proposed in
this chapter can be considered as region-based, resulting in a k-region decompo-
sition of the scene. The underlying model and approach to solving image seg-
mentation as a graph-partitioning problem is related to Shi and Malik’s work.
They use a computational technique based on a generalized eigenvalue problem
for computing the segmentation regions. This algorithm combines oversegmented
regions using a low-level hybridization between a variable neighborhood search
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and a memetic algorithm. An oversegmented version of an original image is repre-
sented as an undirected weighted graph. In this graph, nodes are the image regions
and the arcs together with their associated weights are defined using local informa-
tion. The graph construction is modeled as an alternative region adjacency graph;
here called modified region adjacency graph.

Finally, Jean Louchet, in the chapter entitled “Model-based image analysis us-
ing evolutionary computation,” shows how evolution strategies can actually widen
the scope of Hough transform generalizations and how some of their variants and
extensions, in particular the Parisian approach, can efficiently solve real-time com-
puter vision, sensor fusion, and robotics problems with little reference to more
traditional methods. In the first part of this chapter, the author shows, through
several example problems, that evolution strategies give a new life to model-based
image analysis, thanks to their ability to efficiently explore complex model param-
eter spaces. In the second part, the Parisian variant of evolution strategies is con-
sidered, showing, through an application to stereo vision (the “fly algorithm”),
that it provides fast and efficient algorithms with interesting real-time and asyn-
chronous properties, specially valuable in autonomous robotics applications and
image analysis in changing environments.

1.6.3. High-level vision

High-level vision is devoted to the study of how the cognitive approach is im-
plemented in the computer. Several tasks are related to cognitive or mental tasks
such as content-based image retrieval, recognition, identification, 3D scene analy-
sis, and design.

This last stage of the computer vision chain is as the two previous ones a rich
source of challenging problems, in which evolutionary algorithms achieve success-
ful applications with innovative solutions.

In this section of the book, seven chapters have been included to illustrate how
evolutionary algorithms could be applied to solve complex high-level vision tasks.
The applications are centered on recognition, detection, design of photogram-
metric networks, and classification tasks. These chapters show a general balance
between the use of computer vision and evolutionary computation knowledge.

The first chapter, entitled “Evolutionary feature synthesis for image databas-
es,” by Dong et al., describes a genetic programming approach used in synthe-
sizing feature vectors in order to improve the performance of content-based im-
age retrieval. The advantage of dimensionality reduction, as well as the fact that
the genetic programming approach does not assume any class distribution in the
original feature space, gives distinct advantage over the linear transformation and
the support vector machine approaches. Results over several image datasets have
demonstrated the effectiveness of genetic programming in improving image re-
trieval performance.

The second chapter, by Quirin and Korczac, entitled “Discovering of clas-
sification rules from hyperspectral images,” presents a learning classifier system
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applied to remote sensing images in order to find the best set of rules without hu-
man intervention. The proposed system has been validated with a comparison to
other approaches such as neural networks and supports vector machines. Finally,
the results have shown the potential of applying learning classifier systems to the
discovery of rules in remote sensing images.

The third chapter, entitled “Genetic programming techniques for multiclass
object recognition,” by Zhang, proposes the use of dynamic class boundary detec-
tion methods to improve the static method that was previously applied in the do-
main of multiclass object detection using genetic programming. The results con-
firm that a dynamic approach could classify better the objects if the classes are
arranged in an arbitrary order or when the classification problems become more
difficult.

The fourth chapter, entitled “Classification by evolved digital hardware,” by
Tørresen, presents an evolvable hardware approach based on a divide-and-conquer
strategy called incremental evolution, which aims to improve the solution by di-
viding the problem domain while incrementally evolving the hardware system.
This is also called “increased-complexity evolution.” Thus, the evolution is under-
taken individually on a set of small systems in order to spend less effort than for
evolving a single big system. Examples are provided to show how to evolve both a
prosthetic hand controller circuit and for classifying numbers on speed limit signs.
The results illustrate that this is a promising approach for evolving systems in the
case of complex real-world problems.

The fifth chapter, by Olague and Dunn, entitled “Evolutionary photogram-
metric network design,” addresses the problem of configuring an optimal pho-
togrammetric network in order to measure a complex object with high accuracy.
The fitness function is implemented through an analytical uncertainty analysis,
as well as the classical bundle adjustment. The optical and environmental con-
straints are incorporated in the evolutionary process. The strategy proposed here
has shown how human-competitive designs could be achieved in the case of a
large number of cameras, considering multiple competing constraints until the
best acceptable configuration is found. A number of experiments are provided to
illustrate the applicability of the simulator.

The sixth chapter, by Zhang, entitled “Genetic algorithms and neural net-
works for object detection,” describes a domain-independent approach to multiple
class object detection based on training a neural network classifier on cutouts of
the objects of interest and then refining the network weights using a genetic al-
gorithm. The results show promising results for the case of retinal pathologies in
which the proposed technique is competitive with statistical and neural networks
approaches.

Finally, the seventh chapter, entitled “An evolutionary approach for design-
ing multitarget tracking video systems,” proposes the use of evolution strategies
for the development of an aircraft surveillance system. The proposed methodol-
ogy apply the concept of partial evaluation using aggregation operators to build
the evaluation function. This analogy is the base for stating the problem in terms
of optimization in order to give an appropriate output of the video surveillance
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system under different situations. Several experiments are provided to illustrate
the applicability of the proposed technique with respect to real situations.
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2
Evolutionary multifractal
signal/image denoising

Evelyne Lutton and Jacques Lévy Véhel

This chapter investigates the use of evolutionary techniques for multifractal sig-
nal/image denoising. Two strategies are considered: using evolution as a pure sto-
chastic optimizer, or using interactive evolution for a meta-optimization task. Both
strategies are complementary as they allow to address different aspects of sig-
nal/image denoising.

2.1. Introduction

We deal with enhancement, or denoising, of complex signals, based on the analysis
of the local Hölder regularity. Our methods do not make explicit assumptions on
the type of noise nor on the global smoothness of original data, but rather suppose
that signal enhancement is equivalent to increasing the Hölder regularity at each
point. Such methods are well adapted to the case where the signal to be recovered is
itself very irregular, for example, nowhere differentiable with rapidly varying local
regularity.

We describe two techniques. The first one tries to find a signal close to the ob-
servations and such that its local Hölder function is prescribed. A pure optimization
approach is convenient in this case, as this problem does not admit a closed-form
solution in general (although attempts have been previously done on an analytical
basis for simplified cases [17, 19]). In addition, the number of variables involved is
huge. Genetic algorithms have been found to be efficient in this case, and yield bet-
ter results than other algorithms. The principles and example results are presented
in Section 2.2.

However, it appears that the question of results evaluation is critical: a precise
(and general) definition of what good denoising, or enhancement, is, is question-
able. Medical doctors indeed may have different opinions on the quality of a given
result, as well as remote sensing specialists, or art photographers. The perception
of quality is extremely dependent on the end-user, the context, and the type of ap-
plication. A simple signal-to-noise ratio (when computable) is certainly not able
to capture the subtle perceptive judgment of a human end-user.
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To investigate this issue, we describe another regularity-based enhancement
technique: multifractal Bayesian denoising acts by finding a signal close to the ob-
servations and such that its multifractal spectrum is prescribed. This method relies
on the tuning of a small set of parameters that are able to provide various improve-
ments of the observed noisy image. An interactive evolutionary approach has been
designed in order to cope with the meta-optimization problem of tuning the pa-
rameters set and is described in Section 2.7.

In order to get acceptable computation times, the underlying optimization
problem and its parameters have been designed to be solved by a deterministic
method. The evolutionary approach is used in an interactive way, at a meta-level.

Going further into this direction, a scheme has been designed (and tested) in
order to reduce the number of user interactions, in other words to limit the famous
“user fatigue,” see Section 2.9.

The schemes and tools developed on the signal and image denoising problem
can be extended to other image-analysis tasks, such as multifractal image segmen-
tation (see Section 2.11).

2.2. Signal enhancement/denoising

The problem may be set in the following way: someone observes a signal Y which
is a certain combination F(X ,B) of the signal of interestX and a “noise” B. Making
various assumptions on the noise, the structure of X and the function F, one then
tries to derive a method to obtain an estimate X̂ of the original signal which is
optimal in some sense. Most commonly, B is assumed to be independent of X ,
and, in the simplest case, is taken to be white, Gaussian, and centred. F usually
amounts to convoluting X with a lowpass filter and adding the noise. Assumptions
on X are related to its regularity, for example, X is supposed to be piecewise Cn for
some n ≥ 1. Techniques proposed in this setting resort to two domains: functional
analysis and statistical theory. In particular, wavelet-based approaches, developed
in the last ten years, may be considered from both points of view [7, 8].

In this work, we do not make explicit assumptions on the type of noise and
the coupling between X and B through F. Furthermore, we are not interested in
the global smoothness ofX , but rather concentrate on its local regularity: enhance-
ment will be performed by increasing the Hölder function αY (see next section for
definitions) of the observations. Indeed, it is generally true that the local regularity
of the noisy observations is smaller than the one of the original signal, so that, in
any case, αX̂ should be greater than αY . We thus define our estimate X̂ to be the sig-
nal “closest” to the observations which has the desired Hölder function. Note that
since the Hölder exponent is a local notion, this procedure is naturally adapted
for signals which have sudden changes in regularity, like discontinuities. From a
broader perspective, such a scheme is appropriate when one tries to recover sig-
nals which are highly irregular and for which it is important that the denoising
procedure yields the right regularity structure (i.e., preserves the evolution of αX
along the path).
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2.3. The local Hölder exponent

We will measure the local irregularity of signals with the help of the Hölder expo-
nent. To simplify notations, we assume that our signals are nowhere differentiable.
Generalization to other signals require technicalities which are unessential to our
purposes.

Let α ∈ (0, 1), Ω ⊂ R. One says that f ∈ Cαl (Ω) if

∃ C : ∀x, y ∈ Ω :

∣∣ f (x)− f (y)
∣∣

|x − y|α ≤ C. (2.1)

Let αl( f , x0, ρ) = sup{α : f ∈ Cαl (B(x0, ρ))}. Note that αl( f , x0, ρ) is nonincreas-
ing as a function of ρ.

We are now in position to give the definition of the local Hölder exponent.

Definition 2.1. Let f be a continuous function. The local Hölder exponent of f at
x0 is the number αl( f , x0) = limρ→0 αl( f , x0, ρ).

Since αl is defined at each point, we may associate to f the function x → αl(x)
which measures the evolution of its regularity.

This regularity characterization is widely used in fractal analysis because it has
direct interpretations both mathematically and in applications. For instance, the
computation of the Hölder exponent at each point of an image allows to perform
edge detection [6].

2.4. Signal enhancement based on increasing the local Hölder function

Let X denote the original signal and Y the degraded observations. We seek a reg-
ularized version X̂ of Y that meets the following constraints: (a) X̂ is close to Y in
the L2 sense, (b) the (local) Hölder function of X̂ is prescribed.

If αX is known, we choose αX̂ = αX . In some situations, αX is not known but
can be estimated from Y . Otherwise, we just set αX̂ = αY + δ, where δ is a user-
defined positive function, so that the regularity of X̂ will be everywhere larger
than the one of the observations. We must solve two problems in order to obtain
X̂ . First, we need a procedure that estimates the local Hölder function of a signal
from discrete observations. Second, we need to be able to manipulate the data so
as to impose a specific regularity.

We will use a wavelet-based procedure for estimating and controlling the
Hölder function. We let {ψj,k} j,k be an orthonormal wavelet basis, where as usual j
represents scale and k position. Denote cj,k the wavelet coefficient of X . Results in
[10, 11] indicate that, assuming that ψ is regular enough and has sufficiently many
vanishing moments, one may estimate αX(t) by linear regression of log (|cj,k|)
with respect to the scale j (log denotes base 2 logarithm), considering those in-
dices ( j, k) such that the support of ψj,k is centred above t. Roughly speaking,
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those coefficients should decay in scale as 2− j(α+1/2) (more precisely, all the |cj,k|
are bounded by C2− j(α+1/2) for some C > 0, and some of the coefficients |cj,k| are
of the order of C2− j(α+1/2)).

The use of wavelets then allows to perform the reconstruction in a simple way.
Starting from the coefficient (dj,k) of the observations, we will define a procedure
that modifies them to obtain coefficients (cj,k) that fulfil the decay condition with

the desired α, and then reconstruct X̂ from those (cj,k).
We may now reformulate our problem as follows: for a given set of observa-

tions Y = (Y1, . . . ,Y2n) and a target Hölder function α , find X̂ such that ‖X̂−Y‖L2

is minimum and the regression of the logarithm of the wavelet coefficients of X̂
above any point i with respect to scale is −(α(i) + 1/2). Note that we must adjust
the wavelet coefficients in a global way. Indeed, each coefficient at scale j subsumes
information about roughly 2n− j points. Thus, we cannot consider each point i se-
quentially and modify the wavelet coefficients above it to obtain the right regular-
ity, because point i + 1, which shares many coefficients with i, requires different
modifications. The right way to control the regularity is to write the regression
constraints simultaneously for all points. This yields a system which is linear in
the logarithm of the coefficients:

ΔL = A, (2.2)

where Δ is a (2n, 2n+1 − 1) matrix of rank 2n, and

L = ( log
∣∣c1,1

∣∣, log
∣∣c2,1

∣∣, log
∣∣c2,2

∣∣, . . . , log
∣∣cn,2n

∣∣),
A = −n(n− 1)(n + 1)

12

(
α(1) +

1
2

, . . . ,α
(
2n
)

+
1
2

)
.

(2.3)

Since we use an orthonormal wavelet basis, the requirements on the (cj,k) may
finally be written as follows:

minimize
∑
j,k

(
dj,k − cj,k

)2
subject to,∀i = 1, . . . , 2n, (2.4)

n∑
j=1

s j log
(∣∣cj,E((i−1)2 j+1−n)

∣∣) = −Mn

(
α(i) +

1
2

)
, (2.5)

where E(x) denotes the integer part of x and the coefficients s j = j − (n + 1)/2,
Mn = (n(n− 1)(n + 1))/12, and (2.5) is deduced from the requirement that the
linear regression of the wavelet coefficients of X̂ above position i should be−(α(i)+
1/2).

Finding the global solution to the above program is a difficult task; in parti-
cular, it is not possible to find a closed form formula for the cj,k. In [19], a method
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is described, that allows explicit computations under simplifying assumptions. In
the following, we show how this problem can be addressed with an evolutionary
algorithm.

2.5. Evolutionary signal enhancement with EASEA

An evolutionary technique seems to be appropriate for the optimization problem
described in (2.4): a large number of variables are involved, and the function to
be optimized as well as the constraint is nonlinear. We describe in this section an
implementation based on the EASEA [5] language and compiler.

EASEA (EAsy Specification of Evolutionary Algorithms) is a language dedi-
cated to evolutionary algorithms. Its aim is to relieve the programmer of the task
of learning how to use evolutionary libraries and object-oriented programming by
using the contents of a user-written .ez source file.

EASEA source files only need to contain the “interesting” parts of an evolu-
tionary language, namely the fitness function, specification of the crossover and
mutation operators, the initialization of a genome plus a set of parameters de-
scribing the run. With this information, the EASEA compiler creates a complete
C++ source file containing function calls to an evolutionary algorithms library
(either the GALIB or EO for EASEA v0.6). Therefore, the minimum requirement
necessary to write evolutionary algorithms is the capability of creating non-object-
oriented functions, specific to the problem which needs to be solved.

In our case, the evolutionary optimization involved to enhance a signal (1D
or 2D) was implemented using a simple structure on which genetic operators were
defined. We used GALib [35] as the underlying evolutionary library.

We describe below the implementation for 1D signals. An implementation for
image denoising was also produced based on the same principles [23].

The Haar wavelet transform has been used to produce the dj,k associated to
the observed signalY . We also suppose that we know the desired Hölder exponents
α(i) (either α(i) = αY (i) + δ where the αY (i) are the Hölder exponents of Y and δ
is a user-defined regularization factor, or α(i) is set a priori).

Our unknowns will be the multiplicative factors uj,k such that cj,k = uj,k∗dj,k,
j ∈ [0 · · ·n − 1], k ∈ [0, . . . , 2 j − 1]. As is usual in wavelet denoising, we leave
unchanged the first l levels and seek for the remaining uj,k in [0, 1]. The genome
is made of the uj,k coefficients, for j ∈ [l, . . . ,n− 1] and k ∈ [0, . . . , 2 j − 1]. These
coefficients are encoded as a real numbers vector of size SIZE MAX = 2n−2l, which
can be written using EASEA syntax as
GenomeClass { double U[SIZE_MAX]; }

The EASEA Standard functions sections contain the specific genetic op-
erators, namely the following.

(1) The initialization function: each uj,k coefficient is randomly set to a value
in [0, 1]. Two initial solutions are also put in the initial population: uj,k =
1. and uj,k = 2−kδ .

(2) The crossover function: a barycentric crossover has been easily defined
as follows: let parent1 and parent2 be the two genomes out of which
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child1 and child2 must be generated, and let alpha be a random
factor:
\GenomeClass::crossover:
double alpha = (double)random(0.,1.);
if (&child1) for (int i=0; i<SIZE_MAX; i++)

child1.U[i] = alpha*parent1.U[i]
+ (1.-alpha)*parent2.U[i];

if (&child2) for (int i=0; i<SIZE_MAX; i++)
child2.U[i] = alpha*parent2.U[i]

+ (1.-alpha)*parent1.U[i];
\end

(3) The mutation function: mutation is a random perturbation of radius
SIGMA = 0.01, applied with probability PMut on each gene.
\GenomeClass::mutator: // Must return the number of

// mutations as an int
int NbMut=0;
for (int i=0; i<SIZE_MAX; i++)

if (tossCoin(PMut)){ NbMut++;
Genome.U[i]+=SIGMA*(double)random(-1.,1.);
Genome.U[i] = MIN(1.,Genome.U[i]);
Genome.U[i] = MAX(0.,Genome.U[i]);}

if(NbMut==0)identicalGenome=true; // saves evaluation
// time

return NbMut;
\end

(4) The evaluation function: the fitness function has two aims: minimize∑
((1 − uj,k) ∗ cj,k)2, making sure constraint (2.4) is satisfied, that is,

the Hölder exponents are the ones we want. The constraint is integrated
into the fitness function using a high-penalty factor W :

Fitness =
∑
j,k

((
1− uj,k

)∗ cj,k)2
+W ∗

∑
i

∣∣αu(i)− α(i)
∣∣. (2.6)

We use the GALib steady state genetic engine with replacement percentage
of 60% and selection by ranking. Crossover and mutation probabilities are fixed,
respectively, to 0.9 and 0.001. Genome size, population size, and number of gen-
erations are fixed for each experiment, see Section 2.6.

2.6. Numerical experiments

Results of enhancement on synthetic 1D data are shown in Figure 2.1. The orig-
inal signal is a generalized Weierstrass function [6] with αX(t) = 0.2 for t < 0.5,
αX(t) = 0.8 for t > 0.5 that has been corrupted by additive white Gaussian noise.
Figure 2.1 shows the original signal, the noisy one, and the result of the enhance-
ment procedure. For comparison, a denoising using a classical wavelet hard thresh-
olding is also displayed (i.e., all coefficients with absolute value smaller than a given
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Genome size SIZE MAX = 496

Population size 25

Number of generations 50 000

Computation time 1438.52 seconds for 744 897 evaluations
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(b) Denoising using wavelet thresholding (left), and using the evolutionary scheme with prescribed
α(t) = step (0.2, 0.8) (right)
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(c) Estimated Hölder exponents of the original function (left), of the function + noise (middle), and
of the reconstructed function (right)

Figure 2.1. Results on a generalized Weierstrass function α(t) = step (0.2, 0.8).

threshold are put to 0). For both procedures, the parameters were set so as to ob-
tain the best fit to the known original signal. It is seen that, for such irregular
signals, the Hölder regularity-based enhancement yields more satisfactory results.
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One should however remark that we have placed ourselves in a favorable situa-
tion for the evolutionary algorithm, since the constraint was to find the (generally
unknown) correct Hölder function. Parameters of the evolutionary algorithm are
given in Figure 2.1.

2.7. Interactive schemes and multifractal Bayesian denoising

There are several ways to improve the method. To begin with, more precise esti-
mations of Hölder exponents yield more accurate results. For instance, in [21], an
estimation based on the analysis of local oscillations of the signal has been used.
The associated inverse problem is then more complex, and necessitates the use of
specific genetic operators. Improved results are obtained at the expense of more
complex computations.

Progress on this topic is however more related to the design of an efficient
analysis of the quality of the results. But computational measurement of denois-
ing results is difficult to design, as the evaluation of a good denoising is strongly
dependent on the end-user as well as the application framework. Signal-to-noise
ratio is unable to reflect all the subtle components of a human expert appreciation
on a denoising result. Remote sensing, medical imaging, sound restoration, data
filtering have very different constraints, and expert users of these domains have
different needs.

A way to cope with this discrepancy is to involve the human user in the opti-
mization loop in order to let him accurately guide the search mechanism towards
what he wishes. The artificial evolution framework allows one to introduce hu-
man evaluation in the algorithmic loop, and to cope with human judgment irreg-
ularity (or even inconsistency). Actually, interactive evolution is a research topic
that is rapidly growing: first attempts were oriented toward artistic applications
[1, 30, 31, 34], but now many other applications domains are explored: hearing
aids fitting [33], smooth, human-like, control rules design for a robot arm [13], or
design of HTML style sheets [25]. An overview of this vast topic can be found in
[32].

Interaction with humans raises several problems mainly related to human fa-
tigue. Three types of solutions have been considered [2, 27, 32]: (1) reduce the
size of the population and the number of generations, (2) choose specific models
to constrain the research in a priori “interesting” areas of the search space, or (3)
perform automatic learning (based on a limited number of characteristic quanti-
ties) in order to assist the user and only display the most interesting individuals in
the population, with respect to previous votes of the user.

In order to implement (1) and (2), we adopt an approach different from the
one in the previous sections. Instead of prescribing the Hölder exponent at each
point, we will rather try to control the multifractal spectrum of the denoised im-
age. This allows to reduce dramatically the number of variables. A first experiment
where a small population is evolved using a multifractal scheme is presented in
Section 2.8. We then experimented an approach integrating item (3), that is, we
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extend fitness rating to individuals in a larger population via the analysis of the
user judgment on a small sample of individuals (Section 2.9).

2.7.1. Description of the multifractal Bayesian denoising method

The multifractal analysis of a signal consists in measuring its regularity at each
sample point, in grouping the points having the same irregularity, and then in
estimating the “size” (through some “fractal dimension”) of each iso-regularity
set. Irregularity is measured via the Hölder exponent.

The multifractal spectrum f is a representation of the irregularity of the sig-
nal over its definition domain. For each irregularity value, that is, for each α, one
estimates the speed of exponential decay of the probability of finding a point with
regularity α as resolution tends to infinity. In some cases, this speed is also the
Hausdorff dimension of the corresponding iso-α set (see [3] for details).

For example, for an image, a value of f (α) � 1 corresponds to a set of points
with same regularity and dimension 1 (i.e., it will most of the times look like a set
of lines), f (α) � 0 is a set of scattered points (singular points), and f (α) � 2 is a
typically an area of positive measure.

Multifractal analysis is a tool widely used in image and signal analysis, as it
provides at the same time a local (α) and a global ( f (α)) viewpoints on data. It has
been exploited with success in many applications where irregularity bears some
important informations (image segmentation [15], signal and image denoising
[16, 20], etc.)

The principle of the denoising method is the following, for a noisy image I1,
we search for a denoised image I2 that satisfies two conditions:

(i) I2 has a given multifractal spectrum;
(ii) the probability that the addition of a white Gaussian noise (with vari-

ance σ) to I2 produces the observed image I1 is maximal.
As we mentioned before, the wavelet transform is a convenient tool for the

estimation of the Hölder exponents. This second denoising method is thus also
based on the discrete wavelet transform.

2.7.2. The search space is the set of free parameters of the method

We explain here the algorithm for image denoising. Recall that the aim is to find
a denoised image I2 close to the noisy observations I1, under the constraint that
I2 has a given multifractal spectrum g. The noise is assumed to be white, centred,
and Gaussian with variance σ .

The problem may be reformulated as follows: if we denote by y a wavelet co-
efficient of the noisy image at scale j, then the corresponding wavelet coefficient x̂
of the denoised image at the same scale j can be calculated by solving the following
equation (for details, see [18]):

x̂ = arg max
x>0

(
j · g

(
log2(K̂ · x)
− j

)
−
(|y| − x)2

2σ2

)
sgn(y), (2.7)
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where
(i) K̂ is a constant for which K̂ ·|y| < 1 holds and may be set independently

for each scale. In what follows, K̂ has been taken as the inverse of the
maximum coefficient in each scale j;

(ii) g is a function which defines the multifractal spectrum of the denoised
image. If we choose to represent it by a linear-by-parts function, its
shape is determined by 5 values αmin, αnod, αmax, g(αmin), and g(αmax).
More precisely, the spectrum has been chosen to fulfil the following con-
straints:
(a) g is defined on the interval [αmin,αmax],
(b) g(x) ∈ [0, 1],
(c) αnod ∈ [αmin,αmax] and g(αnod) = 1,
(d) g is affine on [αmin;αnod] and on [αnod;αmax].

In most cases, but not necessarily, the multifractal spectrum calculated from
the denoised coefficients x̂ should show a slight spectral shift to the right. This shift
is a sign of an overall increase of regularity.

Consequently, we have 7 free parameters:
(i) the 5 values defining the a priori spectrum g,

(ii) the variance σ of the noise,
(iii) the wavelet used for the discrete (inverse) wavelet transformation.
The choice of the wavelet is less critical than the choice of the other 6 param-

eters. Usually, Daubechies 6 to 12 offer equivalent denoising results in terms of
visual reception whereas Daubechies wavelets with smaller supports yield unsatis-
factory results in some cases.

Especially in cases where we want to treat very noisy images and subsequently
have to set the parameters σ and αnod to relatively high values, the denoising al-
gorithm leads to artefacts in the denoised image when using wavelets with a small
support, see Figure 2.2. The regularity of those wavelets is low. They are therefore
not able to model very irregular parts of an image.

It should be mentioned that the number of calculated wavelet scales is fixed
to a value obtained from the image dimensions [N ×M]:

scales = ⌊ log 2
(

max(N ,M)
)⌋
. (2.8)

The setup of the 7 resulting free parameters is nontrivial in the sense that they
are strongly dependent on the amount of noise in the noisy image and the sub-
jective opinion of the human observer about which result reflects best the desired
denoised image.

A solution is therefore to build an interactive evolutionary algorithm (IEA) to
interactively find suitable settings of the free parameters.

2.8. An interactive approach with a small population

This first implementation does not include the choice of the wavelet basis as a free
parameter but considers a shift to the a priori spectrum g for diagonal wavelet
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Figure 2.2. Original image without noise (up left), multifractal denoising using wavelet Daubechies 2
(up right), multifractal denoising using wavelet Daubechies 18 (low left), noisy image (low right); all
parameters except wavelets are constant.

coefficients. It has been noticed that the diagonal wavelet coefficients are more
sensitive to additive noise and therefore may need a different spectrum g.

The genomes that are evolved by this IEA are made of 7 real genes:
(i) 5 values to define the g function for the horizontal and vertical wavelet

coefficients: αmin ∈ [0, 0.5], g(αmin) ∈ [0, 1], αnod > αmin, αnod ∈ [0, 2],
αmax > αnod, αmax ∈ [0.01, 20], g(αmax) ∈ [0.2, 1];

(ii) the shift of the g function for the diagonal coefficients (range [0, 0.5]);
(iii) the variance of Gaussian noise, σ (range [0, 100.0]).

Fitness and user interaction. The fitness function is given by the user via sliders
attached to each denoised sample. Evaluations range from−10 to +10. The default
value 0 corresponds to a neutral judgment.

Additionally, the user may directly edit the genotypes of each image, see
Figure 2.3, and thus participate in the evolutionary loop as an additional genetic
operator.

Genetic engine. The population has a fixed size of 6 individuals. Each individual
carries a set of 7 parameters and therefore represents a potential solution for the
aforementioned optimization problem. All individuals are presented as an image,
resulting from the denoising algorithm with corresponding free parameters. The
basic evolutionary cycle is presented in Figure 2.4, and the operators are the fol-
lowing.

(i) Parents selection is performed by deterministic selection of the 3 best
individuals in the population.
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Figure 2.3. The interface of the small population IEA, written in C++.

(ii) Genetic operators:
(a) barycentric crossover is performed by weighted combination of par-

ents with a randomly chosen weight in [0, 1];
(b) mutation is an independent perturbation of each gene value by ad-

dition of a Gaussian noise with a given variance.
(iii) Survivor selection scheme replaces the 3 worst parents by offsprings.
A sharing scheme is applied before parent selection: the user marks

are weighted to maintain diversity inside the small population. The sharing is
based on a genotypic distance. The parent selection then chooses the 3 individ-
uals with the best weighted fitness and is therefore fully deterministic. Crossover
and mutation operators then produce 3 children. The survivor selection substi-
tutes parents with offspring and thereby closes the evolutionary cycle.

2.9. An interactive approach with a large population

In the previous interactive scheme, the user has access to 6 individuals (or images)
per generation, and the genetic engine only considers the current user evaluations
to calculate the next generation. This IEA is driven by a fitness sample, or let us say
a fitness map, made of only 6 points.

In order to increase the reactivity of the system while being able to handle
populations of any size (this increases the search capabilities), we consider the use
of a larger fitness sample, while considering techniques to approximate user eval-
uation. However, a dynamic approximation of the interactive fitness is a delicate
task, and necessitates rather large samples. We have proposed a method based on
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Figure 2.4. The small population denoising IEA genetic engine.

the use of past user marks, collected in a set, the fitness map. The fitness of new in-
dividuals produced by the genetic engine can be preliminarly estimated from the
fitness map by smooth interpolation (flat or polynomial, see below). This prelimi-
nary fitness estimation can serve as a preselection tool in order to show to the user
only the 6 best individuals of a larger current population.

The use of larger population sizes offers some major advantages, of which
an obviously easier maintenance of diversity, a more extensive exploration of the
given search space, and a possible speedup of convergence are the most significant.

Genome. The genomes are made of 7 genes:
(i) 5 values to define the g function for the horizontal and vertical wavelet

coefficients: αmin ∈ [0, 0.5], g(αmin) ∈ [0, 1], αnod > αmin, αnod ∈ [0, 2],
αmax > αnod, αmax ∈ [0.01, 20], g(αmax) ∈ [0.2, 1];

(ii) the wavelet used for the discrete wavelet transformation (Daubechies 2
to 20);

(iii) the variance of Gaussian noise, σ ∈ [0, 100].

Fitness and user interaction. The user evaluations are given the same way as in
Section 2.8 with range
[−6 (very bad), . . . , 0 (neutral), . . . + 6 (very good)].

The genetic engine is highly customizable for parameters setting. In contrast
to the small population IEA, it is possible that all 6 images in the user interface are
changed from a generation to the next. As loosing good images may be frustrating
for the user, it is possible to mark images as “super individuals” that remain in the
user interface and in the population. The user may toggle this state at any time; see
Figure 2.6.
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Figure 2.5. The extended genetic engine supports a fitness map.

Figure 2.6. Clicking the star button toggles an individual as “super individual.” From thereon it is
“immortal” in the population.

Additionally, to increase user interactivity, two new dialogues have been cre-
ated: to view and manipulate the individuals in the population (Figure 2.7), as well
as the samples in the fitness map (Figure 2.8). These dialogues both provide plots
of the gene values of the individuals in the current population, or in the fitness
map. By toggling checkboxes, additional curves, such as an interpolation of fitness
and sharing values, are available.
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Figure 2.7. The population editor. Individuals may be added to the population, existing individuals
may be deleted and their genotype can be manipulated. The gene values are plotted on 7 curves as
small stars. The plotted curves are interpolations of the fitness (or shared fitness) samples values.

“User ranges” (Figure 2.9) have been introduced, as soft thresholds that con-
strain the search space of genes, and can be set independently for each of the 7
genes.

Genetic engine. Enlarging the population size and using a fitness map requires
major changes: the selection step now strongly depends on the fitness map, as
well as crossover and mutation operators. The generation cycle includes an “im-
age selection” step, that is, 6 individuals are selected to be shown to the user, see
Figure 2.5.

The fitness map is a matrix of size [8 × N]. N is the number of samples that
are saved in the fitness map. These samples are vectors of size [8×1], and include a
genotype and its corresponding fitness value. The fitness map is used to interpolate
between the available samples in order to predict the fitness values of unknown
genotypes. Two interpolation methods have been implemented:

(i) “Nearest”: the fitness value of the nearest sample in the fitness map is
returned as the fitness value of the unknown sample.

(ii) “Interpolation”: interpolating polynomials of order 8 are calculated for
each gene using the samples of the fitness map (small stars interpolated
by smooth curves in Figure 2.10). The approximated fitness value for an
unknown sample (see vertical markers in Figure 2.10) is the mean value
of the 7 polynomials for the genes values of the unknown sample.
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Figure 2.8. The fitness map editor. Samples may be deleted and their fitness can be reevaluated.
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Figure 2.9. Plot of sample fitness for the values of αmin. An interpolation of the fitness values is plotted
(line). The sharing estimation is plotted as a curve. Setting a user preferred range for individual genes is
done by drag and drop of the thick vertical brackets.

Various selection algorithms have been implemented. These selection opera-
tors can be deployed by the parent, offspring, and image selection. The selection
operator that is actually used in a certain stage of the genetic cycle is set offline
with help of a configuration file.

The available selection methods are the following.
(i) “Fittest”: the individual with the best fitness value is selected.

(ii) “Cycle”: n individuals are selected by cycling through m individuals
among the fittest. This method can be used to generate an offspring from
a small number of parent individuals (as in the small population IEA).

(iii) “Roulette”: randomized variant of fitness-proportionate selection.
(iv) “Rank”: randomized variant of rank-proportionate selection. The selec-

tion probability for an individual is pressure−rank, where “pressure” ad-
justs the strength of selection and “rank” is the position of the individual
inside the population (sorted by decreasing fitness values).
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Figure 2.10. The 2 fitness estimation methods illustrated for a sample genotype (vertical markers):
nearest method (horizontal grey line), interpolation method (horizontal light line). The y axes represent
the fitness values, while the x axes represent the gene values.

A sharing algorithm has been implemented. Similarly to the sharing algorithm
of the small population IEA, fitness values are weighted with a sharing factor that is
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calculated from mean genotype distances within the population. Genotypes with
a high mean distance to other genotypes in the population consequently have a
bigger increase in their fitness. The pressure of this sharing method can be set in a
configuration file, independently for each selection method. Distinct selection of
individuals is also implemented and configurable.

Different versions of the genetic operators (crossover and mutation) have
been implemented.

(i) Crossover. “Random”: new individuals are a weighted combination of
their parents. The weights are randomly chosen in [0, 1]. “Swap”: special
case of random crossover. Parent genes are randomly swapped to gener-
ate children genotype. “Factory”: this method builds new genotypes out
of the best genes from two parent individuals. The necessary fitness for
individual genes is taken from the interpolating polynomials described
earlier.

(ii) Mutation. “Random”: Gaussian perturbation of each gene with a given
σ . “Preferred area”: Gaussian perturbation of each gene towards it’s user
range. There is no effect on a gene when it is already located inside the
area set by the user.

2.10. Experiments

Quantitative evaluations are rather difficult to perform on interactive evolutionary
algorithms. To be able to evaluate the efficiency of the fitness map scheme or, to
some extent, compare the small population IEA with the large population IEA,
experiments were made in a noninteractive way.

The two algorithms were run on several noisy images, for which the original
“nonnoisy” images were available, and for various parameter settings.

The noninteractive software. For these tests, the software was slightly modified.
User evaluations were replaced by automatic evaluations. A user fitness is there-
fore imitated by the calculation of a phenotypic distance between the noisy images
and their corresponding original images (typically a L2 distance between images).
The two presented versions of the IEA were set to run 30 generations on every
noisy image and for every parameter setting. In each generation, the minimum
phenodistance was collected in order to produce a convergence curve. This was
repeated for at least 30 times. Afterwards a mean curve of convergence was calcu-
lated. The 2 IEAs have been compared on the basis of these average curves.

Parameters. The influence of the population size parameter has been analyzed, the
parameter setting used for the tests is the following.

(i) Large population IEA:
(a) population size: 16, 32, 64, and 128 Individuals;
(b) parent selection: rank selection (as presented in Section 2.9);
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Figure 2.11. Comparison of mean convergence for different population sizes. Original image: Sommet
256. Noisy image: Sommet 256 with Gauss σ = 20.

(c) offspring size: 90% of parent generation;
(d) image selection: fittest selection;
(c) fitness map interpolation: nearest;
(e) use of “super individual”: in each generation the image with the

lowest phenodistance to the original image is set as super individ-
ual;

(g) one generation is equivalent to 5 user interactions.
(ii) Small population IEA:

(a) population size: 6 individuals;
(b) parent selection: fittest 3;
(c) offspring size: 3 individuals;
(d) one generation is equivalent to 3 user interactions.

Results. To ensure a fair comparison between the two algorithms, the average
curves of convergence are plotted with respect to the number of user interactions
(i.e., user evaluations) instead of the generations number.

Figures 2.11, 2.12, and 2.13 show a clear improvement of the minimization
behavior for the fitness map scheme, the larger the population, the more effi-
cient.

The loss of precision of the fitness calculation based on the fitness map, which
is a very rough approximation of the user, or phenotypic (for the automated ver-
sion), fitness, is compensated by the exploration capabilities of a larger population.
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Figure 2.12. Comparison of mean convergence for different population sizes. Original image: Lena
256. Noisy image: Lena 256 with Gauss σ = 25.
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Figure 2.13. Comparison of mean convergence for different population sizes. Original image: Mars
256. Noisy image: Mars 256 with Gauss σ = 30.

This improved exploration capability has also been noticed in a qualitative
manner by users.
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Figure 2.14. The presented IEA integrated with Fraclab.

2.11. Conclusion

This work about the use of evolutionary computation schemes for signal and im-
age denoising leads us to several conclusions that may be considered from a wider
point of view. First of all, it has been made evident, if necessary, that evolution-
ary schemes are efficient in signal and image analysis basic tasks, as far as we deal
with complex optimization problems. But of course, as this choice implies heavy
computational costs, such a technique may not be convenient in cases where short
response time is required.

Another point, that has been raised, is the interest and efficiency of interac-
tive schemes in image and signal processing: for subtle tasks where computational
measurement cannot accurately reflect the judgment of the end-user, which is ac-
tually the case for image denoising, an IEA can be a solution. Once again, however,
a careful design of the EA components and user interaction schemes is necessary.
For instance, the manipulation of a much larger population in conjunction with
the use of rough approximations of the user fitness provides a solution to the “user
bottleneck” problem.

This work also defends a viewpoint on signal and image analysis tasks, in
terms of semiautomatic procedures where an end-user is involved in order to con-
strain the analysis towards aims for which numerical models are not available.
Such an analysis may additionally have backward consequences into noninterac-
tive procedures. For example, the fitness map scheme can be easily generalised to
other applications, including noninteractive ones where exact fitness calculation is
computationally expensive.
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The IEA presented in this work is freely distributed in the Fraclab toolbox, see
Figure 2.14, available for download at http://complex.inria.fr.
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3
Sub-machine-code genetic
programming for binary
image analysis

Stefano Cagnoni, Monica Mordonini, and Giovanni Adorni

3.1. Introduction

Applications which require real-time or quasi-real-time processing are more and
more frequent in computer vision, as well as in many other application fields,
thanks to the continuous increase of computing power available to programmers.
However, at the same time, such an increase keeps being challenged by the quan-
tity of data on which applications must be run, which is increasing with a similar,
when not faster, trend. An outstanding example of such a situation is offered by
the recent advances in image sensors, which has led to an increase in resolution
available for digital pictures close to an order of magnitude in the last four/five
years.

Therefore, even when algorithms of polynomial (or lower) complexity are
used, the need for efficient computing architectures, on the hardware side, or com-
puting paradigms, on the software side, is still a critical problem in most applica-
tions.

When the data to be processed or generated are either synthetic images (as
in computer graphics) or real-world images (as in image processing and computer
vision), SIMD (Single Instruction, Multiple Data) architectures, in which the same
instruction is executed in parallel on a large array of data, are often used to dra-
matically speed up processing time. The ever-growing availability of multimedia
applications, even to that huge range of users which typically use low-end PCs,
has led the main microprocessor manufacturers to introduce a specific set of in-
structions, which actually implement the SIMD paradigm, in their mainstream
products. This is the case, for example, of Intel and AMD, who have added specific
multimedia extensions (MMX and 3DNow!, resp.) to the instruction sets of their
PC processors since 1997. Another relevant SIMD architecture which is widely
used is the cellular automaton [12, 14, 15], which has been widely used in several
applications, including image processing and analysis, in both software [1, 4, 13]
and hardware implementations (e.g., the CAM-8 cellular automata machine [8]).
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In several software implementations of the SIMD paradigm, long words are
used to pack binary data, on which bitwise Boolean or other bit-manipulating
instructions from the native instruction set of a processor are applied. In the fol-
lowing, we focus on Sub-machine-code genetic programming (SmcGP) [10, 11],
a variant of genetic programming, which implements the SIMD computation par-
adigm. In particular, we describe a general framework within which binary classi-
fiers or sets of binary classifiers can be evolved, which can be applied to the solution
of a large number of problems. One of the main features of SmcGP is the capability
of evaluating several (nonindependent) individuals in parallel, which allows such
an approach to explore the search space very effectively. An even more relevant
property of the approach under consideration is the capability to produce highly
efficient accurate classifiers, due to the use of a function set which allows for either
a direct or a very efficient translation into machine code of the evolved programs.

In this chapter, we illustrate the potentials and the limitations of the approach
by describing results obtained in designing automatically a set of binary classifiers
for low-resolution characters and an image-preprocessing procedure, also based
on the use of a binary classifier. Both tasks have been designed to be possible parts
of a license-plate recognition system. Results obtained in such tasks are compared
with those obtained by a “human-designed” plate-recognition system we devel-
oped in our laboratory [2].

3.1.1. Sub-machine-code genetic programming

Given a problem to be solved that can be mapped onto an optimization prob-
lem, evolutionary computation (EC) techniques use different encoding schemes
(genotypes) to allow for different spaces of solutions (phenotypes) to be explored.
While, for example, genetic algorithms (GAs) typically optimize the parameters
of a function whose structure has been formerly defined, in genetic programming
(GP) [3, 7], the phenotype of each individual in the population is a full program.
Several GP paradigms have been described, the most commonly used is the one
originally proposed by Koza [7], where programs are encoded as syntactic trees or,
equivalently, as prefix-notation LISP-like functions.

Genetic programming paradigms are usually computationally very intensive.
The higher computation load imposed by the optimization phase with respect, for
example, to GAs is, firstly, due to the much wider search space it spans. Secondly,
tree-like encoding of solutions makes decoding, during fitness evaluation, as well
as crossover and mutation operators, much less efficient and CPU-demanding
with respect to binary-string encoding used in GAs. Therefore, there is great in-
terest, on the one hand, in developing GP implementations which improve the
computational efficiency of evolution.

On the other hand, the increasing need for high-performance programs that
perform real-time tasks has fostered the development of GP variants in which data
encoding and representation are such that programs, besides being optimized with
respect to a given fitness (cost) function, can also be executed very efficiently at
runtime. In view of this, approaches to GP that imply some degree of parallelism,
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both in executing the evolutionary algorithm and in the structure of the resulting
programs, have been proposed.

SmcGP aims at exploiting the intrinsic parallelism of bitwise instructions of
sequential CPUs and can be run effectively on traditional computer architectures.
Inside a sequential N-bit CPU, for example, each bitwise operation on integers is
performed by concurrently activating N logic gates of the same kind. Because of
this, the application of a sequence of bitwise logical operators to a N-bit integer
is equivalent to executing the same program on N 1-bit operands in parallel. In
practice, SmcGP is a form of GP in which functions based on bitwise operators
applied to packed representations of 1-bit data are evolved using that EC para-
digm. Therefore, SmcGP can produce programs that are intrinsically parallel and
based on operators that have a direct machine code translation. That makes such
programs computationally very efficient.

SmcGP efficiency is further increased by the closure requirement which con-
strains GP. Such a constraint requires that any GP-evolved function that operates
on a certain input data type also produce an output of the same type. Therefore,
in using GP to optimize a binary function f : {0, 1}N → {0, 1}, each phenotype
actually represents a set of N (nonindependent) functions for which fitness can be
independently evaluated.

Because of these properties, SmcGP can be used effectively in applications in
which the same operations must be performed on blocks of binary data that can
be packed, for instance, into a long integer variable. This is the case for binary
pattern recognition or binary image processing problems, in which 2D patterns
can be processed linewise or blockwise.

3.2. Evolving binary classifiers using Sub-machine-code
genetic programming

SmcGP can be used to efficiently develop high-performance binary classifiers, in
terms of both accuracy and computation speed. This is a result of more general
interest, since any N-class classifier of arbitrary complexity can be implemented
as an ensemble of distinct specialized binary classifiers which, organized in differ-
ent possible architectures with different degrees of redundancy, can perform the
original, more complex, classification task.

However, the choice to use a multiclassifier approach must be corroborated
by methods that produce fast, accurate classifiers very efficiently for a multiplicity
of reasons. Firstly, since the final accuracy of an ensemble of classifiers depends,
at least linearly, on the error rates of the single classifiers, developing ensembles
of classifiers require that each component be very accurate. Secondly, even if an
ensemble of classifiers usually yields better results than the corresponding single
classifier, thanks to a richer and/or redundant processing of information, develop-
ing an ensemble of binary classifiers is usually much more time-consuming than
developing a single, equivalent classifier. Finally, running an ensemble of classifiers
is generally very computationally demanding.
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We describe a general framework within which the evolutionary approach
can be used to design binary classifiers which meet the above-mentioned require-
ments. The performance of binary classifiers thus obtained has been assessed on
a low-resolution digit recognition problem and on an image “segmentation-by-
classification” task, in which classifiers have not only been used as stand-alone
modules, but also as building blocks for multiple-classifier architectures.

Following a typical detection scheme, each classifier is associated to one class
and is required to have 1 as output when the input pattern belongs to the corre-
sponding class, and 0 otherwise. To solve N-class problems, a set of N binary clas-
sifiers can be used; the final classification can be derived from the analysis of the
response of all classifiers. This is, for instance, the typical architecture and training
strategy used in N-class classifiers based on feed-forward neural networks. In the
approach described in this chapter, however, classifiers are evolved independently
of one another, differently from neural networks in which paths leading from the
input to the output layer share several weights, allowing classifiers to be trained
concurrently.

The ideal situation for such a multiclassifier architecture occurs when only the
classifier corresponding to the class of the input pattern outputs 1, while all others
give 0 as output. As pointed out in [5], where this kind of classification architecture
is described in detail with reference to the use of classifiers evolved by GP, there
are, quite intuitively, two trivial cases in which this strategy fails. One occurs when
no classifier produces a high output, while the other occurs when more than one
classifier produce 1 as output. The problem of deriving a final decision in this case
can be tackled by several different approaches, such as a hierarchy of increasingly
specialized classifiers or an “a posteriori” statistical approach.

Such architectures usually perform classification based on criteria similar to
those used in sports tournaments. If one looks upon the output of the classifier
as the result of a match between the two classes under consideration, the deci-
sion could be based, for example, upon a knock-out or a round-robin tournament
mechanism. A more computationally expensive but usually more performing ap-
proach is to record all outputs of the classifier set and combine them into a pattern
that is then classified by a so-called “stacked generalizer” [16].

Therefore, from the point of view of classification strategy, the general archi-
tecture of the evolutionary classifiers considered in this chapter is quite conven-
tional. The peculiar features of the approach are related with the high degree of
parallelism in the computation performed by each individual and with the cri-
terion by which the output of each individual, and therefore its fitness function,
is computed. Regarding the former property, SmcGP performs parallel compu-
tation by applying bitwise operators to packed representations of arrays of 1-bit
data. More precisely, if P is the dimension in bits of the input space in SmcGP,
the function computed by each individual Ik is a function fk : {0, 1}P → {0, 1}S
(S > 1). Each fk can be seen as a set of S alternative binary-output functions
fki : {0, 1}P → {0, 1} computed concurrently at each function evaluation. The
output space size S is equal to the size of the word into which 1-bit data are
packed.
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Therefore, decoding each individual Ik implies two steps. In the first one, the
function encoded by the corresponding representation is decoded. In the second
one, each bit of the result obtained in the first step is considered, in turn, as the
output of the classifier, and the corresponding binary-output function is taken
into consideration. As long as a fitness function F is defined for the problem at
hand, a different fitness value F( fki) can therefore be associated to each solution.
The fitness F(Ik) of each individual is equal to the maximum fitness obtained in
the second step,

F
(
Ik
) = max

i

(
F
(
fki
))
. (3.1)

This means that while only one fitness value is assigned to each individual Ik,
S fitness function evaluations are performed for each evaluation of Ik. This implies
that defining fitness as in (3.1) can be interpreted as choosing one of the bits of the
output pattern as the actual 1-bit output of an individual.

Besides being beneficial from the point of view of computation efficiency,
this strategy favors extraction of the most relevant features of the patterns un-
der classification. This can be explained considering that, in SmcGP, there exists
a direct morphologic and geometric correspondence between input and output.
Even when SmcGP spans a larger function space than the one defined by the en-
coding of inputs into one long word, and evolves complex functions that are made
up of building blocks that operate on different “slices” of the input pattern and
keeps such a correspondence for each of the words into which the whole input is
divided, operations performed on those slices are local.

Because of these properties, the fact that one bit of the output pattern provides
the best fitness generally implies that the area of the input pattern by which the
value of such a bit is most influenced contains the most significant feature for the
classifier under consideration.

3.3. Applications of SmcGP to license-plate recognition

We have used binary classifiers evolved by SmcGP to build or integrate modules
which solve two of the main tasks required by a license-plate segmentation system:
license-plate detection and license-plate character recognition. As a comparison
for the results obtained by the classifiers evolved by SmcGP, we have used the corre-
sponding modules of the Apache plate-recognition system which we had formerly
developed [2]. The structure of Apache is reported in Figure 3.1. The top part of
the graph corresponds to image preprocessing and license-plate detection, while
the bottom part corresponds to the subsequent phases of character segmentation
and classification.

At first glance, character classification for license plate-recognition [9] seems
to have much in common with traditional optical character recognition (OCR) ap-
plications. However, differently from OCR, in which character classification occurs
after a text has been scanned at high resolution, only very low-resolution patterns
are available for classification in license-plate recognition, usually obtained from



52 Sub-machine-code GP for binary image analysis

Horizontal
gradient

Adaptive-threshold binarization

based on the image histogram

Vertical
position

Horizontal position using both

horizontal and vertical gradients

Adaptive-threshold binarization

based on the average gray level

Symbol

segmentation

Symbol resampling to

13× 8 pixels

LVQ-based
symbol

classification

Output

symbols

Input image

Figure 3.1. Structure of the Apache plate recognition system.

Figure 3.2. Examples of the original (top) and binarized (bottom) patterns.

low-quality snapshots, altered by optical distortions and perspective effects (see
Figure 3.2 for some examples). Therefore, classification of license-plate characters
is usually a much more critical task with respect to classification of characters con-
tained in printed documents.

In studying and comparing the application of SmcGP [4] to low-resolution
license-plate character classification, performance was evaluated on a large set of
binary patterns of size 13 × 8 pixels. For practical reasons, the comparison was
limited to patterns representing digits from 0 to 9, taken from a larger database
collected at highway toll booths.

In a further experiment to evaluate the performances of SmcGP in designing
classifiers oriented to image-analysis applications, a preprocessing stage was added
to the plate-detection module of the Apache license plate recognition system. The
aim of such a module is to locate the region where a license plate is most likely to
be found within an image. Such a detection derives from the basic consideration
that a license plate is characterized by the high density of peaks of the horizontal
component of the image gradient which can be observed within it (see Figure 3.3).
Therefore, after removing all pixels belonging to the background by performing an
image difference which lets only objects which are moving within the scene be vis-
ible, the region occupied by the license plate, if any, is commonly the rectangular
region, shaped compatibly with the width-to-height ratio of a license plate, where
the density of such peaks is highest. In practice, a binarized gradient image is gen-
erated by thresholding the horizontal-gradient image, then rowwise and column-
wise statistics of the distributions of the pixels which are set to one are computed
to isolate the license-plate region (see the following and [2] for more details).

Pixels having significant gradient values are usually quite few and sparse in
images like the ones in the picture, which result from a background-removing im-
age difference. This increases the chances of making false detections, since just a
few “noisy” pixels may be enough to turn the algorithm attention to a region differ-
ent from the one to be detected. The incidence of false detections can be reduced
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(a) (b)

Figure 3.3. A typical input image of the Apache system and the corresponding horizontal-gradient
image.
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Figure 3.4. Encoding of a character as four 32-bit integers.

if we make the statistics about the distribution of significant pixels more robust
by increasing their density. This can be obtained by training a binary classifier to
output one for each pixel belonging to the plate region and zero elsewhere.

Doing so, if the training results are reasonably good (very high sensitivity and
specificity are not necessary, even if obviously preferable), the chances of having a
lower density of pixels set to 1 in the plate region to be detected than in some other
region geometrically compatible with the plate shape are much fewer.

For both license-plate character recognition and license-plate detection, a bi-
nary classifier or a set of binary classifiers evolved by SmcGP have been used to
solve the problem. In the remainder of the section, we offer details about the im-
plementation of the two applications, while in the subsequent one we describe and
discuss the results we have obtained.

3.3.1. License-plate character recognition

To apply SmcGP to character classification, each pattern of size 13 × 8 pixels was
encoded as four 32-bit integers. Since the total number of bits in each pattern is
not a multiple of 32, the first nine rows of the pattern were encoded as the 24 least
significant bits of the first three integers, while the whole fourth integer was used
to encode the last four rows of the pattern, as shown in Figure 3.4. Preserving the
same pixel order in the 32-bit components of the code was the only specification
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Table 3.1. The function set (above) and terminal set (below) used to evolve the classifiers with SmcGP.

Functional Arity Notes

AND 2 Bitwise AND

OR 2 Bitwise OR

NOT 1 Bitwise NOT

XOR 2 Bitwise XOR

SHxn 1 x ∈ {L,R}, n ∈ {1, 2, 4}

Terminal Type Notes

pat[0] Term Rows 1–3

pat[1] Term Rows 4–6

pat[2] Term Rows 7–9

pat[3] Term Rows 10–13

R1 ERC Unsigned long

1 Constant 32-bit constant 1

0 Constant 32-bit constant 0

for the encoding. The encoding would have been equally effective if, for example,
pixels had been packed left to right, or columnwise.

The closure requirement of GP [3] imposes that the output of each classifier,
that operates on unsigned long words, be an unsigned long as well. Therefore,
using 32-bit encoding, for each evaluation of an individual Ik, 32 binary-output
functions fki are actually computed.

The function set was composed by the main bitwise Boolean operators and by
a set of circular shift operators SHxn, in which the 32-bit word LSB is considered
to be adjacent to the MSB, characterized by different shift direction (x = L (left)
or R (right)) and entity (n = 1, 2, or 4 bits). The terminal set (see Table 3.1) was
composed by the 4 unsigned long integers into which the input pattern had been
encoded, an unsigned long integer ephemeral random constant (ERC) [3, 7] which
can take values within the whole range of 32-bit unsigned integers, and the 32-bit
constants 1 and 0.

The fitness function for function fki was defined as

F
(
fki
) = 1−

√√√√FP2
ki + FN2

ki

N2
p +N2

n

, (3.2)

where FPki is the number of false positives generated by fki in classifying the train-
ing set, FNki the number of false negatives, Np the number of positive examples,
and Nn the number of negative examples in the training set. This choice of the
fitness function was made after comparing it to several other possible functions
based on the same data, and was found to produce very specific classifiers, with
very high positive predictivity, and a very limited number of ambiguous cases in
which more than one classifier produce a high output. This can be easily explained
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by considering that, with a roughly uniform distribution of the patterns in the
training set, negative cases are about 9 times as many as positive cases. Therefore,
since the numerator of the fraction tends to minimize errors and privileges sit-
uations in which the number of false positives and of false negatives are similar,
specificity, which is proportional to the number of false negatives, is greatly fa-
vored.

A population was evolved, made up of 1000 individuals, randomly initialized
with constraints on minimum (3) and maximum (7) tree depth. A crossover rate
of 80%, a mutation rate of 2%, and a reproduction rate of 18% were used during
evolution. The strategy chosen for selection was tournament selection with tour-
nament size equal to 7. Each classifier was evolved for 1000 generations. At least
two runs for each classifier were performed.

The classifiers were evolved using lil-gp1.01 [17], a popular package that im-
plements Koza-like (i.e., LISP-like or tree-like) genetic programming. Depending
on the resulting classifier length, and therefore on the complexity of the classifi-
cation task to be performed, each run of the GP took from 10 to 18 hours on a
600 MHz Pentium-III PC.

At the end of evolution, the best classifier for each class was converted from
prefix notation, typical of syntactic trees, to infix notation, and translated into C
language functions to allow for its compilation.

3.3.2. License-plate detection

As reported above, the goal of the application is to evolve a classifier which imple-
ments an additional preprocessing stage, refining results obtained by computing
the horizontal gradient, whose ideal output is an image in which all pixels be-
longing to the license plate are set to 1, while all others are set to zero. This is a
typical problem of region-based segmentation by classification, in which signifi-
cant regions of the image under consideration are labeled as a result of pixel-level
classification, and possibly of some trivial post-processing which removes “noise,”
typically represented by isolated pixels classified differently from the ones which
surround them.

Ideally, neglecting perspective effects due to camera geometry, one should ex-
pect to obtain as output an image showing a black rectangle on white background
(or vice versa), having the same size ratio and location as the license plate to be
detected in the image.

Formally, we could state the problem as evolving a function S(Bh(x, y)) of the
binarized gradient image Bh(x, y) such that

S
(
Bh(x, y)

) =
⎧⎪⎨⎪⎩1 if (x, y) belongs to the license plate,

0 otherwise.
(3.3)

The classifier evolved to perform such a task has the same structure as one of
the classifiers used to recognize digits which have been described in the previous
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(a) (b)

Figure 3.5. Encoding of image regions as 4 32-bit integers.

section. The terminal set is also the same, while the function set has been extended
by introducing also the NAND and NOR functions, as well as the 32-bit logical
inversion function N32, having a single argument, which returns 1, if all bits of
the argument are set to 0, and 0 otherwise.

The encoding of the image windows in the four terminals which directly de-
rive from input data is also slightly different. As shown in Figure 3.5, the four un-
signed long int terminals now encode a rectangular region of size 32×4, defining a
neighborhood of the pixel which is located on the upper left corner of the region.
This means that the value of the pixel of coordinates (x, y) in the output image,
O(x, y), is computed based on the values of pixels belonging to the rectangular
window Bw of Bh whose upper left and lower right pixels have coordinates (x, y)
and (x + 31, y + 3), respectively.

A set of 130 images of rear views of car (as the one shown in Figure 3.5) were
considered. Of these, 80 were used to generate the training set. For each of the
80 training images, 100 windows were extracted, encoded as described above, and
used as examples. Of these, 60 were taken from the license-plate region, 30 from an
extended region surrounding the license plate (where the chance of finding high-
gradient pixels not belonging to the plate is highest), and 10 from anywhere in the
image. Among the windows which were extracted, “empty” windows with no pixel
set to 1 were purged, since they carry no relevant information and are intrinsically
ambiguous, being found both within and outside the license-plate region. In the
end, the training set was made up of 5190 “nonempty” encoded windows, of which
366 were negative and 4824 were positive examples. The results were evaluated on
all pixels of the images in the test set.

The parameters regulating evolution were virtually the same as in the previous
experiment (1000 individuals, 80% crossover, 17% clonation, 3% mutation). The
fitness function was also very similar, except for a parsimony term which penalizes
larger trees:

F = 1−
√

FP2/N2
n + FN2/N2

p

2
− Tree Size

10000000
. (3.4)
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Table 3.2. Performances of the SmcGP-based classifiers. Processing time (in μs) is computed as aver-
age runtime in 10 executions of the classifier on the test set, as recorded by gprof on a PIII 600 MHz
PC.

0 1 2 3 4 5 6 7 8 9

Specificity 99.87 99.49 99.76 99.65 99.62 99.45 99.56 99.87 99.53 99.73

Sensitivity 96.01 98.00 95.21 96.41 95.81 96.21 95.41 94.81 91.82 96.21

Tree nodes 45 115 290 154 71 195 232 96 304 210

Proc. time 1.40 1.80 2.59 1.60 1.60 3.79 3.99 1.20 3.79 3.59

3.4. Results

The performance of the corresponding modules of the Apache system was consid-
ered as a reference for evaluating the results obtained applying SmcGP to evolve
binary classifiers in the two applications under consideration. The set of binary
classifiers evolved for character recognition were directly compared to the corre-
sponding Learning Vector Quantization (LVQ) [6] neural network which actually
performs the same task in the Apache system. As concerns the license-plate detec-
tion, the comparison was slightly different, since the classifier evolved using Sm-
cGP acts as a preprocessing module which is added after the one which computes
the horizontal gradient and right before the actual license-plate locator. Therefore,
in the absence of a direct correspondence with a module of the Apache system, the
results were evaluated quantitatively in terms of the increase of density of detected
pixels within the license plate region, taking into consideration also the inevitable
corresponding increases of false detections and of computation time, with respect
to the horizontal-gradient image.

3.4.1. License-plate character recognition

The set of 10 classifiers that were used in the tests were made up by the best clas-
sifiers that could be obtained in the two or more 1000-generation runs of the al-
gorithm performed for each class. Under this point of view, it should be noticed
that, despite allowing 1000 generations per run, in most cases the best classifier
emerged within the first 250 generations.

The tree-encoded classifiers evolved using SmcGP were tested after being
translated in C code and then compiled. Table 3.2 reports the specificity and sensi-
tivity of the ten classifiers, along with data related with their complexity and com-
putation efficiency. In particular, the table reports the number of nodes in the tree-
like representation produced by lil-gp, and the processing time in microseconds
required by each classifier on a Pentium III-600 MHz PC running Linux kernel 2.2
and using the gcc 2.95 C compiler.

Table 3.3 reports the performance, on the test set, of the reference LVQ clas-
sifier in the same form, with data derived from the global confusion matrix of the
classifier.
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Table 3.3. Performance of the reference LVQ classifier on the test set.

0 1 2 3 4 5 6 7 8 9

Specificity 99.80 99.97 99.93 99.91 99.87 99.82 99.71 99.76 99.82 99.93

Sensitivity 99.00 99.00 99.00 98.00 99.00 98.20 99.00 99.40 98.80 97.41

As can be noticed, specificity of SmcGP classifiers is always very high (above
99.4%). Processing time varies from 1.2 to 3.99 microseconds and is not exactly
proportional to the classifier size, since basic bitwise Boolean functions can be
virtually run in one clock tick, while circular shift operators are at least three times
as demanding, since they are composed by two basic shifts and one OR operation.

The basic binary classifier set could reach a nonambiguous output configu-
ration (only one classifier produced 1 as output), for 95.31% of patterns in the
test set, with a classification accuracy of 98.68%. Since results in the basic config-
uration were already quite good for the patterns that could be directly classified,
the classifications that could be obtained directly were considered as final. Since
the focus of our research was mainly on evolutionary development of efficient bi-
nary classifiers, in the ambiguous cases, we used the LVQ reference classifier as
“tie-breaker,” without considering more complex classifier architectures. Anyway,
this was necessary only in a very limited number of cases (4.69%), which helped
keep computational efficiency high, since the LVQ classifier is much more compu-
tationally demanding than the SmcGP-based one.

After application of this two-stage classification strategy, the global accuracy
on the whole test set was 98.30%, versus 98.68% achieved by the LVQ classifier. The
processing time for the whole test set was 0.15 second on a Pentium III 600 MHz
(computed averaging over 10 runs of the classifier), which is about 10 times faster
than the LVQ reference classifier, that requires 1.37 seconds to perform the same
task on the same PC. It should be noticed that both processing times include time
needed to read data from a file, which is actually smaller (4 32-bit integers to be
read per pattern) in the case of the SmcGP-based classifiers than in the case of
the LVQ classifier (104 8-bit short integers to be read per pattern). However, in
the former case, the time required to convert the 5% of patterns that cannot be
classified in the first stage from the 4-long integer representation to the 104-char
representation needed by the LVQ classifier is also included.

3.4.2. License-plate detection

Seven runs of SmcGP were performed with the parameters set as reported in
Section 3.3.2, after which the best program which had been evolved was evaluated.
The performances of such a program on the training set are reported in Table 3.4,
in terms of sensitivity (the percentage of detections with respect to the number of
pixels belonging to the plate), specificity (the percentage of negative responses with
respect to the number of pixels not belonging to the plate), fitness, and program
size.
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Table 3.4. Performance of the best individual on the training set.

Sensitivity 83.85%

Specificity 88.25%

Fitness 0.142296

Program size (nodes) 1087

(a) (b)

Figure 3.6. The two steps of the plate detection algorithm: detection of the vertical position (a) and
of the horizontal position (b).

As concerns sensitivity and specificity, results are quite good both on an ab-
solute scale, but even more if one considers the way in which the license-plate
detection algorithm works.

In fact, as shown in Figure 3.6, the plate is detected in two steps. First, the
horizontal gradient image is computed and binarized, to obtain the binary image
Bh. Such an image is then used to find the vertical position of the plate within the
original image. To do so, the histogram representing the rowwise distribution of
the density of pixels set to 1 in Bh is computed. Such a histogram is then binarized.
The largest interval in which all elements of the binarized histogram are set to 1
corresponds to the horizontal band, within the captured image, where the plate is
most likely to be found. Once the vertical position has been found, the segmen-
tation algorithm scans the detected band in the original image to locate the plate
also horizontally. To do so, it looks for the coordinate of the left border of the box
containing the plate, making a convolution between the identified band Ib and a
box B having the size which the license plate is expected to have, as a function of
the height of Ib. The location where the convolution function reaches its maxi-
mum corresponds to the position within the image of the left side of the license
plate.

Considering that sensitivity represents the density of pixels set to one in the
license-plate region and that (1-specificity) represents the density of pixels set to
one in the much vaster region outside the license plate, the performance obtained
makes plate detection quite robust. It should also be noticed that, having removed
“empty” regions from the training set, of which most of the background is made
up, the specificity value is actually largely underestimated. In fact, a much lower
sensitivity is enough to reach high detection performances, when actual specificity
values are well above 95%, as they actually turn out to be when actual images are
processed.
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Table 3.5. Average number (and percentage) of true positives (above) and of false positives (below)
on the test set. The data in the third column reports the number of actual positive (above) and negative
cases (below).

Gradient (%) SmcGP (%) Number of pixels

License plate 367 (6.48%) 3513 (62.05%) 5661

Background 470 (0.12%) 8157 (2.00%) 407758

This is demonstrated also by Table 3.5, in which results collected by averaging
the results over the whole image set are reported, for the 103 images out of 130
where Bh was not empty, that is, in which failure in detecting the license plate does
not depend on the performance of the SmcGP-based module, being only due to
missing input data.

In the table, it is possible to notice how much higher specificity actually is,
when all pixels of the input image are considered. Of course, the fact that “empty”
pixels are present also in the license-plate region and are classified as “back-
ground,”1 justifies the corresponding worsening of sensitivity with respect to the
results obtained on the training set. Furthermore, it is possible to appreciate the
increase (by one order of magnitude) in the number of pixels set to 1 in the license-
plate region, with respect to those which could be detected in the image Bh. Even
if the number of false detections increases even more, its value is kept below 2%
(specificity is therefore still 98%), which is still far from being able to significantly
affect the detection results.

Even if the value of these remarks are limited just to the rather small image set
on which the approach was tested, there were no problems in correctly detecting
the license plate when more than 45% of the pixels in the license-plate are set to 1,
which happened in all but two of the 103 images under consideration.

Figure 3.7 shows how typical output images look like. Of the two examples
which are reported, one exhibits a quasiperfect behavior, extracting virtually only
pixels belonging to the license-plate region. The other one, instead, is an interest-
ing example of how even very noisy outputs can do little harm to the accuracy of
the final detection. In such an image, the plate region is very well highlighted, but
there are also several false detections in the background, due to the high-contrast
areas in the right part of the original image produced by sunlight reflections on the
car body. However, it is rather clear that the sparseness and, especially, the shape
of the false-detection areas makes it virtually impossible for the detection algo-
rithm to misclassify any such areas as the license-plate region. The license-plate
detection algorithm could be made even more robust by using information about
both horizontal and vertical distribution of gradient peaks concurrently instead of
sequentially. However, at least with the images considered during the test of the
application, such an upgrade, which would also have a nontrivial cost in terms of
computation load, seems not to be necessary.

1Along with the fact that the results are computed on a data set of which the training set is just a
very limited part.
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(a) (b)

(c) (d)

Figure 3.7. Typical results: the case reported above is quasi-ideal. In cases like the one reported below,
despite the very “noisy” output, the distribution of the false detections is such that the license-plate
region can be easily detected anyway.

As concerns computation time, the best program evolved, as can be observed
by comparing its size with the size of the classifiers evolved for character classifica-
tion, is a rather large function. As could be expected, one execution of a C-function
directly derived from the GP tree, with no optimization, requires, on a Pentium IV
2.8 GHz PC, about as much time (2.55 microseconds) as one average execution of
the character classifiers required on a Pentium III 600 MHz PC. This means that,
using what, at present, is a standard PC configuration, introducing the SmcGP-
based image preprocessing function may add a significant amount processing time
to the computation requirements of the license-plate detection module, when a
whole input image of size 768×576 pixels, as the ones typically used in the Apache
system, is to be analyzed.

However, with compiler optimization on, only 0.65 second are needed to gen-
erate the output image, including loading the input image, computing the gradient
image and saving the output image into a file. Furthermore, the statistics on com-
putation time (as happened in the character classification task) have been made
after implementing the function exactly as was evolved by GP. Looking more ac-
curately at the source code, even without trying to detect possible branches of
the tree which do not contribute at all to the result (which in GP terminology are
usually referred to as “introns,” and whose effects on evolution, if any, are still con-
troversial [3]), one can observe that most shift operations are built by chaining the
basic shift operations which are present in the GP function set. Considering that
more than half of the nodes in the tree are shift functions, and that circular shifts
require more than three times as many machine cycles than the other bitwise oper-
ation, a reduction of the computation load by more than 50%, or about as much,
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can be expected after simplifying the function (which is most probably what the
optimizing compiler does!).

3.5. Conclusions

Even when applications have to deal with complex input data like color images,
very often, at some processing stage, binary classifiers producing one binary output
out of a packed array of binary data need to be developed. In computer vision and,
more generally, in pattern recognition applications, such as tracking, surveillance,
industrial inspection, and quality control, detection of specific objects of interest
(targets, defects, etc.) is often performed by examining arrays of relatively sim-
pler data. This happens, in general, when data are preprocessed and the results are
packed into small-size binary words, when not into single bits, which are used as
labels to synthesize information, as, for example, in those frequent cases in which
objects can be classified just based on their shape or even on a skeletonized repre-
sentation. Binary classifiers which implement a mapping f : {0, 1}N → {0, 1} are
therefore most common and of great importance in such applications.

In this chapter, we have described how SmcGP can be used to produce efficient
and accurate binary classifiers, with an approach which can be easily adapted to a
large number of applications. In the domains of pattern recognition and image
processing, we have presented two applications to different subtasks of license-
plate recognition, character recognition, and image preprocessing for license-plate
detection, which, although far from being completely developed and refined, offer
interesting insights about the usability and effectiveness of the approach in the
practice, on hard real-world problems.

Applying SmcGP to two-dimensional binary pattern classification yielded
very good results, under both points of view, even relying on a quite naive clas-
sification scheme (one set of binary classifiers). Such a scheme could be further
improved either by introducing a new layer of pairwise classifiers, or by using
some kind of tournament-like strategies, possibly along with a stacked general-
izer, to produce the final classification. However, the results show that, even in
this simple configuration, the SmcGP-based classifiers performance is very close
to the performance yielded by the reference LVQ classifier, that we had previously
shown to outperform other kind of classifiers (e.g., classifiers based on multilayer
perceptrons trained with the back-propagation algorithm) in this particular task.
As regards computation efficiency, the implicit parallelism of the single classifiers,
jointly with the simplicity of the global architecture, makes the SmcGP-based clas-
sifier almost 10 times faster than the LVQ classifier.

Using SmcGP to increase robustness of a plate detection algorithm by design-
ing an image preprocessing stage was also successful, even if the measure of the
effectiveness of the approach strongly depends on the particular constraints and
specifications imposed by the application. Therefore, it is difficult to evaluate the
actual impact of the pros and cons of the approach, which have emerged in a spe-
cific subtask, without testing the performance of the full system integrating the
modified module on an extended set of cases.
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A final peculiarity of the approach lies in the natural translation into hardware
which is allowed by the functions evolved by SmcGP, due to both the simplicity of
the functional representation and to the availability of the basic bitwise Boolean
functions as part of the instruction set of virtually all digital hardware architec-
tures, from the very simplest microprocessors to the most powerful ones. This
can be particularly important in developing embedded systems, an industrial field
which is gaining greater and greater importance, as well as, more directly, in the
field of evolutionary hardware.
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4
Halftone image generation using
evolutionary computation

Kiyoshi Tanaka and Hernán Aguirre

4.1. Introduction

In this chapter, we focus on halftone image generation using evolutionary com-
putation (EC). Image halftoning is an important technique in the printing and
display industry, in which an N-gray tone image must be properly portrayed as an
n-gray tone image, where n < N . It is well known that a good halftone image sat-
isfies both gray level precision and spatial resolution without including particular
pixel patterns. However, since n is a limited (small) number, it is difficult to gen-
erate halftone image satisfying these requirements simultaneously. So far, various
approaches have been developed such as ordered dithering, error diffusion, blue
noise, and so on [34], but each scheme has its own advantages and disadvantages.
For further improvement, a new attempt that uses genetic algorithms (GAs) to
solve such complex image halftoning problem has been reported in two ways. One
approach seeks to evolve filters, which are applied to the input N-gray tone image
to generate a halftone image [8, 9, 32]. Another approach searches directly for the
optimum halftone image having a visually similar appearance to the input N-gray
tone image. The latter approach is interesting in the sense that the halftone image
itself is directly represented as genetic information and is evolved by evaluation
functions designed to generate desirable output images. From this point of view,
here we focus on the latter approach.

Kobayashi and Saito [23, 24] first proposed a direct search GA-based halfton-
ing technique to generate bilevel halftone images. This scheme divides the input
images into nonoverlapping blocks and uses a simple GA [17, 19] with a special-
ized two-dimensional crossover to search the corresponding optimum binary pat-
terns. The method’s major advantages are that (i) it can generate images with a
specific desired combination of gray level precision and spatial resolution, and (ii)
it generates bilevel halftone images with quality higher than conventional schemes
[34]. In this chapter, we will first explain this basic scheme, and then present some
improved and extended schemes of this approach mainly for the reduction of
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1 1 0 0 1 1 1 1

r

r

Figure 4.1. Image division and individual representation (r × r = 8× 8).

computational cost and memory configuration. Finally, we will give some con-
clusions and future work.

4.2. Image halftoning scheme using GA (basic approach)

4.2.1. Individual representation

An input image is first divided into nonoverlapping blocks D consisting of r × r
pixels to reduce the search space of solutions [23, 24]. The GA uses an individual
x with an r × r two-dimensional representation for the chromosome. In case of
bilevel halftoning, each element of the chromosome x(i, j) (i, j = 0, 1, . . . , r−1) ∈
{0, 1}. Figure 4.1 illustrates the image division into blocks and an example of in-
dividual x corresponding to a current block D.

4.2.2. Evaluation

Chromosomes are evaluated with two kinds of evaluation criteria. (i) One is high
gray level precision (local mean gray levels close to the original image), and (ii) the
other is high spatial resolution (appropriate contrast near edges) [23, 24]. First we
calculate a gray level precision error by

Em =
∑

(i, j)∈D

1
r2

∣∣g(i, j)− ĝ(i, j)
∣∣, (4.1)

where g(i, j) (i, j = 0, 1, . . . , r − 1) is the gray level of the (i, j)th pixel in the in-
put image block D, and ĝ(i, j) is the estimated gray level associated to the (i, j)th
pixel of the generated halftone block (x(i, j)). To obtain ĝ(i, j), a reference region
around x(i, j) is convoluted by a Gaussian filter that models the correlation among
pixels. An example of a 5 × 5 filter is shown in Figure 4.2. In order to reduce dis-
continuity around block boundaries, the pixel pattern of x is copied around the
boundary regions as shown in Figure 4.3, and used to calculate the gray level esti-
mation ĝ(i, j).
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1 4 7 4 1

4 20 33 20 4

7 33 54 33 7

4 20 33 20 4
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Figure 4.2. An example of a 5× 5 Gaussian filter.

Generated halftone block

Turned
over

Figure 4.3. Discontinuity reduction by copying binary pattern of a current generated block x around
block boundaries.

In order to preserve the edge information of the input image well, we calculate
the spatial resolution error by

Ec =
∑

(i, j)∈D

1
r2

∣∣G(i, j)− B(i, j)
∣∣,

G(i, j) = g(i, j)− g(i, j),

B(i, j) =
(
x(i, j)− 1

2

)
N ,

(4.2)

where G(i, j) is the difference between the gray level g(i, j) and its neighboring
local mean value g(i, j). g(i, j) is calculated with a 5× 5 local average filter having
uniform coefficients, and N denotes the dynamic range of input image.

These two errors Em and Ec are combined into one single objective function
as

E = αmEm + αcEc, (4.3)

where αm and αc are weighting parameters of Em and Ec, respectively. The chro-
mosome’s fitness is assigned by

F = Emax − E, (4.4)
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Parents

Interchange rows (ct = 0)

Interchange columns (ct = 1)
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Figure 4.4. Illustration of two-dimensional crossover.

0 0 0 1

1 0 1 1

1 1 1 0

1 1 1 0

0 1 0 1

1 0 0 1

1 1 1 0

1 1 1 0

Figure 4.5. Illustration of bit-flipping mutation (block size is 4× 4 pixels).

where Emax is the error associated with the worst chromosome in a population.
Using Emax helps to induce a better scaling among solutions in order to assign
selection probabilities, especially during the latest stages of the search. The GA
is used to search for an optimum compromise between grey level precision and
spatial resolution with the above fitness function.

4.2.3. Genetic operators and selection

Since we operate two-dimensional image data, crossover [17, 19] is implemented
for two-dimentional chromosomes. Two random numbers, ct and cp, define its
method of operation. First, ct = N[0, 1] is sampled to decide whether to inter-
change chromosomes’ rows or columns from two selected parents, say (i) if ct = 0,
interchange rows and (ii) if ct = 1, interchange columns. Then, cp = N[0, r) in-
dicates the crossing point as shown in Figure 4.4. Both ct and cp are sampled new
for each individual created by crossover. Although crossover can potentially create
two offspring at a time, only one of them is randomly selected in this scheme.

After crossover, mutation inverts bits with a small probability per bit, pm,
analogous to canonical GA [17, 19]. For every bit actually selected for mutation, 0
becomes 1 and vice versa, as shown in Figure 4.5. In the following sections, we call
the application of crossover followed by mutation as “CM.”
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Figure 4.6. Average error transition over evaluation numbers for “Lenna.”

After offspring creation by genetic operators, proportional selection [17, 19]
is applied for all individuals in the population P(t) to select parent individuals for
the next generation.

4.2.4. Results and discussion for basic scheme

4.2.4.1. Experimental setup

Through this chapter, to verify the performance of the schemes explained, we
mainly use “Lenna” in SIDBA (Standard Image DataBAse) as benchmark image.
The size of the original images is 256 × 256 pixels with N = 256 gray levels and
the generated images are bilevel halftone images (n = 2). The image block size
is r × r = 16 × 16 and the population size is λ = 200 (200 offspring are created
from 200 parents). The weighting parameters in (4.3) are set to αm = 0.2 and to
αc = 0.8, which are suggested for an appropriate balance between Em and Ec by
visual assessment [23, 24]. The crossover and mutation rates are set to pc = 1 and
pm = 0.001, respectively.

4.2.4.2. Error transition and generated images

Figure 4.6 shows the image’s average-error transition over evaluation numbers,
which is calculated as the average of the best individuals’ error in all (256 pieces)
image blocks. From the results, it can be seen that the error gradually converges
to a constant value by spending more than 32 000 evaluations. The error value
of (4.3) achieved by canonical GA (cGA) [17, 19] with the above settings after
T = 40 000 evaluations will be used as a reference value for image quality in the
following sections. This value is shown as a broken line in the figure.

Figure 4.7 shows the original image “Lenna” and several generated halftone
images by traditional methods and the GA-based scheme. First, we show images
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(a) Original image “Lenna” (b) Ordered dithering (Bayer
matrix [34])

(c) Error diffusion (Javis ma-
trix [34])

(d) cGA(200) (r×r = 16×16,
T = 40 000, αm : αc = 0.2 :
0.8)

Figure 4.7. Original and generated halftone images (“Lenna”).

generated by conventional ordered dithering and error diffusion in Figures 4.7(b)
and 4.7(c), respectively. We can see that image quality achieved by ordered dither-
ing (Bayer matrix [34]) is insufficient with particular patterns caused by the pe-
riodic use of threshold matrix and low gray level precision. Error diffusion (Javis
matrix [34]) fairly improves image quality but still has a few problems, that is,
there are missing dots in high-light regions and particular patterns like worms
can be clearly seen. On the other hand, a halftone image generated by cGA(200)
with T = 40 000 evaluations in Figure 4.7(d), which gives the image quality ref-
erence value, is quite smooth and less prone to particular patterns having both
high gray level precision and high spatial resolution. Table 4.1 shows the values of
the two kinds of errors, Em and Ec, and the combined error E obtained for each
method. From this table, we can see that both gray level precision and special reso-
lution errors are remarkably reduced by using GA compared to the errors obtained
by the conventional methods. By observing the difference with the error scale in
Figure 4.6, we can see the significance of improvement by GA’s optimization.

4.3. Accelerated halftoning scheme using improved GA

While the basic approach using a simple GA [23, 24] generates bilevel halftone im-
ages with quality higher than conventional techniques, it uses a substantial
amount of computer memory and processing time that deprives it from practi-
cal implementations. In order to solve these drawbacks, in this section, we present
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Table 4.1. Error values for each method.

errors Em Ec E

Ordered dithering (Bayer type) 10.16 126.05 102.87
Error diffusion (Javis matrix) 10.53 124.24 101.49
Canonical GA 10.04 122.72 100.19

an accelerated image halftoning scheme using an improved GA (called GA-SRM)
with tiny populations [1, 2]. This scheme can generate high-quality images like the
basic scheme, but reduces computer memory and processing time simultaneously.

4.3.1. Cooperative model for genetic operators

The improved GA-SRM [3, 4] is based on a model that puts crossover and varying
mutation operators in a cooperative stand with each other. The model uses two
operators applied in parallel (concurrently) to produce offspring. One is crossover
followed by conventional “background” mutation (CM) and the other one is a
varying mutation operator called self-reproduction with mutation (SRM). In ad-
dition, the model uses an extinctive selection mechanism.

In CM, mutation is applied with small rate, therefore the amount of diver-
sity introduced by mutation is modest. For the same reason, the disruption that
mutation causes to crossover in CM is also expected to be small. On the other
hand, varying mutation SRM uses higher mutation rates and is applied parallel
to CM, avoiding interferences between crossover and high mutation. Thus, high
mutations when harmful will have a negative impact on the propagation of ben-
eficial recombinations already present in the parent population. However, it will
not affect the creation of beneficial recombinations by crossover. Likewise, in the
case that crossover produces poor performing individuals it would not affect the
survivability of beneficial mutations introduced by SRM that can contribute to the
search. The explicit parallel formulation of CM and SRM gives an efficient frame-
work to achieve better balances for mutation and crossover during the run of the
algorithm, in which the strengths of higher mutation and crossover can be kept
without interfering one with the other.

The parallel formulation of CM and SRM can avoid interferences between
crossover and high mutation; however, it cannot prevent SRM from creating dele-
terious mutations or CM from producing ineffective crossing over operations. To
cope with these cases, the model also incorporates the concept of extinctive selec-
tion that has been widely used in evolution strategies. Through extinctive selection
the offspring created by CM and SRM coexist competing for survival (the poor
performing individuals created by both operators are eliminated) and reproduc-
tion. The block diagram of this model is shown in Figure 4.8.

4.3.2. Genetic operators

In the improved scheme [1, 2], we follow the individual representation and eval-
uation functions used in the basic approach explained in Section 4.2. Also, to
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Figure 4.8. Block diagram of improved GA (GA-SRM).

produce offspring with CM, we use the same two-dimentional crossover followed

by mutation with small probability p(CM)
m as explained in Section 4.2.3. However,

we introduce a new varying mutation genetic operator SRM and modify selection.
We explain SRM in the following and the selection in the next subsection.

To produce offspring with SRM, first an individual is selected from the parent
population P(t), an exact copy is created and then mutation is applied only to the
bits inside a mutation block. SRM is provided with an adaptive dynamic-block
(ADB) mutation schedule similar to adaptive dynamic-segment (ADS) mutation
in [3, 4].

With ADB, mutation is directed only to a block (square region) of the chro-
mosome and the mutation block area � × � is dynamically adjusted (decreases)
every time a normalized mutants survival ratio falls under a threshold, γ < τ, as
shown in Figure 4.9. The offset position of the mutation block for each chromo-
some is chosen at random. The normalized mutant survival ratio is specified by

γ = μSRM

λSRM
· λ
μ

, (4.5)

where μ is the number of individuals in the parent population P(t), μSRM is the
number of individuals created by SRM present in P(t) after selection, λSRM is the
offspring number created by SRM, and λ is the total offspring number, λCM +λSRM

(see Figure 4.8).
Two kinds of mutation schemes are investigated for ADB: (i) quantitative and

(ii) qualitative mutation. Quantitative mutation in ADB is implemented as the
standard bit-flipping process as shown in Figure 4.5. Mutation probability for the

bits inside the segment is p(SRM)
m = α. After this kind of mutation has been applied,

the contrast near edges and the local mean average might change in an individual
affecting both Ec and Em in (4.3).

On the other hand, qualitative mutation in ADB is implemented as a bit-
swapping process. First, a set B containing the indexes of all the bits in the mu-
tation block is initialized. Next, a pair of indexes in B corresponding to bits b′ and
b′′ are randomly marked and then swapped in the mutation block as shown in
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Figure 4.9. Adaptive dynamic-block (ADB) reduction. Mutation is directed only to the � × � shaded
region of the chromosome.
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b′′
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Mark Swap b′ and b′′

Figure 4.10. Illustration of bit-swapping mutation (block size is 4× 4 pixels).

Figure 4.10. The marked indexes are removed from B and the marking-swapping
process is repeated until there are no remaining indexes in B. Note that it is not
necessary to set a mutation probability in qualitative mutation since all pairs of
bits within the mutation block are simply swapped.

Also note that after qualitative mutation, the number of 0’s and 1’s remains
unchanged. In other words, qualitative mutation has an impact only on the eval-
uation of the spatial resolution’s error, Ec, but not on the gray level resolution’s
error, Em, in (4.3). This kind of mutation could take better advantage of the high
correlation among contiguous pixels in an image [18], and contribute to a more
effective search.

4.3.3. Selection

(μ, λ) proportional selection [11] implements the required extinctive selection
mechanism. Selection probabilities are computed by

p
(

x(t)
k

) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f
(

x(t)
k

)∑μ
l=1 f

(
x(t)
l

) (1 ≤ k ≤ μ),

0 (μ < k ≤ λ),

(4.6)

where x(t)
k is an individual at tth generation which has the kth highest fitness value

f (x(t)
k ) in P(t), μ is the number of parents, and λ is the number of offspring. Also,
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we assure that the two parents selected for crossover are different, x(t)
k and x(t)

l (k �=
l). Note that with this kind of selection, we can easily control selection pressure by
varying the value of μ. Setting μ = λ we have conventional proportional selection
and by reducing the value of μ we increase selection pressure.

4.3.4. Experimental results and discussion

4.3.4.1. Experimental setup

To verify the performance of the improved scheme, here we use “Girl” (256× 256
pixels with 256 gray levels) in SIDBA. The weighting parameters in (4.3) and the
block size are set to the same values used in Section 4.2. For each block, the algo-
rithm was ended after the same total evaluation numbers T = 4×104 (the number
of generations is calculated as T/λ in this scheme). Mutation probability for CM

is set accordingly to p(CM)
m = 0.001. λCM : λSRM = 1 : 1 for offspring creation and

μ : λ = 1 : 2 (extinctive pressure), which is proved to be the best parameters’ bal-
ance for a robust and reliable search [3, 4]. Also, we set τ = 0.40 as a threshold for
the normalized mutant survival ratio specified by (4.5). Mutation probability for

ADB with quantitative mutation is p(SRM)
m = 0.125. In case of qualitative mutation,

it is not necessary to set a mutation probability.

4.3.4.2. Performance comparison with basic scheme

To observe the performance by the improved scheme with GA-SRM, we set the
population sizes to μ = λCM = λSRM = 100. With these values it creates the
same number of offspring (200 offspring from 100 parents) as the basic scheme
with cGA does (200 offspring from 200 parents). Figure 4.11 shows the image’s
average-error transition by the two schemes. From this figure, it can be seen that
GA-SRM converges faster and reaches better quality levels than cGA. Also, as ex-
pected, qualitative mutation performs better than quantitative mutation. Under
this population configuration, qualitative mutation (GA-SRMs) needs only 0.34T
evaluations to surpass the final image quality levels obtained by cGA, whereas 0.7T
evaluations are needed in case of quantitative mutation (GA-SRMf).

SRM’s behavior can be observed from Figure 4.12, which presents the block’s
side length reduction, �, and the number of individuals produced by SRM-ADB
that survive selection, μSRM, for one image block. From this figure, it is clear that
(i) SRM contributes with beneficial mutations (carried by mutants that survive
selection) in every generation of the search process, and (ii) the key factor for
SRM to be an effective operator lies in its own regulation mechanism: mutation
block adjusted every time the number of mutants that survive selection falls under
a minimum level τ.

4.3.4.3. Effect of population size reduction

Since GA-SRM introduces higher levels of diversity than cGA, we observe the per-
formance of the algorithms with smaller populations where diversity is even a
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Figure 4.11. cGA and GA-SRMs performance using same size offspring population.

more important issue. Figure 4.13(a) shows results by cGA using {200, 100, 40, 20,
4} population configurations. Figures 4.13(b) and 4.13(c) present results for equiv-
alent configurations μ = λCM = λSRM = {100, 50, 20, 10, 2} by GA-SRMf and
GA-SRMs, respectively, along with those obtained by cGA using a 200 population.
From Figure 4.13(a), we can see that the 200 population size leads to the best im-
age quality in cGA. As the population size is reduced, the final image quality is also
deteriorated. Figure 4.13(b) shows that the introduction of quantitative mutation
allows us to considerably reduce population sizes from 100 to 10 and still obtain
a gain on search speed to generate images of quality similar or a little better com-
pared to cGA. However, a further reduction in population sizes from 10 to 2 is not
effective.

In Figure 4.13(c), we observe that GA-SRMs using qualitative mutation with
smaller populations converge faster and always produce a better image quality than
the one obtained by cGA. In this case, qualitative mutation not only allows to
reach higher levels of image quality but also reduces the population configura-
tion to its minimum level. This is because SRM with this kind of mutation al-
ways contributes to introduce diversity in levels such that SRM could be compet-
itive with CM regardless of the population size, avoiding premature convergence,
which is an important concern in cGA [17, 19]. GA-SRM’s robust performance
even with tiny populations allows us to choose the smallest memory configura-
tion to generate halftone images without compromising the image quality. In fact,
the GA-SRM using qualitative mutation with μ = 2 and λ = 4 configuration
(merely 2% of the population size used in basic scheme [23, 24]) attained after
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Figure 4.12. Mutation block’s side length reduction and SRM-ADB offspring that survive selection.

only 0.15T evaluations the same image quality obtained by cGA after T evalua-
tions.

4.3.4.4. Generated images

Figure 4.14 shows the original image “Girl,” the generated halftone image by
cGA(200) after 0.15T evaluations and by GA-SRMs(2, 4) using qualitative muta-
tion after 0.15T evaluations for visual comparison. Note that there is a notorious
difference between (c) and (b), which is not sufficiently converged yet at this early
stage.

4.4. Simultaneous halftone image generation with multiobjective GA

Image halftoning is a true multiobjective optimization (MO) problem, in which
high gray level precision and high spatial resolution must be sought to achieve vi-
sually high-quality images. The appropriate combination of these two factors is
not only device but also application dependent. Moreover, a combination that is
appropriate for one image may not be the best for other, depending on the char-
acteristics of the individual images. Hence, it is desirable to have a set of gener-
ated images where to choose from the images that best suit an application. The
GA-based halftoning schemes explained before [1, 2, 23, 24], however, treat the
problem as a single objective optimization problem by fixing the weighting pa-
rameters in (4.3), and can generate only one image at a time. Thus, to generate a
set of images, these techniques must do it sequentially, one at a time.
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Figure 4.13. Performance comparison between cGA and GA-SRM.

In this section, we extend the improved halftoning scheme using GA-SRM
[3, 4] to a multiobjective optimization GA [12, 14, 15, 20] and study its behavior
and applicability generating simultaneously halftone images with various combi-
nations of gray level precision and spatial resolution [5, 6].
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(a) Original image “Girl” (b) cGA after 0.15T evalua-
tions (200 individuals)

(c) GA-SRMs after 0.15T eval-
uations (only 2 individuals)

Figure 4.14. Original and generated halftone images (“Girl”).

4.4.1. Multiobjective GA-SRM for halftoning problem

In order to extend GA-SRM [3, 4] to MO for halftone image generation, we follow
a cooperative population search with aggregation selection [16, 25, 28, 33]. The
population is monitored for nondominated solutions; however, Pareto-based fit-
ness assignment is not directly used. A predetermined set of weights W = {ω1,ω2,
. . . ,ωN}, which ponder the multiple objectives, defines the directions that the al-
gorithm will search simultaneously in the combined space of the multiple objec-
tives. N indicates the number of search directions. The nth search direction ωn is a
vector of nonnegative weights specified by ωn = (ωn1 , . . . ,ωnM), where M indicates
the number of objectives. The components in ωn satisfy the conditions ωnm ≥ 0
(m = 1, . . . ,M), and

∑M
m=1 ω

n
m = 1.

4.4.2. Evaluation

We evaluate individuals by using the same two evaluation functions Em and Ec
in Section 4.2.2. Thus the number of objectives is M = 2. Normalized objective
values, g1 for Em and g2 for Ec, are assigned to each individual [5, 6].

The objective values are calculated once for each individual in the offspring
population. However, we keep as many fitness values as search directions have
been defined. A combined objective value is calculated for each search direction
ωn by

gn
(

x(t)
i

)
=

M∑
m=1

ωnmgm
(

x(t)
i

)
= ωn1g1

(
x(t)
i

)
+ ωn2g2

(
x(t)
i

)
, (4.7)

and the individuals’ fitness in the nth search direction is assigned by

f n
(

x(t)
i

)
= gn

(
x(t)
W

)
− gn

(
x(t)
i

)
, (4.8)

where gn(x(t)
W ) is the combined objective value associated with the worse individual

in the nth search direction at the tth generation. Similar to (4.4), gn(x(t)
W ) helps to
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induce a better scaling among solutions in order to assign selection probabilities,
especially during the latest stages of the search.

4.4.3. Genetic operators and selection

For each search direction ωn, CM creates a corresponding λnCM number of off-
spring. Similarly, SRM creates λnSRM offspring similar to the improved scheme [1, 2]
explained in Section 4.2. Thus, the total offspring number for each search direc-
tion is λn = λnCM + λnSRM. The offspring created for all N search directions coexist
within one single offspring population. Hence the overall offspring number is

λ =
N∑
n=1

λn. (4.9)

SRM’s mutation rates are adapted based on a normalized mutants survival
ratio [1, 2], which is extended to

γ =
∑N

n=1 μ
n
SRM∑N

n=1 λ
n
SRM

· λ∑N
n=1 μn

, (4.10)

where μn is the number of individuals in the parent population of the nth search
direction Pn(t), μnSRM is the number of individuals created by SRM present in Pn(t)
after extinctive selection, λnSRM is the offspring number created by SRM, and λ is
the overall offspring number as indicated in (4.9).

Since we want to search simultaneously in various directions, selection to
choose the parent individuals that will reproduce either with CM or SRM is ac-
cordingly applied for each one of the predetermined search directions. Thus, (μ, λ)
proportional selection [11] is again applied for each search direction ωn by

pn
(

x(t)
k

) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f n
(

x(t)
k

)
∑μn

l=1 f
n
(

x(t)
l

) (
1 ≤ k ≤ μn ≤ λn

)
,

0
(
μn < k ≤ λ

)
,

(4.11)

where x(t)
k is an individual at generation t which has the kth highest fitness value

in the nth search direction f n(x(t)
k ).

Note that for each search direction, only λn < λ individuals are created. How-
ever, the parent population μn is chosen among the overall λ offspring population.
In this way, information sharing is encouraged among individuals created for
neighboring search directions provided that the neighbors’ fitness is competitive
with the locals’. Figure 4.15 presents the block diagram of the extended multiob-
jective GA-SRM for the image halftoning problem.
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Figure 4.15. Block diagram of the extended multiobjective GA-SRM.

Once the offspring has been evaluated, a set of nondominated solutions is
sought for each search direction, that is, for the nth search direction non-
domination is checked only among the offspring created for that search direc-
tion. Two secondary populations keep the nondominated solutions. Pcur(t) keeps
the nondominated solution obtained from the offspring population at generation
t and Pnds keeps the set of the nondominated solutions found through the genera-
tions. Pnds is updated at each generation with Pcur(t). In the halftoning problem, an
image is divided into blocks and the GA is applied to each image block. Hence, the
GA would generate a set of nondominated solutions for each image block. Since
we are interested in generating simultaneously various Pareto optimal “whole” im-
ages, a decision making process is integrated to choose only one solution for each
search direction in each image block. Thus, among the various nondominated so-
lutions found for a given search direction, we choose the one that minimizes the
combined error Em and Ec in that particular direction. Algorithm 4.1 illustrates
the algorithm to simultaneously generate N halftone images with the extended
multiobjective GA-SRM.

4.4.4. Experimental results and discussion

4.4.4.1. Experimental setup

We observe and compare the performance by four kinds of GAs: (i) a simple GA
explained in Section 4.2 [23, 24] (denoted as cGA) (ii) an extended cGA using
the same multiobjective technique described in this section (denoted as moGA),
(iii) a GA-SRM explained in Section 4.3 [3, 4] (denoted as GA-SRM), and (iv) the
extended multiobjective GA-SRM (denoted as moGA-SRM). These algorithms are
applied to “Lenna.” For each image block, the algorithms were set with different
seeds for the random initial population.

We define 11 search directions, N = 11, setting W = {ω1,ω2, . . . ,ω11} =
{(0, 1), (0.1, 0.9), . . . , (1, 0)} between Em (gray level precision) and Ec (spatial res-
olution). With ω1 = (0, 1), the search focuses exclusively in Ec’s space and with
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moGA-SRM procedure
begin

divide original image into blocks
set N search directions W = {ω1, . . . ,ωN}
for (each image block Bu)
t = 0
initialize (P(0))
mo evaluation (P(0))
while (not termination condition)

for (each search direction ωn)
Pn(t) = (μ, λ) proportional selection (P(t))
P(t + 1)+ = CM(Pn(t))
P(t + 1)+ = SRM(Pn(t))

done
mo evaluation (P(t + 1))
get Pcur(t + 1) from P(t + 1)
update Pnds with Pcur(t + 1)
t = t + 1

done
Gu = Pnds, keep N generated block images from Bu

done
generate N images (Gu)

end

Algorithm 4.1. Algorithm to simultaneously generate N halftone images with the extended multiob-
jective GA-SRM.

ω11 = (1, 0) in Em’s; whereas with ωn, 2 ≤ n ≤ 10, the search focuses in the com-
bined space of Ec and Em. moGA and moGA-SRM generate simultaneously 11
images, one image for each direction, in a single run. On the other hand, to gener-
ate 11 images with either cGA or GA-SRM, an equal number of separate runs are
carried out, each one using a different ωn as weighting parameter. The parameters
used are summarized in Table 4.2.1

4.4.4.2. Comparison between single and multiobjective GAs

Table 4.3 shows under column W the average in all image blocks of the nonnor-
malized combined errors en(x) = ωn1Em(x)+ωn2Ec(x) by cGA(200) afterT = 40 000
evaluations for each search direction ωn (1 ≤ n ≤ 11). For other algorithms under
W, we present the fraction of T at which the algorithms reach similar image qual-
ity (these values are all 1 for cGA(200) and are shown below the combined error).
Column TW indicates the overall evaluations needed to generate 11 images. Since
the cGA generates one image at a time, it needs 11T evaluations to generate all 11
images.

1GA-SRM search only in one direction at a time and the population related parameters μn, λn,
λnCM, and λnSRM should be read without the index n.
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Table 4.2. Genetic algorithms parameters.

Parameter cGA moGA GA-SRM moGA-SRM

selection Proport. (μ, λ) Proport. (μ, λ) Proport. (μ, λ) Proport.

Mating (xi, x j), i �= j (xi, x j), i �= j (xi, x j), i �= j (xi, x j), i �= j

pc 0.6 0.6 1.0 1.0

p(CM)
m 0.001 0.001 0.001 0.001

μn : λn — 1 : 1 1 : 2 1 : 2

λnCM : λnSRM — — 1 : 1 1 : 1

Table 4.3. Evaluations needed to generate high-quality images by cGA(200) for “Lenna.”

Algorithm
W = {ω1,ω2, . . . ,ω11}

TW

ω1 ω2 ω4 ω6 ω9 ω11

Combined error 121.0 111.4 89.5 66.9 32.8 10.1 —

cGA(200) 1.00 1.00 1.00 1.00 1.00 1.00 11T†

moGA(18,198) 1.43 2.43 1.27 1.00 0.70 0.72 2.43T††

moGA(4,44) 1.12 2.30 1.36 1.02 0.73 0.79 2.30T††

GA-SRM(2,4) 0.40 0.23 0.13 0.11 0.09 0.08 1.58T†

moGA-SRM(9,198) 1.12 1.07 0.44 0.27 0.22 0.21 1.12T††

moGA-SRM(2,44) 1.56 1.03 0.30 0.16 0.12 0.12 1.56T††

† The entire number of evaluations required by the single objective GAs to generate all 11 images are
given by the sum of the evaluations expended in each direction.
†† In the case of multiple objective GAs, due to the concurrent search, the maximum number of the
evaluations among all search directions determines the overall number of evaluations needed to gen-
erate all 11 images.

The first moGA row shows results by the multiobjective simple GA with a
μn = 18 parents and a λn = 18, λ = 198 offspring configuration. moGA simulta-
neously generates 11 images and needs 2.43T to guarantee that the images in all
search direction have at least the same quality as cGA(200). moGA’s second row
shows results by moGA with a μn = 4 parents and a λn = 4, λ = 44 offspring
configuration. In this case, population size reduction in moGA accelerates a little
bit more the overall convergence requiring 2.30T to produce better images than
cGA(200). It should be noticed that population reductions in cGA accelerates con-
vergence but it is affected by a loss of diversity and the final image quality is inferior
than cGA(200)’s. moGA benefits from the information sharing induced by selec-
tion (see explanation in Section 4.4.4.4) and can tolerate population reductions.
Compared with cGA, the results by moGA represent an enormous reduction in
processing time and illustrates the benefits that can be achieved by including mul-
tiobjective techniques within GAs.

Row GA-SRM(2,4) presents results by GA-SRM with a 2-parent and 4-
offspring configuration. GA-SRM even with a very scaled down population config-
uration considerably reduces processing time to sequentially generate high-quality
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images for all combinations of weighting parameters. Compared with the 11T
needed by cGA, GA-SRM needs only 1.58T . Also, note that GA-SRM is faster than
moGA.

The first moGA-SRM row shows results by the multiobjective GA-SRM with
a μn = 9 parents and a λn = 18, λ = 198 offspring configuration. Compared with
moGA, we can see that the inclusion of SRM notoriously improves the multiob-
jective algorithm’s performance requiring 1.12T to generate 11 images being faster
than both GA-SRM and moGA. From GA-SRM and moGA-SRMs’ results, we can
see that the parallel mutation by SRM can greatly improve the performance of sin-
gle as well as multiobjective genetic algorithms in the image halftoning problem.

Results by a scaled down population configuration is shown in row moGA-
SRM(2,44) that represents a μn = 2 parents and a λn = 4, λ = 44 offspring
configuration. The population size reduction in moGA-SRM notoriously acceler-
ates convergence in almost all the search directions. However, it delays convergence
in ω1 direction making the overall evaluation time to be slower than GA-SRM and
moGA. This problem can be solved by dynamic configuration of computational
resources (offspring creation between CM and SRM and evaluation numbers allo-
cated to each search direction) [7].

4.4.4.3. Nondominated Pareto solutions

Our objective is to generate a set of strongly nondominated images for N = 11
predefined search directions. The generation of a set of images implies a three-
step processes: (i) generation of nondominated solutions, (ii) clustering the solu-
tions around the N search directions, and (iii) selection of the preferred solution
for each search direction. In Table 4.4, under columns Ba and Bb, we present the
preferred solutions obtained for each search direction in two typical image blocks.
Column Ba illustrates a block in which the clusters are separated one from each
other and the preferred solutions also form a strongly nondominated Pareto front.
On the other hand, column Bb illustrates a block in which some clusters are very
close one to another and the final preferred solution is the same in more than
one search direction (see, e.g., ω8 and ω9, or ω10 and ω11). Also, from these two
columns, we can see that the errors’ ranges vary depending on the characteristics
of the image block. Under whole images, we present the mean errors Em and Ec
on all image blocks of the assembled images for each search direction. We can see
that in the average the proposed method induces a strongly nondominated Pareto
front for the generated images.

4.4.4.4. Effect of information sharing

Figure 4.16 shows the average distribution of the parent population for some of
the ωn directions after 0.1T and T evaluations. For example, in Figure 4.16(a), the
parent population of ω4 is in average composed by 18% of individuals coming
from ω3, 30% from ω4 itself, and 13% from ω5. From these figures, we can see
that each search direction benefits from individuals that initially were meant for
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Table 4.4. Obtained Pareto front (“Lenna”).

W

Two typical image blocks
Whole images

Ba Bb Em Ec
Em Ec Em Ec

ω1 33.22 113.61 43.06 123.97 43.4 121.0

ω2 26.67 113.71 16.48 124.35 21.0 121.3

ω3 23.95 113.86 14.43 124.43 16.9 121.5

ω4 16.22 114.87 13.65 124.58 12.3 122.1

ω5 13.20 115.37 8.12 125.57 11.4 122.2

ω6 13.19 115.41 7.86 125.72 9.8 122.7

ω7 13.08 115.46 7.75 125.75 9.6 122.8

ω8 10.11 118.36 7.53 125.93 9.4 123.5

ω9 9.61 118.90 7.53 125.93 9.3 123.7

ω10 9.52 119.04 7.05 126.06 9.2 123.8

ω11 9.49 119.18 7.05 126.06 9.1 124.0
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Figure 4.16. moGA-SRM’s average parent population distribution after 0.1T and T evaluations
(“Lenna”).

other neighboring directions. This information sharing pushes forward the search
reducing convergence times. Looking at Figures 4.16(a) and 4.16(b) we can see that
the effect of information sharing is higher during the initial stages of the search.

Figure 4.17 shows some of the simultaneously generated halftone images by
moGA-SRM(2,44) with dynamic configuration of computational resources [7] af-
ter 0.70T . As can be observed, the images for each search direction are high-quality
images and the difference in contrast and gray level precision can be visually ap-
preciated.
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(a) ω1 (b) ω2 (c) ω4

(d) ω6 (e) ω9 (f) ω11

Figure 4.17. Simultaneously generated halftone images by moGA-SRM(2,44) after 0.70T .

4.5. Interblock evaluation method in GA-based halftoning scheme

The GA-based halftoning methods explained before evolve all image blocks in-
dependently from each other. A side effect of this is that the evaluation func-
tion becomes approximate for the pixels close to the boundaries between image
blocks, which introduces false optima and delays the search. This affection be-
comes larger as we reduce block size. In this section, we present an interblock
evaluation method to further reduce processing time (evaluation numbers) in the
GA-based image halftoning technique [29, 30]. We design the algorithm to avoid
noise in the fitness function by evolving all image blocks concurrently, exploit-
ing the interblock correlation, and sharing information between neighbor image
blocks.

4.5.1. Problem

Due to the expected high correlation between neighboring pixels in an image, the
pixels copied around the boundaries of the generated block aim to reduce dis-
continuities between blocks (see Figure 4.3). However, these pixels are not true
information of the generated neighbor blocks. Although mathematically the same
fitness function is used for every pixel, from an information standpoint the con-
ventional GA-based halftoning schemes induce a kind of approximate fitness func-
tion [21] for the pixels close to the boundary regions, which introduces false op-
tima. This misleads the algorithm and greatly affects its search performance. Here
we show examples of generated pixels and their reference region to calculate gray
level estimation in Figure 4.18. Note that if the area of image block is reduced, the
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(a) All pixels in the reference region
are true information
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(b) About a half of the pixels in the
reference region are false information

Figure 4.18. Examples of generated pixels and their reference region to calculate gray level estimation.

fraction of the number of pixels evaluated with the approximate function (e.g.,
Figure 4.18(b)) will increase while the fraction of the number of pixels evaluated
with the true fitness function (e.g., Figure 4.18(a)) will decrease, negatively affect-
ing the quality of the generated image and delaying the search. In addition, the
ratio of true information used in the evaluation function reduces with the block
size. For example, in case of r × r = 16 × 16 pixels, the ratio of true information
used to calculate all ĝ(i, j)’s in a block becomes 0.8556, when the size of Gaussian
filter is 5 × 5. The ratio decreases to 0.7225 and 0.4900 as we reduce block size to
r × r = 8 × 8 and 4 × 4, respectively. The noise introduced by the approximated
function becomes larger when we reduce block size, which is a real obstacle for
further reduction of processing time.

4.5.2. Interblock evaluation method

To have a fitness function that models the halftoning problem with higher fidelity,
we make use of the interblock correlation between neighbor blocks in the evalu-
ation, linking each block with its neighbor blocks and sharing some genetic in-
formation between them [29, 30]. A GA is allocated to each block and each GA
evolves its population of possible solutions concurrently. In this process, the best

individuals x∗(t−1)
u,v in the neighbor populations are generationally referred and

used to calculate the fitness values for individuals x(t)
k,l (k = 0, 1, . . . ,K − 1, l =

0, 1, . . . ,L − 1) in the current population as shown in Figure 4.19. Here (k, l) de-
notes the address of the current block Dk,l in the input image, and (u, v) the address
of linked neighbor blocks around Dk,l.

Also, ∗ and t denote best individual and generation number, respectively.
With this procedure of information sharing between populations we can sup-
plement incomplete information in the evaluation process of [23, 24] expecting
that it would contribute to reduce evaluation numbers, improve the image qual-
ity around block boundaries, and allow further reductions of block size. Parallel
implementations can be realized with the required number of processing units,
linking at most 8 neighbor units as illustrated in Figure 4.20. Here a unit Uk,l

(k = 0, 1, . . . ,K − 1, l = 0, 1, . . . ,L − 1) means a processor corresponding to the
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Figure 4.19. A current block and connected neighbor blocks for gray level estimation.

image block Dk,l, which runs a GA to search the best binary pattern x∗k,l for Dk,l.
In the following, we use an 8-neighbor topology as shown in Figure 4.20. All units
evolve their populations and update best individuals generationally to interchange
the information of reference pixels through the links. After completion of informa-
tion sharing, all units synchronously start the evolution of next generation. Note
that here the parallel GA is simulated as concurrent processes in a serial machine.
That is, GA serially evolves all image blocks from the upper left D0,0 to the lower
right DK−1,L−1 in a same generation and then we update reference pixels (best in-

dividuals x∗(t)
k,l ) for the next generation. Therefore, the following results show only

the effects by the proposed interblock evaluation method.

4.5.3. Results and discussion

We apply this method to a canonical GA (cGA) [23, 24] and GA-SRM [1, 2]. To
test the algorithms we use “Lenna” again. Parameters in cGA and GA-SRM use the
same settings indicated in Sections 4.2 and 4.3, respectively.

4.5.3.1. Effects in conventional schemes

Table 4.5 shows the number of evaluations needed to reach the reference value
for image quality in case that the block size is r × r = 16 × 16 pixels in cGA
and GA-SRM. We can reduce the number of evaluations about 31% in cGA(200)
and 16% in GA-SRM(100,200). Note that GA-SRM even with the conventional
independent evaluation method is faster than cGA with the interblock evaluation
method. Also, when we reduce population size in GA-SRM with the interblock
evaluation method, it can be seen that smaller population sizes further accelerates
the search without deteriorating the final image quality.

4.5.3.2. Effects in block size reduction

Next, we study the effect of reducing the size of the image block fixing the popula-
tion size to (μ, λ) = (4, 8) in GA-SRM. Here, the mutation probability for CM is set
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U0,0 U1,0 U2,0 UK−1,0

U0,1 U1,1 U2,1 UK−1,1

U0,2 U1,2 U2,2 UK−1,2

U0,L−1 U1,L−1 U2,L−1 UK−1,L−1

Figure 4.20. Parallel implementation with 8-neighbor topology.

Table 4.5. Comparison of the number of evaluations.

evaluation method
cGA GA-SRM

(200) (100,200) (50,100) (25,50) (4,8)

independent 1.000T 0.510T 0.330T 0.211T 0.115T

interblock 0.695T 0.430T 0.290T 0.185T 0.094T

to p(CM)
m = 1/r × r [10], because this value for mutation rate causes better perfor-

mance in combination with extinctive selection [11]. Figure 4.21 plots the error
transition over the evaluations, and Table 4.6 shows the number of evaluations
needed to reach the image quality reference value. Note that with the interblock
evaluation method we can further accelerate the search by reducing the block size
to be evolved and still keep high-image quality. For example, in case of r×r = 4×4
the interblock evaluation method needs only 240 evaluations to achieve the image
quality reference value (the same image quality obtained by cGA after 40 000 eval-
uations), which means less than 1/100 of the processing time compared with the
basic scheme [23, 24]. We could consistently observe similar behavior for other
benchmark images. At 0.006T , cGA(200) and GA-SRM(4,8) can never produce
matured images as shown in Figures 4.22(a) and 4.22(b), but GA-SRM(4,8) with
interblock evaluation method can produce high-quality halftone image by avoid-
ing unpleasant noise around block boundaries caused by block-independent pro-
cessing.

4.6. Summary

In this chapter, we described several image halftoning schemes using evolutionary
computation (EC). We first explained the basic approach that uses a simple GA
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Figure 4.21. Performance by GA-SRM(4,8) with independent and interblock evaluation methods us-
ing different block sizes.

Table 4.6. Effect of block size reduction.

evaluation method
GA-SRM(4,8)

16× 16 8× 8 4× 4

independent 0.112T 0.054T 0.84T

interblock 0.090T 0.029T 0.006T

to solve the halftoning problem, in which the input image is divided into small
image blocks and the corresponding halftone block is generated by evolving chro-
mosomes with two kinds of evaluation functions for (i) gray level precision and
(ii) spatial resolution. This approach is promising in the sense that we can produce
higher quality halftone images than conventional schemes such as ordered dither-
ing, error diffusion, and so on. However, this scheme uses a substantial amount of
computer memory and processing time that deprive it from practical implementa-
tions. To solve these drawbacks, next we presented an accelerated image halftoning
scheme using an improved GA (GA-SRM) which uses two kinds of genetic oper-
ators, CM and SRM, and extinctive selection. If we introduce adaptive dynamic
block (ADB) reduction with qualitative mutation for SRM, we can drastically re-
duce memory size and processing time to generate halftone images without com-
promising the image quality. Only 2% of the population size and 15% of the evalu-
ations were required to attain the same image quality obtained by the basic scheme.
Third, we focused on the multiobjective nature of the image halftoning problem



90 Halftone image generation using EC

(a) cGA(200) with indepen-
dent evaluation method (r ×
r = 16× 16, 0.006T)

(b) GA-SRM(4,8) with inde-
pendent evaluation method
(r × r = 16× 16, 0.006T)

(c) GA-SRM(4,8) with in-
terblock evaluation method
(r × r = 4× 4, 0.006T)

Figure 4.22. Comparison between generated halftone images at T = 0.006 evaluations.

to simultaneously generate halftone images having various combination of gray
level precision and spatial resolution. The improved halftoning scheme using GA-
SRM was extended to a multiobjective one for this purpose as well as to reduce to-
tal processing time. Consequently, we could reduce total processing time to 6% to
generate simultaneously 11 halftone images with different weights for the two eval-
uation functions. Finally, we presented an interblock evaluation method to further
reduce evaluation numbers in the GA-based image halftoning technique. We de-
signed the algorithm to avoid noise in the fitness function by evolving all image
blocks concurrently, exploiting the interblock correlation, and sharing informa-
tion between neighbor image blocks. With this scheme, we could further reduce
evaluation numbers to produce high-quality halftone images. Only 240 evalua-
tions were required to surpass the reference value of image quality achieved by the
basic scheme, which means only 0.6% of the total evaluation numbers required in
the basic approach.

We mainly focused on the reduction of computational cost and memory con-
figuration in GA-based halftoning schemes. However, several possibilities exist for
further improvement and extensions that should be investigated. For example, this
scheme can be extended to multilevel halftone image generation [35, 36], and color
halftone image generation which is now being investigated by the authors. In case
of color halftoning, evaluation functions should be properly modified by consider-
ing CMYK representation of colors for printing devices. Also, another possibility is
information security for halftone images by digital watermarking [13, 22, 26, 27].
One approach [31] shares a signature image into two halftone images. In this
method, the embedded secret image can be decoded by optically overlapping the
two images generated for authentication and delivery. These are only a few trials
among several possibilities and the authors are looking forward to further im-
provement and development of this research field.
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5
Evolving image operators
directly in hardware

Lukáš Sekanina and Tomáš Mart́ınek

5.1. Introduction

Some engineering positions, which a certain level of creativity is required for, will
probably be replaced by computers in the near future. In this chapter, we will con-
sider an engineer who develops image operators for real-world applications of im-
age processing. In particular, he or she is responsible for designing low-level image
filters and operators for smoothing, edge detection, or noise removal [16]. Let us
assume that those filters will be utilized in an industrial application to prepro-
cess images coming from, let us say, a camera. These images may be contaminated
by a variety of noise sources (e.g., photon or on-chip electronic noise) and also
by distortions such as shading, shots, or improper illumination. In order to per-
form the required preprocessing or to suppress the noise in a given application, a
problem-specific filter has to be created. Traditionally, the engineers use a library
of various filters and operators and manually tune promising variants of filters for
the given application. In the process of tuning, various properties of filters might
be optimized: coefficients, structure, size, power consumption, delay, and so forth.
Assume that a convolution filter is applied. Therefore, we are interested in the spa-
tial domain where an input image, x, convolves with a filter function, h. In discrete
convolution, a kernel is shifted over the image and multiplies its values with the
corresponding pixel values of the image. A kernel is a small matrix of coefficients;
its members define weights of accounted pixels. The designer has to find these co-
efficients. He or she has to arrange a set of experiments in which candidate filters
(typically developed intuitively) are evaluated on typical images from the appli-
cation domain. The approach is based on an experimental work with large data
sets. This type of work is usually time consuming even if a cluster of processors is
used to evaluate candidate filters. The designer is mainly faced with the following
problems.

(i) How to invent the required filter which fulfills the objectives.
(ii) How to evaluate the filter in a reasonably short time.
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As the first problem primarily deals with a creative work, the second one requires a
huge computational power. Candidate filters are evaluated using image databases
collected from a given application domain of image processing (e.g., the data from
production line inspection systems, traffic systems, biometric systems, micro-
scopes, satellites, etc.). Those databases usually contain millions of images.

This chapter suggests replacing the creative engineer by an evolvable hardware
system [5] which is able to invent the required filter automatically. Furthermore,
rather than using a common PC or a cluster of workstations, a complete hardware
implementation is developed for FPGA (field programmable gate array). Image
filters are considered as digital circuits. The proposed approach has several advan-
tages.

(i) The proposed system is able to automatically design (evolve) an image
filter if the corrupted image and the original image are supplied by user.

(ii) As we a priory do not assume anything about the structure of the fil-
ter, novel (typically nonlinear) solutions might be evolved for each task.
Thus we are not restricted to the class of well-known filters, such as mean
filters, convolution filters, or median filters.

(iii) As a complete hardware implementation is utilized, the time of evolu-
tion is much shorter in comparison with the time needed by an engineer
to solve this problem. For some applications it could also be possible to
perform a real-time (evolutionary) design in situ.

(iv) The complete system can be implemented as a single chip or on a small
board which is useful for embedded systems and industrial applications.
Furthermore, the solution would be much cheaper than a PC-based so-
lution.

The filters considered here will be composed of elementary blocks that are
able to calculate the minimum, maximum, average, and some logic functions over
two pixels. In order to establish a particular filter from those components, an ex-
tended variant of genetic programming, called functional-level Cartesian genetic
programming (CGP) [10, 13], will be utilized. The approach will be demonstrated
on typical tasks of image preprocessing, such as noise removal and edge detec-
tion. Since CGP represents a very simple algorithm it is very suitable for hardware
implementation.

The main feature of the proposed implementation is that everything is im-
plemented on a cutting-edge reconfigurable hardware platform available today.
For experiments presented in this chapter we utilized the PCI COMBO6 card
with Xilinx Virtex II FPGA developed in the Liberouter project [8]. Therefore,
our results should indicate what is possible to achieve with an FPGA-based evolv-
able system nowadays. The evolutionary algorithm, implemented in hardware, is
used to find a filter which minimizes the difference between the corrupted im-
age and training image. These images are stored in RAM memories available on
the COMBO6 card. A personal computer is used only for communication with
the COMBO6 card, that is, for writing/reading the images to/from RAMs, and so
forth.
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5.2. Everything in hardware

Although a number of papers have dealt with the evolutionary image filter design
at the hardware level (see, e.g., [1, 3, 4, 6, 11, 13–15, 19, 20]) none of them have
introduced a complete hardware implementation. By complete hardware implemen-
tation we mean that the evolving filter as well as the evolutionary algorithm is
implemented in hardware (i.e., in the FPGA in our case). The primary advantages
of this approach are high speed, low cost, and potentially low-power consumption.
The idea of complete hardware evolution for FPGAs was initially demonstrated by
Tufte and Haddow [17]; however, they provided only a simple example of opti-
mization of a few coefficients stored in a register.

Creating an application specific hardware, that is, a dedicated computer, can
sometimes solve the problem of performance. A dedicated computer contains
application-specific units and interconnecting networks that are not available in
common processors. Considering the same microelectronic technology and oper-
ational frequency, a dedicated computer can be faster in several orders of magni-
tude than a universal computer for certain tasks [2]. Dedicated computers are pro-
duced as application-specific integrated circuits (ASIC). A high fabrication cost
is the main disadvantage of ASICs. In most cases, millions of these specialized
chips have to be manufactured to make the chip production commercially attrac-
tive.

General-purpose reconfigurable devices like field programmable gate arrays
offer us other implementation options. The reconfigurable devices operate ac-
cording to a configuration bitstream that is stored in an on-chip configuration
memory. By writing to the configuration memory, the user can physically cre-
ate new (digital) electronic circuits. An advantage of this approach is that a new
hardware functionality is obtained through a simple reprogramming of the chip.
Contemporary FPGAs contain thousands of programmable elements and operate
at hundreds of MHz [18]. Figure 5.1 shows a typical architecture of the FPGA,
which is a two-dimensional array of reconfigurable resources that include recon-
figurable cells (e.g., 4-input look-up tables), reconfigurable interconnection net-
work and reconfigurable I/O blocks. FPGA vendors provide collections of tools
that are utilized for designing circuits for FPGAs. A designer describes a target
(dedicated) computer in a hardware description language (such as VHDL). Af-
ter simulations, a specialized program, a synthesizer, generates the circuit imple-
mentation and configuration bitstream for a given FPGA. The configuration bit-
stream is then uploaded into the configuration memory of the reconfigurable de-
vice.

An evolutionary algorithm will be used to find a configuration of an array of
programmable elements in order to perform the filtering task. Candidate filters
will be evaluated using a training image. These filters have to minimize the differ-
ence between a corrupted version and uncorrupted version of the training image.
The corrupted version will contain a particular type of noise. We will show that
the evolved filters work effectively for a reasonable class of test images corrupted
by the same type of noise. A special filter will be evolved for a given type of noise.
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Figure 5.1. FPGA consists of programmable elements, programmable interconnection network, and
programmable I/O ports. Its function is defined by uploading configuration bits into the configuration
memory.

The evolvable image filter introduced in this chapter is composed of three
main components—virtual reconfigurable circuit, fitness unit, and genetic unit.
These components will be implemented on a single FPGA (see Figure 5.2).

5.2.1. Image filters in a virtual reconfigurable circuit

Every image operator will be considered as a digital circuit of nine 8-bit inputs and
a single 8-bit output, which processes gray-scaled (8-bit/pixel) images. Figure 5.3
shows that every pixel value of the filtered image is calculated using a correspond-
ing pixel and its eight neighbors in the processed image. The circuit which realizes
candidate filters in the FPGA is called virtual reconfigurable circuit (VRC).

Virtual reconfigurable circuits were introduced for digital evolvable hardware
as a new kind of rapidly reconfigurable platforms utilizing conventional FPGAs
[13]. If the VRC configuration is uploaded into the FPGA, there will be created
the following units: an array of programmable elements, programmable intercon-
nection network, configuration memory, and configuration port. The VRC is, in
fact, a second reconfiguration layer developed on the top of an FPGA in order
to obtain fast reconfiguration and application-specific programmable elements.
The designer has the opportunity to design the VRC exactly according to require-
ments of a given application. In most cases the VRC, takes a form of a regular
two-dimensional array of programmable elements.



L. Sekanina and T. Martı́nek 97

SSRAM SSRAM SSRAM
Corrupted

image
Original

image
Filtered
image Fitness

value

Pixel
bufffer

SSRAMs
controller

Fitness
computation

Fitness
memory GA

controller

Population
memory

Filtered
pixelFitness unit

Input

pixels

Interconnection
network

Conf.
elem.

Conf.
elem.

Conf.
elem.

Conf.
elem.

Conf.
elem.

Conf.
elem.

Conf.
elem.

Conf.
elem.

Conf.
elem.

Conf.
interface

Mutation
unit

Initialization
unit

Random number
generator

Genetic unitVirtual reconfigurable circuit

· · ·

· · ·

· · ·

· · · · · · · · ·

Figure 5.2. Architecture of the evolvable image filter in FPGA.
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Figure 5.3. Example of a 3× 3 image operator in VRC.

The VRC can be considered as a hardware implementation of the computa-
tional model used in CGP. In contrast to the conventional CGP [10]—where gates
and 1 bit connection wires are utilized—configurable functional blocks (CFBs)
and 8-bit datapaths are employed here. Our model of the reconfigurable circuit
consists of 2-input CFBs placed in a grid of nc columns and nr rows (see Figure
5.4). Any input of each CFB may be connected to the primary circuit inputs or
to an output of a CFB, which is placed anywhere in the preceding column. The
interconnection is implemented using multiplexers. Any CFB can be programmed
to realize one of functions given in Table 5.1. These functions were recognized as
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Figure 5.4. Virtual reconfigurable circuit for image filtering. Pixels are processed by the array of CFBs
and simultaneously stored in the FIFO memory “din reg” in order to ensure synchronous processing.
CFBs are configured using the configuration register “conf reg” which is controlled by the genetic unit.

useful for this task in [14]. Configuration bits of VRC (stored in a register ar-
ray) are directly connected to the multiplexers that control the selection of inputs
and functions of CFBs. The reconfiguration is performed column by column. The
computation is pipelined; a column of CFBs represents a stage of the pipeline.
Registers are inserted between the columns in order to synchronize the input pix-
els with CFB outputs.

Evolutionary algorithm directly operates with configurations of the VRC; sim-
ply, a configuration is considered as a chromosome. The chromosome is a se-
quence of triplets; each of them defines the configuration of one CFB (the con-
nection of its inputs and the function performed by CFB). As 12 bits are used to
configure one CFB, the length of chromosome is 12 · nc · nr bits. The output is
always read from the top-right CFB.

It is evident that the VRC implements a combination behavior. As many im-
age filters exhibit this property and pipelining of combinational circuits is very
effective, we decided to implement only this type of filters. Of course, a feedback,
multiplication operators or time delays could be introduced into the filter in order
to obtain more complex behaviors. However, it requires much more resources in
FPGA and an additional time to evaluate a candidate circuit. The chosen solution
represents a reasonable compromise.
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Table 5.1. Functions in CFBs operating over two pixels.

Function Description

0 x ∨ y Binary or

1 x ∧ y Binary and

2 x ⊕ y Binary x or

3 x + y Addition

4 x +s y Addition with saturation

5 (x + y)� 1 Average

6 Max(x, y) Maximum

7 Min(x, y) Minimum

A special interface has been established to read configurations of VRC from
FPGA. That makes the analysis of evolved filters easier. Furthermore, any down-
loaded configuration can be converted to a program (e.g., a function in C lan-
guage) doing the same filtering task in software.

5.2.2. Fitness calculation in hardware

The fitness calculation is carried out by fitness unit. The pixels of corrupted image
u are loaded from an external SSRAM memory and then forwarded to inputs of
VRC. Pixels of filtered image, v, are sent back to the fitness unit, where they are
compared with the pixels of original image, w. Filtered image is simultaneously
stored into an additional SSRAM memory. Note that all image data are stored in
external SSRAM memories due to the limited capacity of internal RAMs available
in the FPGA chip.

The design objective is to minimize the difference between the filtered im-
age and the original image. The image size is K × K pixels but only the area of
(K−2)× (K−2) pixels is considered because the pixel values at the borders are ig-
nored and thus remain unfiltered. The fitness value of a candidate filter is obtained
similarly to Sekanina’s original work [12], that is: (1) the VRC is configured using
a candidate chromosome, (2) the circuit created is used to produce pixel values in
the image v, and (3) the fitness value is calculated as

fitness =
K−2∑
i=1

K−2∑
j=1

∣∣v(i, j)−w(i, j)
∣∣. (5.1)

The above formula is implemented as a special circuit in FPGA (see Figure
5.5). Similar circuits also ensure reading the original and corrupted images from
external memories. This task is not trivial if we consider that nine pixels are needed
at each moment of processing and these pixels are not stored at neighboring ad-
dresses of the memory. Therefore, special addressing circuits, FIFOs and compara-
tors (used to detect the end of row and the end of picture) are implemented.
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Figure 5.5. A circuit calculating the fitness value according to formula (5.1). Every pixel calculated
by VRC (VTC OUT) is compared (symbol “−”) with a corresponding pixel in the reference image
(ORIG PIXEL), and their difference is added (symbol “+”) to the actual fitness value (FVAL). Syn-
chronous processing is assured by registers (FDD).

5.2.3. Hardwired genetic unit

The main advantage of CGP is that the representation used is very natural for de-
scription of digital circuits. On the other hand, the representation usually implies a
very rugged fitness landscape. Only a simple genetic operator—mutation—is used
in the evolutionary algorithm. In contrast to standard genetic programming [7],
CGP works with a small population size and many generations are produced (tens
of thousands).

All genetic operations are implemented as special circuits in the FPGA. Figure
5.6 shows details of the genetic algorithm datapath. The genetic algorithm we uti-
lized is based only on a single mutation operator (bit inversion). A crossover oper-
ator is not taken into account because experiments performed so far have shown
that no reasonable crossover operator improves the search. Secondly, its imple-
mentation would occupy a considerable area on the FPGA and introduce another
delay. The population is stored in a memory and its size is configurable. Another
memory is used to store fitness values. Every new population is always generated
from the best members of the previous one. Genetic algorithm operates in the
following steps.

(i) Initialization unit generates the first population at random. We use a lin-
ear feedback shift register seeded from software. Alternatively, a cellular
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Figure 5.6. Block diagram of the genetic unit. Initialization unit (IU) randomly generates the initial
population using a linear feedback shift register (LFSR). Two-port population memory (PMEM) stores
candidate chromosomes. Its addresses are determined by two counters (CNT). LSFR is also utilized in
the mutation unit (MU) to randomly select those genes that will be inverted. The fitness values (FU -
FITVAL) are stored in fitness memory (FMEM). The genetic unit is controlled using two finite state
machines, FSMA, and FSMB. Symbol MX stands for a multiplexer.

automaton could be used. Martin has shown that the performance of
these circuits is similar for this task [9].

(ii) Mutation unit changes a given number of genes (bits) of a population
member (this number is configurable) and the modified member is
loaded into the VRC; it represents an image operator. The reconfigu-
ration of VRC is pipelined in order to overlap the reconfiguration by



102 Evolving image operators directly in hardware

useful computation (i.e., by filtering the training images by a candidate
circuit). Simultaneously, the chromosome is copied into a FIFO mem-
ory.

(iii) Genetic unit is waiting for the evaluation performed by fitness unit. If
the fitness value is better than the parent’s fitness, then the chromosome
replaces its parent (the chromosome is copied from FIFO to the popu-
lation memory). Otherwise, the chromosome is removed from FIFO.

(iv) This is repeated until an appropriate number of generations are pro-
duced.

This loop is, in fact, divided into two parts executed concurrently. Because of
the partial reconfiguration of VRC, we can send the next population member to
VRC although the previous one has not been evaluated yet.

5.2.4. Target platform

Any platform containing a sufficiently large FPGA (approx. 350 k equivalent gates
are needed) and external memories can be utilized. We used a COMBO6 card,
developed in the Liberouter project [8], which is a PCI card primarily dedicated
for a dual-stack (IPv4 and IPv6) router hardware accelerator. This board contains
FPGA Virtex XC2V3000 by Xilinx, Inc. with more than 3 million equivalent gates,
up to 2 GB DDR SDRAM, up to 9 Mbit context addressable memory, and the three
2 MB SSRAM memories. We decided to use this card for our experiments because
it offers us a sufficient performance and capacity of FPGA. Furthermore, various
hardware modules (such as a circuit allowing the communication with a personal
computer via PCI bus) and some design software are available for free.

5.2.5. Results of synthesis

The evolvable image filter was described in VHDL, simulated using ModelSim
and synthesized using LeonardoSpectrum and Xilinx ISE tools to Virtex FPGA
XC2V3000bf957 chip which is available on the COMBO6 card. In order to com-
pare different implementations, we have decided to synthesize the whole system
with VRC of size 4× 8, 5× 8, 6× 8, and 7× 8 CFBs. The evolutionary algorithm
operates in the same way for all implementations; however, the size of chromo-
some depends on the number of CFBs. Table 5.2 shows the resources increase in
FPGA with the increasing number of CFBs.

5.2.6. Time of evolution

The evaluation of a candidate filter consists of three basic activities: (1) prepara-
tion of a new candidate chromosome (filter), (2) reconfiguration of VRC circuit
according to the prepared chromosome, and (3) fitness evaluation of the filter. As
most time is spent in the fitness evaluation, the architecture of evolvable image
filter is designed in order to overlap the fitness evaluation by other activities (1, 2).
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Table 5.2. Results of synthesis for Xilinx Virtex II xc2v3000 FPGA. The table shows the utilization of
function generators, registers (Dffs) and latches, block RAMs, and input–output blocks of the FPGA
for various VRC sizes.

VRC size Func. gens. Dffs or latches Block RAMs IO Blocks

available 28.672 28.672 96 684

4× 8 10.331 3.104 2 236

utilization 36% 10% 2% 34%

5× 8 12.324 3.269 2 236

utilization 42% 11% 2% 34%

6× 8 15.861 3.468 2 236

utilization 55% 12% 2% 34%

7× 8 17.753 3.632 3 236

utilization 61% 12% 3% 34%

Therefore, because there is no overhead for reconfiguration of VRC (a new candi-
date configuration is prepared as well as VRC is reconfigured during evaluation of
a previous filter) it is possible to express the time of evaluation of a single filter as

teval = (K − 2)2 · 1
f
= (256− 2)2 · 1

50 · 106
= 1.29 ms (5.2)

if the size of images is 256× 256 pixels and the FPGA operates at 50 MHz. Time of
evolution can be expressed as follows:

te = tinit + g · n · teval, (5.3)

where g is the number of generations, n is population size and tinit is time needed
to generate the initial population (tinit is negligible). Considering n = 4 and g =
10, 000, the time of evolution is 51.6 seconds for the 256 × 256 pixel images with
FPGA running at 50 MHz.

5.3. Experimental evaluation of the FPGA implementation

Because of the stochastic nature of the method, it is impossible to evaluate the
proposed architecture for all possible types of images, noise, time of evolution, and
setting of CGP parameters. The following experiments were arranged to evaluate
the most important properties of the evolvable unit, such as time of evolution and
the quality of evolved filters. In particular we investigated the following:

(i) the influence of the mutation rate on the time of evolution;
(ii) the influence of the size of VRC on the quality of evolved filters;
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(iii) the influence of the population size;
(iv) the quality of evolved filters for different size of training images;
(v) the quality of evolved filters for different types of noise and images;

The following problems were utilized as benchmark tasks for the proposed
architecture (see examples in Figure 5.10):

(i) noise removal from images corrupted by Gaussian noise (σ = 16);
(ii) noise removal from images corrupted by salt and pepper noise (5% pix-

els with white or black shots);
(iii) noise removal from images corrupted by random shot noise (5% pixels

with a random value of shot);
(iv) edge detection.

These benchmark problems were utilized in literature dealing with the evolu-
tionary design of image filters [13–15, 20]. Conventional realizations of these fil-
ters are based on mean and median filtering. There are many conventional edge de-
tectors, for example, Sobel and Canny detectors. References [13, 16] discuss these
conventional filters and their implementation cost in hardware.

The choice of training image depends on a given application. The proposed
implementation supports up to 256× 256-pixel images. We have utilized the stan-
dard Lena image in our experiments. The resulting filters are verified using a test
set consisting of various images. The quality of filtered images is expressed in terms
of mean difference per pixel (mdpp). This value is obtained by dividing the fit-
ness value (5.1) by the number of filtered pixels. Alternatively, signal-to-noise ratio
(snr) is used in literature; however, it is easier to implement a circuit calculating
mdpp than snr in FPGA.

The genetic unit attempts to minimize mdpp. However, a zero value of mdpp
is unreachable even for a very long time of evolution. The reason is that considered
types of noise contain random components which cannot completely be removed
by the filters that can be implemented in the VRC.

5.3.1. The mutation rate versus the quality of resulting filters

In our case, only experimental work can suggest the suitable mutation rate. We
repeated the filter evolution 100 times for the salt and pepper noise problem using
the 128 × 128 pixel Lena image, population size 8, and 4 × 8 CFBs in VRC. Min-
imum, maximum, and average fitness values were measured after 50000 genera-
tions. Figure 5.7 shows that it is useful to mutate 10 bits (2.5%) of the chromosome
in average.

In order to improve the quality of the search method we utilized a simple
adaptive mutation scheme. In case that the best fitness value stagnates for a cer-
tain number of generations (gc), a higher mutation rate is introduced in order
to escape from the local optimum. As soon as the fitness value is improved, the
mutation ratio is decreased back to the previous value. We experimentally investi-
gated various values of gc and mutation rates. However, no improvement against
the constant mutation rate was observed after more than 500 runs of CGP with
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Figure 5.7. Searching for a suitable mutation rate (chromosome length is 384 bits).

Table 5.3. The quality of filters evolved for various VRCs.

VRC size Best mdpp Average mdpp Average number of gener.

4× 8 0.50 1.92 28911

5× 8 0.38 1.72 27310

6× 8 0.35 2.21 27025

7× 8 0.40 2.23 27404

various parameters. Therefore, the adaptive mutation was not considered in the
final implementation.

5.3.2. The size of VRC versus the quality of evolved filters

Similarly to the probability of mutation, the size of VRC also influences the quality
of the evolved filters and time of evolution. We repeated the filter evolution 500
times for the salt and pepper noise problem using the 128× 128 pixel Lena image,
population size 4, mutation rate 10 bits/chromosome and VRC consisting of 4×8,
5×8, 6×8 and 7×8 CFBs. All experiments were terminated after 50000 generations.
The best mdpp, average mdpp, and the average number of generations in which
the evolution has stagnated are reported in Table 5.3. The results indicate that, in
average, the best mdpp is obtained for 5× 8 CFBs.

5.3.3. Population size

In this experiment we allowed performing 160000 fitness evaluations and mea-
sured whether it is better to maintain larger population or to produce more gen-
erations. For the salt and pepper noise problem we repeated the filter evolution
200 times for each setup using the 128 × 128 pixel Lena image, mutation rate 10
bits/chromosome, and with 4×8 CFBs in VRC. The best mdpp and average mdpp
are reported in Table 5.4.
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Table 5.4. The number of generations versus population size for 160000 evaluations.

Population size Generations Best mdpp Average mdpp

4 40 k 0.42 1.89

8 20 k 0.53 1.61

16 10 k 0.59 1.56

32 5 k 0.70 1.51

Table 5.5. The best filters evolved for different sizes of training images.

Image Size Best mdpp Avr. mdpp Filter

Lena256.bmp 256× 256 0.31 0.92 F256b

Lena128.bmp 128× 128 0.40 1.34 F128b

Lena64.bmp 64× 64 0.38 1.53 F64b

Lena32.bmp 32× 32 0.50 1.89 F32b

In our implementation, large populations imply lower mdpps in average;
however, it is difficult to obtain at least one very good solution. Thus, we can sug-
gest that if one is going to use the evolvable filter in FPGA to find a really good
filter, it is better to generate more generations with a small population size. On the
other hand, when the system should be used to achieve “real-time” adaptation, it
is better to maintain larger population because the probability that the resulting
solution is good is higher (assuming the same time available to the evolutionary
design in both cases).

5.3.4. The quality and generality of filters evolved for
different size of training image

Another question is how many pixels the training image has to contain. Naturally,
larger training images should lead to more general filters; on the other hand, many
pixels have to be examined in the fitness function which makes the evolution very
time consuming. In comparison to the 256 × 256 pixel training image, the evo-
lutionary process will be 4 times faster if only 128 × 128 pixels are examined, 16
times faster for 64× 64 pixels, and 64 times faster for 32× 32 pixels. We evaluated
the mentioned scenarios on the salt and pepper noise removal problem for Lena
image. Figure 5.8 shows the images utilized in the fitness function. We repeated the
filter evolution 500 times (50000 generations in each run) for each size of training
image, population size 10, mutation rate 8 bits/chromosome, and 4 × 8 CFBs in
VRC. We applied the best four evolved filters (F256b, F128b, F64b, F32b) on other
two images and calculated their mdpp (see Tables 5.5 and 5.6).

It seems that the use of the 128×128 pixel training image is a reasonable com-
promise. The usage of smaller training images leads to filters that are not general
(i.e., they are optimized only for the training image). However, we can imagine a
real-world application in which it could be useful to have a filter optimized not
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Table 5.6. The application of evolved filters on different images (mdpps are given).

Image/filter F256b F128b F64b F32b

Lena256p5.bmp 0.31 0.48 0.55 0.76

Bird256p5.bmp 0.27 0.24 0.29 0.33

Bridge256p5.bmp 0.90 0.80 1.17 0.95

Average 0.49 0.51 0.67 0.68

Figure 5.8. Training images utilized in the fitness function: 256×256, 128×128, 64×64, and 32×32
pixels.

only for a given type of noise but also for certain image(s). For example, a camera
situated over a production line (say, with bottles) scans very similar types of im-
ages (bottle by bottle). The filter evolved using a small training image would be an
advantage because of short adaptation time (a few seconds).

5.3.5. The quality of filters evolved for different types of noise

Table 5.7 summarizes the results we obtained in searching for the best filter for
Gaussian noise, salt and pepper noise, random shot noise, and edge detector. We
repeated the evolution 500 times (50000 generations in each run) for all noise
types using the 256 × 256 pixel Lena image, population size 4, mutation rate
10 bits/chromosome, and 4× 8 CFBs in VRC. The third column of Table 5.7 indi-
cates the generation in which the best filter was discovered. The last column rep-
resents the average number of generations in which the evolution has stagnated.
The best mdpp will be compared against the software approach in Section 5.4.
We applied the evolved filters on other test images. Figures included in Figure 5.9
demonstrate that the visual quality of the filtered images is sufficient and the
evolved filters work correctly for a considered class of images. All types of noise and
examples of filtered images are visible in Figure 5.10. Example of a filter evolved to
suppress Gaussian noise is depicted in Figure 5.11.

5.4. Discussion

Every day, during our experimental work, we were able to evolve more than 4500
image filters (considering a training image of 128 × 128 pixels, population size 4,
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Table 5.7. The best filters evolved for test problems.

Problem Best mdpp Number of gen. Avr. mdpp Std.dev. Avr. Number of gen.

Salt & pepper 0.31 49808 0.95 0.51 29388

Random shot 1.11 40616 1.65 0.31 26781

Gausian noise 6.36 27179 6.73 0.24 31032

Edge detection 1.16 49608 1.73 0.41 35074

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.9. Original images (a), (b), (c), images with the salt and pepper noise from a test set (d), (e),
(f), and images filtered using an evolved filter (g), (h), (i). The evolved filter was trained by means of
Lena image (a), (d).

and 30000 generations in average) which is impossible by means of a PC-based
software approach. As the hardwired evolutionary design process is very fast, we
could explore much larger portion of the design space than by using a conventional
approach. The change of problem specification is very easy; the user has to supply
a corrupted image and an uncorrupted image (these images are uploaded into
RAMs at COMBO6) and some parameters of evolution (the mutation probability
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.10. Corrupted and filtered images: salt and pepper noise ((a) versus (e)), random shot noise
((b) versus (f)), Gaussian noise ((c) versus (g)), edge detector ((d) versus (h)).

and the number of generations). In case that more changes are required (e.g., VRC
is changed substantially), it is necessary to perform a new synthesis of the whole
application which requires a few minutes.

From Table 5.7 it can be derived that 30000 generations (i.e., 20 seconds in
FPGA operating at 100 MHz) are needed in average to find a filter. The design time
is very reasonable if the proposed system should operate “instead” of a designer in
the image filter design task. For some applications, our solution could also operate
as a real-time evolving filter. If we consider that training images could consist only
of 64×64 pixels, then the time of evolution is 4.7 seconds. Note that the speedup we
obtained against the software approach (Pentium III/800 MHz) is 50 if the FPGA
operates at 100 MHz. Another speedup is possible if more than one VRC were
implemented.

Table 5.8 compares the best-achieved results with the results obtained using
a software simulator [14] and with the conventional implementations. We can
observe that the filters evolved here and in [14] exhibit very similar quality. In
comparison with conventional implementations of image filters (i.e., with the me-
dian or mean filters that are general and not specialized to our type of noise) we
obtained very good specific filters trained for a particular type of noise. Similar
to [14], we can assume that the evolved filters, when extracted from VRC, trans-
formed to VHDL, and synthesized again for FPGA, will be cheaper than conven-
tional filters (in terms of the number of equivalent gates utilized in FPGA).

The performed experiments suggest how the final architecture of the evolvable
image filter should look like. The circuit should contain 5 × 8 CFBs, CGP should
mutate 2.5% of chromosome and the fitness value should be calculated using the
128 × 128 pixel image in order to evolve general filters. If the system is utilized
to design a single filter, then it is useful to maintain a small population size (four
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Figure 5.11. Example of an evolved Gaussian noise filter. CFBs are numbered according to Table 5.1.

Table 5.8. Comparison of mdpp of the best filters evolved in software (cf. [14]), in hardware and
designed conventionally (cf. [14]).

Operator SW HW Conventional

Gaussian 6.24 6.36 6.43 (mean)

Salt and pepper 0.38 0.31 2.95 (median)

Random Shot 1.08 1.11 2.98 (median)

Edge detection 1.20 1.16 —

chromosomes). On the other hand, when a short adaptation time is of interest,
larger populations allow obtaining higher average quality of filters.

A strongly generic approach was utilized during VHDL design. All the im-
plemented units are parameterized using various constants (such as the size of
chromosome and the number of mutations). Therefore, it is easy to modify the
design and to obtain a totally different evolvable system in a very short time.
The FPGA communicates with PC via a special software allowing the designer
to prepare scripts describing experiments that have to be performed. Typically, de-
signer specifies the VRC, EA, and fitness functions, performs synthesis, uploads
the evolvable system into FPGA, and executes all experiments described in scripts.
This approach can be considered as a user-friendly interface to evolvable hardware
(e.g., a system for hardware evolution of sorting networks was derived from this
application in a few hours). Furthermore, the evolvable image filter can be offered
as an IP (intellectual property) core to FPGA designers. Another important fea-
ture is that the evolvable filter can be uploaded to the FPGA dynamically, that is,
only when some adaptation is needed. Once the system is adapted, only a resulting
filter remains in the FPGA (e.g., in a second VRC realized in the FPGA) and some
other circuits can replace the evolvable unit in the FPGA.

5.5. Conclusions

The proposed complete hardware implementation of an evolvable image filter has
allowed us to explore much larger portion of the design space than engineers can
do nowadays (e.g., during an eight-hour work period). The proposed system is



L. Sekanina and T. Martı́nek 111

able to deliver image filters of a high quality in a few minutes. In case that the
evolved filter is not sufficient, it is needed just to restart the evolutionary process.
The architecture is generic and can easily be modified to realize other evolvable sys-
tems. We demonstrated that complete hardware evolution significantly improves
designer’s performance and allows integrating novel features (such as adaptability)
to FPGA-based embedded systems.
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6
Variable-length compositional genetic
algorithms for the efficient
implementation of morphological
filters in an embedded image processor

Ian P. W. Sillitoe and Andreas K. Magnusson

6.1. Introduction

High-speed and ultra-high-speed binary image processing has a growing number
of application areas in manufacturing industry and transportation (e.g., vision-
based fabric inspection [19], intelligent vehicles [2]). The relative simplicity of
the hardware required for high-speed binary image processing can also be used
to provide a cost effective means of implementing grey scale image processing in
mobile embedded systems [3].

A common component of such embedded vision systems is the use of mor-
phological binary image processing. This is dictated by real-time demands and the
requirement that the application must often measure or classify the morpholog-
ical properties of the image. In applications where the image sizes are large, the
image processing operators are implemented by passing the entire image, line by
line, through a scan-line pipeline [6]. Thus, the time-complexity of an algorithm
is typicallyO(np), where n is the number of lines in the image and p is the number
of individual operator applications. Whilst it is not possible to alter n, it is possi-
ble to reduce the execution time of an algorithm by combining and reordering the
original structuring element operator sequence into a shorter sequence of mul-
timinterm1 Boolean operators. Shorter sequences not only provide the benefit of
shorter execution times but they can also provide a corresponding power saving
when used in conjunction with variable frequency clock modes.

Thus, the aim of the optimisation procedure is to map the original filter spec-
ification into a reduced sequence of machine specific operators and connectives.
The optimisation criterion is specified by the length of the sequence, and the

1Boolean functions, such as a sequence of structuring elements, can be represented canonically
as the disjunction of a series of minterms. A minterm consists of a conjunction of each of the function
variables (either complemented, or uncomplemented) where each function variable appears exactly
once within a given minterm (e.g., the exclusive or function would be represented as two minterms
X or (a, b) = (a∧ b)∨ (a∧ b)).
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complexity of the optimisation problem is determined by the size of the opera-
tor set and the possible number of partitions of the target filter.

The genetic algorithm, presented here, evolves compact sequences of multi-
minterm operators for the clutter [16], a high-speed scalable FPGA-based binary
image processor. The clutter has a large and complex multiminterm instruction set
based upon the functions realisable by the compact look-up table (CLUT) [17].
The size of the instruction set is orders of magnitude larger than those of previous
processors (an upper bound of 276 realisable functions [17]) and it is impracti-
cal to enumerate the entire instruction set. The size and form of the instruction
set provide the prerequisites for the optimisation of complex filters (such as the
median or rank filters [18]) lacking in other architectures [9].

The number of disjoint subset partitions of target function minterms is re-
lated to the Bell number, Bn, given in

Bn =
n∑
k=1

S(n)
k , (6.1)

where n is the number of target function minterms and S(n)
k are the Stirling num-

bers of the second kind, calculated by the recurrence relation in

S(n)
k = S(n−1)

k−1 + k · S(n−1)
k , S(n)

1 = S(n)
n = 1. (6.2)

For a target function containing 16 minterms, the number of possible disjoint
minterm partitions is B16 = 10480142147. The Bell number becomes a lower
bound on the number of partitions, when applied to problems involving overlap-
ping subsets and arbitrary connectives (as is the case here). Thus, even for small
numbers of minterms, the combination of the partition space and the size of the
instruction set makes the use of simple deterministic backtracking algorithms im-
practical.

In previous work, an informed backtracking algorithm based upon the re-
sults of [17] was successful in identifying solutions to target filters which could be
realised by a single CLUT. This approach was extended, to tackle more complex
filter functions, by recursively applying the algorithm to the residue of each solu-
tion. However, the solutions discovered by the extended approach were found to
be similar in length to those of the original structuring element sequences.

6.2. Synthesis strategy

The informed backtracking algorithm partitions the target function into a dis-
junctive sequence of single CLUT operators. Thus, only those minterms contained
within the target function are implemented by the CLUT operators, and each
CLUT operator can only add to the total set of minterms. The disjunctive nature
of this form of sequence provides only limited possibilities for optimisation, and
does not exploit the richness of the instruction set.
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Table 6.1. List of the arbitrary connectives.

Function Encoding Function Encoding

a∧ b 0001 a∨ b 1000

a∧ b 0010 a�b 1001

a∧ b 0100 a∨ b 1011

a�b 0110 a∨ b 1101

a∨ b 0111 a∧ b 1110

A more effective strategy is to synthesise sequences in which the CLUT opera-
tors cover minterms other than those found within the target function. Successive
CLUT operators in the sequence could then remove the unnecessary minterms
with the aid of a more complex set of connectives. Such a strategy has the poten-
tial to construct shorter solutions based upon a number of greedy CLUT operators
which utilises the entire instruction set.

The synthetic strategy can be implemented in a number of ways. The partic-
ular form of CLUT operator sequence, S, investigated here, is given in

S(X) = ( · · · ((∅◦1 C1(X)) ◦2 C2(X)
) · · · ) ◦N CN (X), (6.3)

where C1(X) · · ·CN (X) are the CLUT operators applied to the image X , and
◦1 · · · ◦N are any of the connectives given in Table 6.1. C1 is combined with a con-
stant image ∅ using the connective ◦1. Thus, the operators in (6.3) are ordered
and, in general, a CLUT operator can completely or partially redefine the effects of
the preceding operators.

The advantage of the formulation given in (6.3) is twofold. Firstly, the fitness
evaluation of the genetic algorithm, when using (6.3), is only based upon the con-
tents of the CLUT operator, connectives, and the truth table of the target function
and is not dependent upon the image. Secondly, the formulation can also be im-
plemented as parallel CLUT operations applied to a single input image.

Section 6.3 provides a brief introduction to the clutter and to the CLUT, from
which the problem derives a significant portion of its complexity. Section 6.4 in-
troduces the general approach taken by the algorithm to manage the synthesis of
solutions. Section 6.5 describes the details of the genetic algorithm, including the
diversity management and adaptive niche focusing scheme. Section 6.6 presents
the results of the algorithm when applied to complex filter problems. Section 6.7
provides an analysis of the results and observations for further work.

6.3. The clutter

The clutter is a novel reconfigurable FPGA-based binary image processor, which
is designed to address the requirements of embedded machine vision applications
(i.e., cost, power consumption, and processing rate). The architecture addresses
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Figure 6.1. A block diagram of the core of the clutter architecture. Signals pertaining to the inter-
clutter interface have been intentionally excluded for clarity.

these requirements through its augmentation of the traditional scan-line architec-
ture and the employment of the compact look-up table as the means of neigh-
bourhood transformation. The use of the CLUT conveys, not only, the benefit of a
large instruction set but also provides a dense mapping of the Clutter architecture
to cellular logic-based FPGAs.

6.3.1. The clutter architecture

The clutter reference architecture (illustrated in Figure 6.1) consists of three logi-
cal entities—the line processor, the postprocessor, and image buffers. The current
version of the clutter is able to process over 150,000 frames of 256 × 256 pixels a
second, and is implemented within a single low-cost FPGA.

The clutter implements image transformations by passing consecutive lines of
an image, contained within an image buffer, through the line processor. The con-
tents of the CLUTs define the form of transformation to be applied. The postpro-
cessor combines the transformed lines, according to the connective chosen from
Table 6.1, with the corresponding lines in another image buffer. The final result is
then written back, a line at a time, to a selected image buffer. Thus, the time taken
to process an image is proportional to the number of transform-connective pairs
contained within the sequence, given in (6.3).

6.3.2. The compact look-up table

The image transformation realised by a CLUT operator is a general form of the
hit-or-miss transformation on a 3 × 3 neighbourhood. The CLUT is a two-layer
structure consisting of five 4-input binary look-up tables, where certain of the in-
puts are shared between the first layer of the structure (see Figure 6.2(a)). The
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Figure 6.2. (a) The internal structure of the compact look-up table (CLUT). The configuration signals
for the look-up tables have been excluded for clarity. (b) The form of CLUT neighbourhood mapping.
The 3 × 3 neighbourhood is grouped into four partially overlapping segments, which are processed
individually by the first layer look-up tables. The results from the four segments are merged into the
transformed centre pixel, x′5, by the function implemented by the look-up table g.

single look-up table, g, in the second layer generates an output which is an arbi-
trary function of the outputs of the first layer. The pixel neighbourhood mapping
which results is shown in Figure 6.2(b).

The functions, f (·), realised by the CLUT are a subset of the set of all 2512

Boolean functions of nine variables, and have the form

f
(
x1, . . . , x9

) = g
(
h1(·),h2(·),h3(·),h4(·)), (6.4)

where h1 · · ·h4 and g implement arbitrary Boolean functions

h1
(
x4, x1, x2, x5

)
h2
(
x2, x3, x6, x5

)
h3
(
x6, x9, x8, x5

)
h4
(
x8, x7, x4, x5

)
g
(
h1,h2,h3,h4

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
: {0, 1}4 �→ {0, 1} (6.5)

and x1, . . . , x9 are the Boolean values of the 3× 3 image neighbourhood (shown in
Figure 6.2).

Figure 6.3 illustrates the sensitivity of the CLUT for internal single bit transi-
tions. The sensitivity is measured as the distribution of Hamming distances from
the nominal function (generated by a CLUT with randomly generated contents),
when a single bit is perturbed at a specific position within the CLUT. It can be seen
that transitions in the contents of the second layer look-up table, g, cause a larger
divergence in the implemented function than those of the first layer. The changes
which occur in the function are a result of the complex one-to-many mapping be-
tween the inputs and the output. The form of the mapping makes it difficult to
affect isolated minterms within the function.
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Figure 6.3. A graph illustrating the sensitivity of the CLUT structure measured as deviations from the
nominal function to isolated bit transitions in the look-up table structure.

6.4. Managing synthesis

The synthesis of sequences (such as in (6.3)) requires that a genetic algorithm pro-
vide evolutionary operators which modify the length of individuals and a means
of maintaining diversity within a population of variable length individuals. The
following section discusses the choices for this particular algorithm in terms of
characteristics of the problem.

6.4.1. Variable-length genomes

Compositional evolutionary operators, such as crossover, combine large pieces of
preadapted genetic material, and rely upon the building-block hypothesis to yield
fitter individuals [8]. The sources of the preadapted material can either be derived
from the same individual or from one or more individuals in the population. The
motivation for the inclusion of constructive compositional operators within the
algorithm in order to grow solutions is twofold.

Firstly, the determination of the optimal length of the final solution is the ob-
jective of the evolutionary search, and since no information is available to inform
the initialisation process, a trial and error procedure would be required in order
to determine a range of suitable lengths. Thus, this application differs significantly
from other variable-length applications (e.g., [1]) where a priori information is
available to initialise the population.

Secondly, even if a suitable range of lengths were known, the population must
be initialised in such a way, that is neither deleterious nor biased. Owing to the
characteristics of the fitness landscape, the random initialisation of a population
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of variable length individuals results in longer individuals with low initial values
of fitness, and shorter individuals with relatively high values of initial fitness. The
effect upon the evolutionary dynamics is that small improvements in fitness of a
few short individuals rapidly reduces the genetic diversity of the population, and
leads to premature convergence or failure to evolve a solution.

If, on the other hand, the population is initialised with individuals contain-
ing single CLUT operators and these individuals are grown using constructive op-
erators (such as concatenation), the initial population will have a higher fitness
diversity, and this diversity consequently decreases less after the initial settling pe-
riod (owing to greater variation in the population’s ancestors [4]). Experiments
illustrating this effect are presented in Section 6.6.

6.4.2. Niche measures in diversity management schemes

Diversity management methods are introduced into genetic algorithms in order
to ameliorate the problem of premature convergence in the face of complex fitness
landscapes. These methods effectively partition the population into niches, and
ensure that competition between individuals is restricted to those which occupy
the same niche. The existence of niches allow multiple regions of the search space
to be explored simultaneously. Several such methods have been proposed [15].

Thus, a modified diversity management scheme could be designed to niche
groups of individuals within the population according to the length of the se-
quence, and thereby mitigate the problem identified in the previous section. The
management scheme developed here is a modified form of the deterministic
crowding algorithm [12]. Deterministic crowding was selected because of its sim-
ple, yet powerful, method of selection. The method requires no control parame-
ters, and in addition, since the parents are randomly selected from the population,
there is neither a need for fitness-based selection probability calculations (such as
in fitness sharing [7]) nor large numbers of niche distance calculations (such as
in crowding [5] and clearing [14]). The simplicity of the method also makes it
suitable for possible hardware implementation.

The absence of control parameters, such as the niche radius used in fitness
sharing and clearing, is of particular importance in this application. In [15], it is
shown that a suitable choice of niche radius relies upon a knowledge of the struc-
ture of the fitness landscape. The complex one-to-many mapping of the CLUT
makes this difficult to obtain.

The niche measure required by deterministic crowding to determine the sim-
ilarity of individuals is commonly based upon properties of the phenotype of the
individuals. This raises two difficulties in this application. Firstly, the length of
the solution is not contained within the phenotype. Secondly, the length of the
phenotype grows exponentially with the dimensions of the filter neighbourhood,
and so, the approach will not scale well for larger neighbourhoods. An alternative
approach would be to base the measure upon the genotype of individuals (i.e.,
the Hamming distance). However, the use of a too simple genotype measure will
degrade the performance of the genetic algorithm [10]. The method presented
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(1) Initialise and evaluate the fitness of the population

(2) repeat

(3) Randomly select two parents from the population

(4) if stagnation has occurred then

(5) Create a single offspring through concatenation with probability

μ, or perform uniform parameterised crossover

(6) Apply duplication-rotation with probability ν

(7) else

(8) Create a single offspring using uniform parameterised crossover

(9) end if

(10) Apply point mutation

(11) Evaluate the fitness of the offspring according to (6.13)

(12) Determine the most similar parent

(13) if the offspring is fitter than the most similar parent then

(14) Replace the parent with the offspring

(15) end if

(16) until termination criteria are satisfied

Algorithm 6.1. An outline of the steady-state variable-length algorithm.

in Section 6.5, uses a weighted-genotype measure which is designed to reflect the
sensitivity characteristics of the CLUT.

6.5. The genetic algorithm

The general structure of the genetic algorithm (shown in Algorithm 6.1) can be
considered to be that of a variable-length form of the standard deterministic
crowding method presented in [10, 11]. Standard deterministic crowding creates
parental pairs by employing random selection without replacement, where selec-
tion is based upon the entire population. That is, all individuals in the population
are used to form parental pairs and each individual is selected only once. Crossover
is then applied to each pair to create two offspring. After mutation of the offspring,
the niche measure is used to determine the distances between the offspring and
their parents. The offspring and their parents are then paired in the configuration
which results in the smallest distance sum. Finally, if the offspring is fitter than its
parent, then the offspring replaces the parent in the population.

The modified steady-state variable-length algorithm differs in the following
aspects.

(1) Only one parental pair is selected from the population during each iter-
ation, owing to the use of the steady-state scheme.

(2) Only a single offspring is produced. This improves the matching of the
distance between parent and offspring, since only a single distance is
used instead of the sum of two distances.
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Figure 6.4. The structure of a single CLUT operator genotype.

(3) When the progress of evolution begins to stagnate, the length of the off-
spring is increased through the use of constructive compositional oper-
ators (i.e., operators which can create offspring with lengths other than
those of the parents).

(4) The surviving individuals are immediately reinserted into the popula-
tion prior to the next selection. This follows from the first point and
allows offspring to take part in the selection process immediately.

The following sections give a detailed description of the steps given in Algorithm
6.1.

6.5.1. Genome structure

A single transform-connective pair (i.e., Cn(·)−◦n, given in (6.3)) is uniquely de-
termined within the genome of an individual, by 84 bits (as shown in Figure 6.4).
The first 80 bits define the contents of the CLUT operator and the corresponding
transform, and the remaining four bits specify the connective to be implemented
by the postprocessor.

6.5.2. Initialisation

The population is initialised with individuals representing single CLUT operators.
The bit strings representing each look-up table of an individual are randomly gen-
erated according to a probability density selected from a distribution of densities,
which are uniformly distributed over the range [0, 1]. The motivation for choos-
ing different densities for the five look-up tables is to allow specific individuals to
focus on different areas of the structuring element. The associated connectives are
selected from the list, given in Table 6.1, in a similar fashion.

6.5.3. The evolutionary operators and their
progression-based application

As indicated, the application of the compositional operators adapts to the progress
of evolution (steps 4–9) and only occurs after a period of stagnation. Stagnation is
said to have occurred when the fitness of the population, measured as the fitness of
the fittest individual within the population, no longer improves over an interval of
80 generations. When a stagnation phase is reached, the compositional operators
are applied for 20 generations. If there continues to be no improvement in the
fitness of the population, the cycle is repeated. The length of the two intervals were
determined experimentally.



122 Variable-length compositional genetic algorithms

The probability that an individual evolutionary operator is applied varies with
an estimate of the current average length of the individuals within the population
(N). The adaptation mechanism ensures that the number of applications made to
an individual is approximately constant, and that it is independent of an individ-
ual’s length. The evolutionary operators, mutation and crossover, are only applied
to the CLUT section of the genome. A description of the individual operators and
their applications is given below.

(1) Mutation. The single accretive operator within the algorithm is standard
point-mutation and has an average application rate of two bit transitions per off-
spring.

(2) Crossover. The form of crossover (applied at steps 5 and 8 of the algorithm)
is uniform parameterised crossover. The average rate is two crossover sites per
offspring. The length of the resulting offspring is that of one of the parents and is
determined by the final crossover site (see Figure 6.5).

(3) Concatenation. The concatenation operator concatenates the parents to form
a single offspring. It replaces the crossover operation during stagnation (step 4)
and an experimentally determined rate of application of μ = 0.00375 has been
used.

(4) Duplication-rotation. The duplication-rotation operator is applied to a ran-
domly selected CLUT operator within the sequence of an offspring. The selected
CLUT operator is copied, rotated, and inserted back into the sequence immedi-
ately following the position of the initial operator (see Figure 6.6). The form of the
rotation is based upon the phenotype of the CLUT operator and aids in the cre-
ation of subsequences which implement rotationally invariant image transforma-
tions. The rotation is performed by circularly shifting the bit strings representing
the contents of h1 · · ·h4 and transforming the contents the bit string representing
the look-up table g. The resulting effect is that the neighbourhood pattern im-
plemented by the new CLUT operator corresponds to one of the four central 90
degrees rotations of the selected CLUT operator. The application rate of the opera-
tor, ν, is governed by ν = 0.015/N , where N is an estimated average of the number
of CLUT operators in an offspring.

6.5.4. The weighted-genotype niche measure

The niche measure, given in (6.6), employs two weights (α,β) to accentuate the
relative effects of different sections of the genome and a third single weight (γ) to
reflect the difference in length,

d
(
Ga,Gb

) = γ · ∣∣La − Lb∣∣ +
min(La,Lb)∑

k=1

wk ·
(
Ga(k) �Gb(k)

)
. (6.6)
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Figure 6.5. An illustration of variable-length crossover. The offspring will, in this case, take the length
of the longer parent A. If there were to be a third crossover site, as indicated by the dashed trace, the
resulting offspring takes the shorter length of parent B.
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Figure 6.6. An example of the duplication-rotation operator, where the selected CLUT operator is
rotated by 270◦.

In (6.6), wk is the position-dependent weighting factor for the kth bit of the
genome given by (6.7), in which α is the weight corresponding to the bits of g(·)
and β the weight for the connective,

wk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if k ∈ {hn1 · · ·hn4

}
,

α if k ∈ gn,

β if k ∈ cn.

(6.7)

Ga and Gb are the two genomes between which the measure is to be made and
La and Lb are their respective lengths measured in bits. The constant γ reflects the
significance of the discrepancy in length between the two individuals and is chosen
to be sufficiently large to assure the generation of length-based niches.

6.5.5. Fitness evaluation

The fitness measure consists of a product of three factors, each addressing one as-
pect of the solution. The first factor measures the correctness, the second applies
a pressure favouring shorter solutions, and the third factor promotes individu-
als which implement elements of the solution not commonly found within the
population. The correctness factor is also used as the progress measure when de-
termining the presence of stagnation (step 4 in Algorithm 6.1).
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An individual’s correctness is measured as the number of target bits correctly
implemented. The target function is represented as a vector of 512 Boolean values
representing the desired output for all possible values in the neighbourhood. The
mapping from neighbourhood to index within the vector is given by

i =
9∑
j=1

29− j · xj , (6.8)

where x1···9 are the neighbourhood pixels shown in Figure 6.2. The correctness
factor fc is given in

fc = 1
512

511∑
i=0

si � ti, (6.9)

where si is the output of the CLUT sequence for input pattern i, and ti is the corre-
sponding target function value. A correctness factor of fc = 0 indicates an entirely
correct solution.

The second factor fpp, given in (6.10), acts as a parsimonious penalty and is
proportional to the logarithm of the length of the genome,

fpp = 1 + c · ln(1 +N), (6.10)

where N is the number of operators in the sequence and c is a positive scaling
factor (taken as c = 0.05 in the experiments in Section 6.6).

The selection pressure, applied by fc, will promote individuals which imple-
ment a larger cover of the target function. However, irrespective of the size of cover,
an individual may still implement necessary elements of the target function. The
use of fc in isolation could lead to the removal of such individuals from the popu-
lation.

In order to combat this effect, an adaptive memory-based niche focusing
scheme, which continuously modifies the fitness landscape with the aim of pro-
moting less common traits in the population, is also included within the fitness
calculation. The scheme maintains a payoff vector of “recently seen” bit-pairs, cal-
culated according to (6.11), and recomputed after each fitness evaluation,

pi =

⎧⎪⎨⎪⎩pi · δ + (1− δ) if si = ti,

max
(
pi · δ, p̌

)
otherwise.

(6.11)

In (6.11), pi are the elements of the payoff vector, δ is the payoff time constant
(which was set to δ = 0.99 in Section 6.6), and p̌ is the maximum payoff (which
was set to p̌ = 0.1 in Section 6.6).

The third fitness factor, fs, corresponds to the payoff for the least commonly
implemented target filter minterm, as shown in (6.12),

fs = min
(
pi
)

: i ∈ [0 · · · 511]. (6.12)
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The total fitness, F, of an individual is calculated according to (6.13). If an in-
dividual correctly implements the target function, it receives a fitness determined
solely by the number of operators, N , of the sequence. Otherwise, the fitness is
given as the product of the three fitness factors,

F =

⎧⎪⎨⎪⎩ fc · fpp · fs if fc �= 0,

N · ε otherwise.
(6.13)

The constant ε is chosen such that N · ε < 1/512 and is taken to be ε = 10−5 in
Section 6.6, (i.e., a fully correct individual is always better than an incorrect indi-
vidual, for any practical value of N). The presence of ε ensures that competition
continues between individuals after solutions to the target problem have been dis-
covered.

6.6. Results

This section presents the results of a series of experiments, in which the algorithm
has been applied to the optimisation of the median filter and three common mor-
phological transformations. The results provide an analysis of an evolved solution
and illustrations of the effects of diversity weights and population initialisation
upon convergence and the degree of optimisation. The section begins by intro-
ducing the transforms used as a basis for the experiments.

6.6.1. The mapping of structuring element sequences

The three morphological image transforms, shrink, thin, and skeletonisation are
commonly used in machine vision applications. Typically, the algorithms differ
only in their choice of structuring element sequence and are implemented by iter-
ating the sequences until there is no further change in the image.

The algorithms for shrink, thin, and skeletonisation given in [13] are based
upon a staged application of two 3× 3 structuring element sequences. During the
first stage of the algorithm (known as the conditional stage), the structuring ele-
ments are used to mark pixels for conditional erasure. The second stage (known as
the unconditional stage) selectively removes marked pixels from the image using
an additional set of structuring elements. Table 6.2 shows the number of structur-
ing elements required for each algorithm and the length of the shortest operator
sequence evolved by the genetic algorithm, when the population was initialised
with single CLUT individuals. Inspection of the evolved CLUT sequences shows
that the algorithm was able to map 5–15 structuring elements to a single CLUT
operator.

Figures 6.7(a) and 6.7(b) respectively illustrate the variation in the correctness
factor and the staged growth of individuals during the evolution of a solution to
the unconditional skeletonisation problem.
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Table 6.2. The optimisation results for skeletonisation, thin, and shrink for α = 8, β = 1, and an
initial population of 400 single CLUT operator individuals.

Transform Stage Structuring elements Sequence length

Skeletonisation
Conditional 40 4

Unconditional 28 6

Thin
Conditional 46 5

Unconditional 45 7

Shrink
Conditional 58 4

Unconditional 37 7

6.6.2. The analysis of a particular solution

Figure 6.8 illustrates how a particular individual, which solves the unconditional
skeletonisation set, implements the minterms of the target function. In
Figure 6.8, each consecutive row corresponds to the minterms which result af-
ter the application of the respective operator in the sequence C1···6. The hashed
squares represent the minterms which are currently implemented incorrectly, and
the empty squares represent a correct implementation. The figures to the right
of the illustration indicate the percentage of the total number of minterms, in
the target function, which were correctly implemented at each point in the se-
quence.

The first operator implements 90.0% of the minterms correctly. Each opera-
tor thereafter in the sequence increases the number of correct minterms until the
fifth operator is reached. The fifth operator decreases the total fraction of correct
minterms but in doing so it also corrects minterms within other parts of the so-
lution, which up until that point, had been incorrect. The change in the greedy
nature of the algorithm, indicated by the fifth operator, is found in the major-
ity of the solutions evolved by the algorithm. Figure 6.9 illustrates the processing
stages for the evolved unconditional skeletonisation sequence applied to an im-
age.

6.6.3. The effect of initial population length upon diversity

The effect of the initialised length of individuals upon the diversity of the evolving
population is illustrated in Figures 6.10(a) and 6.10(b). Figure 6.10(a) shows the
average individual diversities of the first six CLUT operators of the sequence, when
evolving solutions to the unconditional skeletonisation problem with an initial
population randomly seeded with individuals up to a maximum length of eight.
Figure 6.10(b) shows the diversities of the same six CLUT operators, but for the
case, where the population was initialised with individuals of length one. The fig-
ures show that a greater diversity in all operator positions was achieved when the
population had been initialised with single CLUT individuals, and that this effect
also continues after the settling period.
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Figure 6.7. The progression of the correctness factor and growth in genome lengths of the population.

6.6.4. Variation in diversity parameters

Table 6.3 contains the results of a series of experiments used to investigate the vari-
ation in the weighted-genotype diversity parameters, α and β, upon the perfor-
mance of the algorithm. The performance was measured in terms of the number
of quasi-shortest solutions (i.e., the shortest solution as yet discovered by the al-
gorithm). It can be seen from Table 6.3 that smaller β/α ratios result in a larger
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Figure 6.8. An illustration of a section of an evolved CLUT sequence showing the alteration in solu-
tion strategy.

number of short solutions. The experiments evolved solutions for the median fil-
ter and allowed evolution to continue for 2 million iterations beyond the point
where the first solution was discovered (approximately one third of the total num-
ber of iterations).

The performance of the algorithm was then investigated with alternative
forms of niche measure. The measures included the genotype Hamming distance,
the phenotype Hamming distance, and a phenotype measure sensitive to the length
of the CLUT operator sequence, calculated as in

dL-phenotype
(
Pa,Pb

) = 512 · ∣∣Na −Nb

∣∣ +
511∑
i=0

Pa(i) � Pb(i). (6.14)

The lengths of the respective solutions are shown in Table 6.4, together with
the times to first solution measured in terms of the number of iterations of the al-
gorithm. The results of the L-phenotype and weighted-genotype measures show a
similar number of short solutions and a similar spread in the final length of the in-
dividuals. The phenotype measure has the shortest time to solution, but generates
the longest solutions.

6.7. Discussion

In [10], genotype and phenotype deterministic crowding niche measures are anal-
ysed in terms of a number of smooth single variable function optimisation prob-
lems. The functions used within the study exhibit neither epistatic interaction nor
neutral evolution. The results of the study motivated the use the phenotype mea-
sures, as they maintained diversity within the decoded parameter space.

Figure 6.11 shows the correlation between the phenotype and weighted-
genotype measure taken from a population of individuals during the evolution
of the median filter. From inspection, the values of the weighted-genotype pa-
rameters which best correlate with the phenotype involve intermediate connective
weights (i.e., β). This is in agreement with the results of weight variation (shown
in Table 6.3) in evolutionary runs, where it can be seen that the best performance
(measured in terms of sequence length) was achieved when the connective weight
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Figure 6.9. The figure illustrates the processing of an image, showing the six steps of the evolved
unconditional skeletonisation operator. The input image is taken from the output of the preceding
conditional skeletonisation processing stage. The input image contains the pixels which potentially are
to be erased. The resulting image contains two pixels, which the second stage of the algorithm has
selected for protection from erasure.

was relatively low. The reasons can be found in two elements of the problem struc-
ture.

Firstly, the connective element of the genome represents only ten possibilities,
and once created, these remain unchanged by the evolution. A greater connective
weight tends to promote genetic diversity based only upon these few values and
to the detriment of the CLUT operator. The limited variation in the connective
alleles results in low phenotype diversity.

Secondly, the sources of neutral evolution and epistatic interaction are lo-
calised within the gene representing the look-up table g. This gene controls how
the genes of the first layer look-up tables are expressed in the phenotype. Thus,
an increase in the relative importance of α promotes diversity in both g and h,
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Figure 6.10. The two graphs show the separated genotype diversity for the first six CLUT operators
during evolution. In (a), the initial individual lengths are uniformly distributed between one and eight
CLUT operators and in (b), the population is initialised with single CLUT individuals.

reduces niching based upon the connective, and provides greater diversity in the
phenotype and the resulting decoded parameter space.

The relative weights of g and h are derived from the product of their rela-
tive sensitivities (i.e., two to one as shown in Figure 6.3) and their relative lengths
within the genome (i.e., four to one). The analysis in [10] compared the perfor-
mance of a phenotype measure with that of a uniformly weighted genotype Ham-
ming distance and demonstrated the improved time to solution of the phenotype
measure. A similar effect is shown in Table 6.4 for this application, however, the
lengths of the solutions are the longest. The further improvement achieved by the
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Table 6.3. An illustration of the effect of the variation of the parameters α and β upon the number of
short solutions evolved by the algorithm. Each result is calculated from 199 evolutions of the median
filter problem. Once a solution was evolved, the algorithm was allowed to continue for further 2 million
iterations. A dash indicates that no short solutions were evolved.

β\α 1 2 4 8 16

1 2 5 3 3 5

4 5 3 2 5 2

16 1 1 1 1 5

64 1 — 2 4 1

256 1 — 2 1 2

1024 1 — 2 1 2

4096 1 — 2 1 2

Table 6.4. An illustration of the range of solution lengths evolved for each of the four measures, to-
gether with their associated “times to first solution,” measured in terms of the number of algorithm
iterations. Each of the values is calculated from a series of 199 runs.

Length Time to solution (106)

Min Median Max Min Median Max

Genotype 4 6 12 2.28 3.21 7.14

Phenotype 5 8 20 0.85 1.85 > 20.0

L-phenotype 4 6 10 2.57 4.96 > 20.0

WG (8,1) 4 6 8 2.56 3.71 15.75
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Figure 6.11. Illustrating the correlation between the weights of the weighted-genotype measure and
the phenotype of individuals gathered from a population evolving a solution to the median filter prob-
lem.

L-phenotype measure over the phenotype measure is attributable to the increased
number of niches created when a measure also accounts for the length of the indi-
vidual. The hierarchical niching created by the differing weights in the weighted-
genotype measure results in a similar number of short solutions as the L-measure
but provides a shorter mean time to solution, without the additional cost to eval-
uate the phenotype.
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The adaptive niche focusing technique developed for the algorithm provides
a nonstationary fitness landscape which effectively guides the search toward, what
are currently, the least common traits of the solution found in the population. As
the algorithm evolves new elements to the solution, the payoff vector is modified
and the fitness of an individual changes with the progression of evolution. The
complex interplay between the payoff time constant, maximum payoff, population
size, and the convergence of the algorithm required that the payoff time constant
be determined by experimentation.

The weights of the weighted-genotype measure are assigned to genes and not
to the alleles within the genome. Furthermore, the weights are constant and so
are never modified to reflect the change in the fitness landscape. Based upon the
evidence provided in Table 6.3, it is unlikely that globally optimal weights exist,
and that locally optimal weights depend upon not only the target filter, but also
the initial population and current stage of evolution. Further work will investigate
alternative adaptive weighted-genotype measures which extend the assignment of
weights to the level of the allele.
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7
Autonomous model-based corner
detection using affine evolutionary
algorithms

Gustavo Olague and Benjamı́n Hernández

7.1. Introduction

Photogrammetry is the science, and art, of determining the size and shape of ob-
jects as a consequence of analyzing images recorded on film or electronic media.
Computer vision can be understood as the science of obtaining reliable, accurate,
and useful information from images in order to execute and complete tasks de-
voted to perceiving, sensing, and interacting with the world around a machine
vision system. It is clear from those definitions that corner detection is a basic op-
eration in photogrammetry and computer vision. A great deal of effort has been
spent by the computer vision and photogrammetric communities on this prob-
lem [1–3, 6, 8, 11, 13, 15, 16, 18, 19, 21–23, 29–32] and in particular on the prob-
lem of edge detection [4, 5, 17]. The problem of detecting the exact point that
describes the corner position in the case of a bandlimited system should be ap-
proached carefully. This problem is of main concern for high-accurate reconstruc-
tion. High-accurate corner extraction is a complex process due to several factors:
(1) the attitude, position, and orientation of the camera with respect to the object;
(2) the interior orientation of the camera; (3) the fluctuations of the illumination;
and (4) the camera optics [26].

Several approaches to the problem of detecting these feature points have been
reported in the literature over the years. Some approaches work within pixel reso-
lution as the Kitchen and Rosenfeld corner detector [16], the Harris detector [15],
and the interest operator of Moravec [21]. Within the photogrammetric litera-
ture, the seminal approach described by Gruen [13] introduces least squares as a
general technique for all kind of data-matching problems. This approach works
directly on the gray-level image. Rohr [28] studied the displacement of the cor-
ner location using an analytical corner model, which is convolved with a Gaussian
function in order to model the blur. Deriche and Giraudon [6] have developed
a similar analytical study of corner models using the linear Gaussian scale space.
They show that the local maximum in the image moves in the scale space along
the bisector line that passes through their definition of the exact corner position.
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However, the displacement of the local maximum with respect to the initial loca-
tion of the corner depends on the angle of the corner [23]. This problem turns
their criterion not suitable as it is not invariant to camera placement.

This chapter is devoted to the modeling of corner features using affine evolu-
tionary algorithms. A novel parametric corner modeling based on a unit step edge
function (USEF) is developed in order to define straight-line edges. The optical
and physical characteristics of the image acquisition system are modeled by a dis-
tribution function that is simple, yet robust enough to encapsulate in one single
equation the whole image projection of complex corners. The process of fitting the
model to the image intensities is enhanced by searching model parameters with
a global optimization technique using the least-squares criterium. The objective
of this paper is to show a robust and reliable L-corner detector based on least-
squares modeling of a unit step edge function fitted to window-image data using a
global optimization technique. Our approach is motivated by the idea of avoiding
the two-step process of convolving the proposed model with a Gaussian that is
normally applied in previous research. Instead, we work with a model that takes
into account directly the level of blurring found in bandlimited systems like the
CCD cameras [24]. Moreover, the quality of detection relies on the approximation
to the initial position estimation. Parametric approaches are suitable for highly
accurate localization. This work reports the first study about which kind of ap-
proach should be applied to improve the accuracy while eliminating the problem
of initial parameter estimation. This paper reports the performance of three differ-
ent algorithms to measure L-corner positions in real images. Experimental results
show the superiority of our L-corner model in real-image detection. A compari-
son with downhill simplex and simulated annealing using several levels of noise
was performed to show the advantages and disadvantages of the evolutionary al-
gorithm.

This chapter is organized as follows. Section 7.2 presents the main concepts
used to classify all kind of complex corners. Section 7.3 introduces our parametric-
based model, which is used to build complex corners, including the L-corner and
vertex models. Section 7.4 introduces the idea of studying modeling of data as an
optimization process. This approach provides best fit parameters, as well as the
accuracy of the parameters. A novel evolutionary representation is introduced us-
ing the concept of affine transformation. An evolutionary algorithm is applied
to improve the initial parameter estimation based on an affine transformation in
order to enhance the evolutionary algorithm representation. The affine represen-
tation encapsulates within a single algebraic form the two main operations, muta-
tion, and crossover of an evolutionary algorithm. Finally, experimental results are
provided to show the efficiency of the affine evolutionary algorithm compared to
downhill simplex and simulated annealing.

7.2. Corner classification

A corner model should be able to describe a number of attributes such as posi-
tion or location, angle of aperture, orientation, edge shape, edge texture, contrast,
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Figure 7.1. Corner classification according to the kind of border union. (a) L-corner, (b) T-corner, (c)
Y-corner, (d) K-corner, (e) X-corner, (f) vertex. All figures were created with the USEF model.

edge profile, sharpness, color junction type, and size. In particular, those attributes
could be grouped within the following three general properties.

(1) Morphological characteristics. This set of properties are related to the
qualitative aspects (texture, color, shape) describing the general exterior
characteristics.

(2) Geometrical characteristics. This group is related to the general shape
produced by the edges composing the corner. These geometrical prop-
erties are able to describe the location of a corner with respect to a given
coordinate system.

(3) Physical characteristics. This set of attributes are related to the physical
properties produced by the digital system (sensor, camera lens) when
sampling a 3D scene.

7.2.1. Corner morphology

Morphological properties are classified according to the shape and number of
edges defining a corner.

(i) L-corner. It is generated when two straight-line edges join into a sin-
gle point creating two gray zones, see Figure 7.1(a). The L-corner is the
simplest corner structure.

(ii) T-corner. It is produced when one edge joins other two edges out of its
point of convergence. Normally, the edges create straight angles. In a
T-corner three gray zones exist.
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(iii) Y-corner. Also known as “arrow head,” it is produced when three edges
join into a common point, see Figure 7.1(c). In this kind of corner there
are three different gray zones.

(iv) K-corner. This is composed by the union of an L-corner with a region
that does not belong to the end of a third edge, see Figure 7.1(d). As a
result, the T-corner is a special case of a K-corner. The angle of the L-
corner is about 90◦, which is joined by a third edge at some nonextreme
region.

(v) X-corner. This is produced when four edges are joined within a region
that does not belong to the end of those edges, see Figure 7.1(e). This
kind of structures can also be seen as four edges that meet in the same
point and the angles of the nonadjacent edges are equal.

(vi) Vertex. This is produced when more than two edges are joined at a com-
mon point. The number of gray zones in a vertex is equal to the number
of edges, see Figure 7.1(f). The T-corner, Y-corner, K-corner, X-corner
are different kinds of vertex. The term vertex is strictly employed in this
work. Hence, there are only two kinds of corners: the L-corner and the
vertex.

7.2.2. Corner geometry

Geometrical corner properties are described by the set of straight-line edges and
the curvature that is produced in the union of all edges. In general, all image ac-
quisition systems provide images with a certain degree of blurring, because such
devices are bandlimited systems. Therefore, it is suitable to estimate the level of
uncertainty in order to obtain the set of parameters defining the position, orienta-
tion, and precise corner location. The uncertainty is related to the curvature within
the union edge point. Corner modeling is based on the least squares fitting of the
proposed L-corner or vertex model to the image intensities. As a result, we obtain
the best fit parameters, as well as the covariance of each adjusted parameter. There
are three geometrical properties.

(i) Angle of aperture. A corner could be seen as a structure centered on a
coordinate system. The angle between edges with respect to a coordinate
system could be used to characterize the corner model. In the case of an
L-corner, the aperture angle of the corner is composed of two edges.

(ii) Corner position. This term refers to the point where the corner is located.
There are many theoretical developments about its definition:
(1) techniques based on border points;
(2) techniques based on geometrical properties; and
(3) techniques based on parametric models.

Figure 7.2, shows three different criteria to localize the corner. P1 denotes the
intersection between r1 and r2 straight lines. If the corner is well defined describing
a sharp profile, then the corner position could be considered as P1. On the other
hand, P3 defines the corner location that is obtained after computing the maxi-
mum planar curvature. Some approximations compute the border points, which
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Figure 7.2. This graph shows several L-corner localization criteria that are reported in the literature.

are then used as a chain of points. Other approaches such as interpolation are used
to compute the intersection of each asymptotic line in order to define P2, which
is in general localized between P1 and P3. In this work, a new corner criterion for
localization has been introduced. This corner criterion considers the case of a rect-
angular CCD in order to estimate the nonuniform blur factor of a pulnix camera
[23].

(iii) Corner orientation. The coordinates of the corner point, as well as the
direction of the straight lines define the orientation of the corner. The
orientation could also be defined by the line that bisects the aperture
angle and cross the corner point. Figure 7.2 shows the straight line rbis

which is the bisector line of the corner. In this case, the corner is sym-
metrical with respect to the y-axis.

7.2.3. Physical properties of a corner

The physical characteristics of an image-corner give a significant description about
the quality of the corner. These characteristics describe numerically concepts re-
lated to the illumination of the three-dimensional scene, the quality of optical pa-
rameters such as focusing, and the distortion produced by the shape and size of
the digital sensors. This physical characteristics are related to the concept of blur-
ring. The term blurring refers to the level of fuzziness in the image. It indicates if
the border is well defined. In other words, if the border profile can be seen clearly.
Blurring is the main factor in the level of uncertainty of the corner location. In the
case of an L-corner, the measurement of corner location is possible, as long as we
can discern between the two gray levels. The factors producing the blurring are as
follows.

(1) Focus. If a section of the 3D scene is located out of the focal plane of the
image acquisition system, then the image is out of focus. This phenome-
non produces a continuous blurring on the image. Thus, the location of
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the camera with respect to the object and the optical system plays a key
role in the process of corner location.

(2) Aperture. The aperture of the camera lens is finite and it contributes
to the problem of bandlimited systems found on digital cameras. This
problem produces also a homogeneous blurring.

(3) Variation on illumination. The variation of illumination on the scene
produces an irregular blurring around the whole image. However, if the
interest region is relatively small, the blurring could be considered as
homogeneous.

(4) Sampling. A scene is sampled typically with a CCD sensor. The CCD is
composed of a matrix or array of photo sensible elements, where each
element represents a pixel in the digital image. It is common to find
nonsquare elements. The rectangular pixels produce two different blur
factors along the two main directions of the image sensor. Our analyt-
ical corner model proposed in this work characterizes completely this
phenomenon. We have not found a previous work in the literature that
states this important characteristic of digital cameras.

7.3. Unit step edge function model

Considering an image coordinate system I(x, y) and an unknown set of parameters
P = (p1, . . . , pn), the unit step edge function is constructed based on the error
function definition.

Definition 7.1 (error function). The error function, also called Gaussian probabil-
ity integral, is a special case of the incomplete gamma function, and is obtained
directly from C compilers. Its definition is

er f (x) = 2√
π

∫ x
0
e−t

2
dt. (7.1)

The function has the following limiting values and symmetries:

er f (0) = 0, er f (∞) = 1, er f (−x) = − er f (x). (7.2)

According to the above definition, we can derive a new function dividing the
error function by 2 and adding half of a normal distribution in order to obtain a
distribution function as follows:

F(x) = 1√
π

∫ x
0
e−t

2
dt +

1√
2π

∫ 0

−∞
e(−1/2)t2dt = er f (x)

2
+

1
2
. (7.3)

By replacing x appropriately we can derive the USEF definition along the
x-axis.
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Figure 7.3. The straight line and its main parameters superimposed to the unit step edge function
model Ux(I ,Px).

Definition 7.2 (unit step edge function). Let the image coordinates and the set of
unknown model parameters be denoted by I = (x, y) and Px = (px1, . . . , pxn),
respectively. The unit step edge function is represented as follows:

Ux
(
I ,Px

) = ± 1
σ1
√

2π

∫ x
0
e−(t−y·tan(θ1)−μ1)2/2σ2

1 dt +
1
2

, (7.4)

where the image coordinates are in the interval [−m,m]; the central point μ1 des-
ignates the position x of the line that crosses along the y-axis; μ1 lies in the interval
[−m,m]; the rotation θ1 is made clockwise about the (positive) y-axis; θ1 desig-
nates the orientation of the edge model to be fitted to the image within the interval
−π/2 < θ1 < π/2; finally, a scaling factor σ1 that characterizes the amount of blur
introduced by the discretization process is included. σ1 lies in the interval [0,m].
The unit edge function describes a distribution function that increases steadily
from 0 to 1 with respect to the x-axis.

The graphical model of the USEF is the three-dimensional step edge shown
in Figure 7.3. This model describes completely the 2D intensity variations within
a single equation instead of the two-step process of convolving an ideal-shaped
gray-value structure with a Gaussian filter as is normally done. In this way, it is
straightforward to scale the model to the 2D intensity variations using the opera-
tions of addition and multiplication as follows:

U ′x
(
I ,Px

) = Ux
(
I ,Px

)
A + B, (7.5)

where A represents the distance between the lower and upper gray levels and B
represents the lower gray value, also called here floor level. The unit step edge
function Uy(I ,Py) with respect to the y-axis is represented in a similar way, where
all intervals of the variables remain the same and μ2 designates the position y of



142 Autonomous model-based corner detection

the line that crosses the x-axis. The rotation θ2 designates the orientation of the
unit step edge model in the y-direction. Uy(I ,Py) can be evaluated numerically
using the Gaussian error function as follows:

Uy
(
I ,Py

) = ±1
2

er f
((

y − x · tan
(
θ2
)

+ μ2
)

σ2
√

2

)
+

1
2
. (7.6)

Hence, the USEF Uy(I ,Py) is characterized by an r2 straight line along its main
direction. The straight-line equation is obtained from the numerator in the argu-
ment of the exponential function, see Figure 7.3.

7.3.1. L-corner modeling

L-corners are generated when two straight-line edges join into a single point cre-
ating two homogeneous gray zones with different intensities, see Figure 7.4. This
work proposes a new corner modeling based on the USEF model. In order to ob-
tain a corner unit function (CUF), two USEFs are multiplied as follows:

M′
L(x, y, �P) = Ux

(
I ,Px

) ·Uy
(
I ,Py

) · A + B. (7.7)

The structure generated by (7.7) is known in the literature as the “L-corner.”
The parameters σ1, θ1, μ1, σ2, θ2, μ2, A and B, represent the physical and geomet-
rical contours of an L-corner. Therefore, in order to obtain the corner model, we
simply multiply both USEFs. In summary, our model is based on an analytical
expression with the following characteristics.

(1) Each edge on the corner has different levels of blurring. This is physi-
cally produced by the nonsquare CCD pixels of the Pulnix 9701 camera.
Hence, the CUF models the degree of blurring along each edge.

(2) Each angle is independent. Therefore, there is not any restrictions with
respect to the acute or obtuse angles within the corner.

(3) The corner moves freely around the explored window. We obtain the po-
sition and orientation of the corner around any point within the studied
window.

(4) The gray levels are self-adjusted inside and outside the corner.

7.3.2. Extraction of multiple features

Considering the above procedure for building L-corners, it is possible to model
arbitrarily complex gray-value structures in terms of the unit step edge function
by means of simple addition and multiplication operations. The total number of
parameters used by the model is in general

n = 3 + 2N +O, (7.8)
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Figure 7.4. Corner unit function ML(x, y, �P) built from two USEFs. (a) Top view of the CUF model
showing both straight lines, r1 and r2, along both edges. (b) Three-dimensional view of the corner, as
well as the central contour curve.

where the first three, in the case of the L-corner, is given by the amount of blur σ
and the lower and upper gray values A and B, respectively; N represents the num-
ber of step edge models, and O specifies the number of operations used to repre-
sent the feature. In fact, the first three should be increased if we take into account
different blurs for each main direction and multiple gray values when considering
more complex models. For example, the vertex model needs an extra gray level,
and in total we need twelve parameters to model the corner, see Figure 7.5. A ver-
tex model (VUF) can be easily obtained from an L-corner model (CUF) and a
third USEF as follows:

V ′(I ,P) = Ux
(
I ,Px

) ·Uy
(
I ,Py

) · A +Uz
(
I ,Pz

) · B + C. (7.9)
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Figure 7.5. The vertex model can be easily obtained from an L-corner model and a third USEF.

7.4. Modeling of data and multidimensional optimization

Experimental science is devoted to fitting a model that depends on adjustable pa-
rameters to a given set of observations. The common approach is to select or de-
sign a merit function that measures the agreement between the data and the model
with a particular choice of parameters. The model parameters are then adjusted to
achieve a minimum in the merit function, yielding a set of best-fit parameters.
The adjustment process is basically a problem of minimization in many dimen-
sions. Finding the set of parameters that takes the function to a minimum or a
maximum value is considered an optimization problem.

Definition 7.3 (global optimization). In general, an optimization problem requires

finding a set of �P ∈ S, where S is a bounded set on Rn, such that a certain qual-
ity criterion f : S → R, typically called the objective function, is minimized or
equivalently maximized. Without loss of generality, it is sufficient to consider only
minimization tasks, since maximizing f () is equivalent to minimizing − f (). The

problem then is to find a point �Pmin ∈ S such that f (�Pmin) is a global minimum

on S. More specifically, it is required to find an �Pmin ∈ S such that

∀�P ∈ S : f
(�Pmin

) ≤ f (�P). (7.10)

The tasks of maximization and minimization are trivially related to each other
as one being the inverse of the other. An extremum (maximum or minimum) can
be either global, truly the best solution, or local, the best around a neighborhood.
Finding a global extremum is, in general, a very difficult problem. Moreover, in
fitting data usually the merit function is not unimodal, with a single minimum,
which makes the problem harder. On the other side, there are important issues
that are beyond the mere finding of best fit parameters. Data are generally not ex-
act! Data are subject to measurement errors. Thus, typical data never fit exactly
the model that is being used, even when the model is correct. It is customary to
assume that the measurements are independent random variables. Each measure-
ment ( f (xi, yi), xi, yi) have a mean and a standard deviation. Fitting such a model
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to the data is carried out through the well-known technique of least squares. The
approach is to define an χ2 merit function and determine the best fit parameters
by its minimization. Because of nonlinearities, the minimization should proceed
iteratively. Given an initial trial solution, sufficiently close to the minimum for the
parameters; the process improves the trial solution iteratively until χ2 stops, or
effectively stop decreasing. Our approach is to apply a global optimization tech-
nique using the least squares method as a local process in order to improve the
search of the global optimum. Moreover, as a by-product of the minimization, the
covariances of the parameters are obtained.

7.4.1. Modeling L-corners as an optimization problem

The above analysis suggests that a global optimization technique can be used to
solve the problem of guessing the initial parameters. Thus, corner’s localization
is obtained by fitting our parametric model to the image intensities. Estimates

for the model parameters �P = (p1, . . . , pn) ∈ R2 are found by minimizing the
squared differences between the (nonlinear) model function and the considered
gray values:

Q = χ2 = F(�P) =
m∑
i=1

m∑
j=1

[
I
(
ui, vj

)−M′
L

(
xi, yj , �P

)]2
. (7.11)

The intensities and the function values of the model in the considered image area

are I(ui, vj) and M′
L(xi, yj , �P), respectively. Previous approaches used by Rohr [29]

applied the method of Powell utilizing only function values or used the method
of Levenberg-Marquardt (Press et al. [27]) incorporating partial derivatives of the
model function in order to reduce the computation time. However, a drawback
presented on these approaches is that the identification result relies on the initial
parameter values and as usual with nonlinear cost functions, in general, we cannot
guarantee to find the global minimum. This problem is studied in this work using
an evolutionary algorithm due to the success achieved on this kind of problems. In
summary, n is the number of parameters to minimize in our model. m = 2w + 1

defines the size of the input data. �P = (σ1,μ1, ϑ1, σ2,μ2, ϑ2,A,B) are the parameters

of M′
L that describe the behavior of our L-corner. M′

L(xi, yj , �P) is the corner model

evaluated at the �P parameters on the model coordinate system. I(ui, vj) are the
intensity values of an image in a gray scale, which is a square subimage of size

m × m pixels within the entire image. F(�P) is the χ2 estimator. Equation (7.11)
includes two coordinate systems: the image coordinate system (u, v) and the model
coordinate system (x, y), which are different.

7.4.2. Genetic algorithms for function optimization

Evolutionary algorithms are considered a rich paradigm for global optimization.
Previous methodologies as the downhill simplex method and simulated annealing
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are well-known techniques for multidimensional optimization [27]. This section
is devoted to our affine evolutionary algorithm for global optimization. Currently,
evolutionary algorithms for numerical optimization use real-code parameters for
which a set of special transformations has been developed. In real coding imple-
mentation, each chromosome is encoded as a vector of real numbers of the same
length. Several crossover operators have been introduced under the name of arith-
metical operators. The arithmetical operators are built by borrowing the concept
of linear combination of vectors from the area of convex sets theory. Generally,
crossover produces an offspring, which is calculated from the weighted average of
two vectors �y1 and �y2 as follows:

�y′1 = λ1�y1 + λ2�y2,

�y′2 = λ2�y1 + λ1�y2;
(7.12)

if the multipliers are restricted to

λ1 + λ2 = 1, λ1 > 0, λ2 > 0, (7.13)

the weighted form is known as convex combination. If the nonnegativity condition
on the multipliers is dropped, the combination is known as affine combination.
Finally, if the multipliers are simply required to be in real space, the combination is
known as a linear combination [12]. Another operator is known under the name
of dynamic mutation, also called nonuniform mutation, introduced by Janikow
and Michalewicz [20]. Dynamic mutation is designed for fine-tuning capabilities
aimed at achieving high precision. Given a parent �y, if the element yk is selected for
mutation, the resulting offspring is �y = [y1, . . . , y′k, . . . , yn], where y′k is randomly
selected from the following two possibilities:

y′k = yk + Δ
(
t, yUk − yk

)
(7.14)

or

y′k = yk − Δ
(
t, yk − yLk

)
, (7.15)

where

Δ(t, y) = yr
(

1− t

T

)b
. (7.16)

The function Δ(t, y) returns a value in the range [0, y] such that the value ap-
proaches 0 as t increases. This property causes the operator to search the space
uniformly initially, when t is small, and very locally at later stages. t is the gener-
ation number, b is a parameter determining the degree of nonuniformity, and r
is a random number between [0, 1]. It is possible for the operator to generate an
offspring which is not valid. In such a case, we can reduce the value of the random
number r.
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7.4.3. A novel evolutionary representation

The operations of crossover and mutation can be encapsulated into a single com-
plex transformation as follows. In order to handle affine geometry algebraically,
we have to characterize the line i by an invariant equation, and we will suppose
that this equation is y0 = 0. Since the points of i are now regarded as ideal points,
no point with y0 = 0 is actual, and this means that we can represent the actual
points of the affine plane by pairs of nonhomogeneous coordinates Y = (Y1,Y2),
where

Y1 =
y1

y0
, Y2 =

y2

y0
. (7.17)

The allowable representations RA of the affine plane are those representations R

of Ŝ2 in which the line i has the equation y0 = 0; and this leads at once to the
following theorem.

Theorem 7.4. If RA is any allowable representation of the affine plane, then the
whole class (RA) of allowable representations consists of all those representations,
which can be derived from RA by applying a transformation of the form

Y ′1 = b11Y1 + b12Y2 + C1,

Y ′2 = b21Y1 + b22Y2 + C2,
(7.18)

where the coefficients are arbitrary real numbers subject to the condition |brs| �= 0.

Using Theorem 7.4, it is possible to transform the n variables of two solutions
into a new pair of solutions, according to the following transformation:

(
Y ′11

Y ′12
· · · Y ′1n

Y ′21
Y ′22

· · · Y ′2n

)
=

⎡⎢⎣b11 b12

b21 b22︸ ︷︷ ︸
crossover

C1

C2︸︷︷︸
mutation

⎤⎥⎦
n

⎛⎜⎝Y11 Y12 · · · Y1n

Y21 Y22 · · · Y2n

1 1 · · · 1

⎞⎟⎠ .
(7.19)

Equation (7.19) can be expanded to the whole population. The advantages of this
representation are as follows.

(1) Standardized treatment of all transformations.
(2) Complex transformations are composed from single transformations by

means of matrix multiplication.
(3) An n-dimensional point can be transformed by applying a set of n trans-

formations.
(4) Simple inversion of the transformation by matrix inversion.
(5) Extremely fast, hardware-supported matrix operations in high-power

graphic workstations.
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Figure 7.6. On the right structures (a), (b), and (c) of the test synthetic image with Gaussian noise
scaled by λ = 20, 40, 80.

7.5. Experimental results

In order to show the robustness of each algorithm and the stability of our L-corner
model, we applied Gaussian noise of zero mean and unit variance. This noise is
scaled by a constant λ in order to produce perturbations on the synthetic test im-
age. This noise is known as additive noise [7]. We decide to use a synthetic image
in order to know precisely the location of the corners. The signal-to-noise ratio
(SNR) is computed in decibels (dB). Figure 7.6 shows the structures (a), (b) and
(c) with the Gaussian noise scaled by the factors λ = 20, 40, 80. Table 7.1 presents
final results of corners (a)→(f) of Figure 7.6, using three optimization strategies
without noise. It is important to remember that for SNR → 1, the error on the
noisy image is approximately equal to the amount of signal of the synthetic image.
If SNR ≤ 1, the noise is bigger than the original signal, and if SNR � 1, the orig-
inal synthetic image and the synthetic image with noise are equivalents and the
error tends to zero. The test of our L-corner detector considering three optimiza-
tion algorithms was organized as follows.

(1) The downhill simplex, simulated annealing, and evolutionary algorithm
were applied to the structures (a), (b), and (c) of Figure 7.6. Those struc-
tures show three different corners: straight-angle corner, acute-angle
corner, and obtuse-angle corner, respectively.

(2) The size of the window is 13× 13 pixels, centered around the pixel:
(a) (u0, v0) = (87, 87);
(b) (u0, v0) = (707, 353);
(c) (u0, v0) = (396, 397).
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Table 7.1. Exact corner location (ue , ve) and parameter values �P using the downhill simplex, simulated
annealing, and evolutionary algorithm considering structures (a)→(f) of Figure 7.6.

downhill simplex

Corner
Initial pixel Corner point

Aperture αo sU1 sU2 χ2
u0 v0 ue ve

(a) 89 89 87.404142 87.709506 89.76333 +1 −1 1.13215e− 15
(b) 706 353 707.028574 353.831573 35.7994 −1 +1 5.44007e− 16
(c) 398 397 396.825889 397.466375 149.9239 −1 −1 1.31891e− 09
(d) 44 484 40.985292 484.451324 19.1055 +1 +1 4.22482e + 04
(e) 570 795 570.573303 792.934090 97.4398 +1 +1 1.22339e− 11
(f) 482 795 483.081960 792.272648 37.2723 −1 −1 6.41950e− 23

σ1 σ2 μ1 μ2 ϑo1 ϑo2 A B

(a) 6.04e− 02 5.20e− 02 −1.60e + 00 1.33e + 00 −8.74e− 01 6.37e− 01 103.00 76.00
(b) 2.34e− 02 9.25e− 03 4.76e− 01 −4.44e− 01 −3.35e + 01 −2.06e + 01 103.00 76.00
(c) 2.34e− 03 1.72e + 02 −2.75e + 00 −1.82e− 01 −7.35e + 01 1.36e + 01 103.00 76.00
(d) 6.29e− 02 8.53e− 03 −1.25e + 00 −7.01e− 01 7.56e + 01 −4.74e + 00 102.54 76.46
(e) 1.15e− 02 8.79e− 04 −6.67e− 01 2.51e + 00 3.09e + 01 −3.84e + 01 103.00 76.00
(f) 1.33e− 02 4.80e− 03 3.97e− 01 1.86e + 00 1.41e + 01 3.86e + 01 103.00 76.00

Simulated annealing

Corner
Initial pixel Corner point

Aperture αo sU1 sU2 χ2
u0 v0 ue ve

(a) 89 89 87.526970 87.437709 90.01414 +1 −1 1.94364e− 10
(b) 706 353 707.017039 353.829675 35.7614 −1 +1 3.56136e− 13
(c) 398 397 396.797404 397.427744 149.4558 −1 −1 9.75333e− 13
(d) 44 484 40.077467 484.514532 16.977 +1 +1 4.22483e + 04
(e) 570 795 570.647257 793.111032 97.7988 +1 +1 6.15267e− 01
(f) 482 795 483.046760 792.255049 37.3776 −1 −1 1.54081e− 13

σ1 σ2 μ1 μ2 ϑo1 ϑo2 A B

(a) 8.69e− 02 7.67e− 02 −1.47e + 00 1.56e + 00 −1.88e− 02 3.30e− 02 103.00 76.00
(b) 5.01e− 03 7.87e− 03 4.71e− 01 −4.47e− 01 −3.35e + 01 −2.07e + 01 103.00 76.00
(c) 2.11e− 02 2.12e− 02 −2.62e + 00 −1.21e− 01 −7.34e + 01 1.40e + 01 103.00 76.00
(d) 3.16e− 07 3.69e− 04 −1.76e + 00 −7.58e− 01 7.65e + 01 −3.55e + 00 102.56 76.46
(e) 9.50e− 10 7.77e− 10 −4.33e− 01 2.38e + 00 2.97e + 01 −3.75e + 01 102.98 76.03
(f) 1.37e− 02 3.61e− 03 3.66e− 01 1.91e + 00 1.39e + 01 3.86e + 01 103.00 76.00

Evolutionary algorithm

Corner
Initial pixel Corner point

Aperture αo sU1 sU2 χ2
u0 v0 ue ve

(a) 89 89 87.895717 87.644934 89.3094 +1 −1 9.40007e− 06
(b) 706 353 706.807636 353.755519 36.2416 −1 +1 1.24802e− 06
(c) 398 397 396.943119 397.390921 148.7181 −1 −1 5.69696e− 05
(d) 44 484 41.009408 484.473710 18.53073 +1 +1 4.22483e + 04
(e) 570 795 570.411461 792.991919 95.7904 +1 +1 4.53057e− 04
(f) 482 795 483.170778 792.099214 37.0405 −1 −1 1.17246e− 06

σ1 σ2 μ1 μ2 ϑo1 ϑo2 A B

(a) 1.24e− 02 1.41e− 02 −1.11e + 00 1.34e + 00 6.73e− 02 −7.57e− 01 103.00 76.00
(b) 4.32e− 03 9.65e− 03 3.20e− 01 −4.52e− 01 −3.30e + 01 −2.07e + 01 103.00 76.00
(c) 9.80e− 03 8.63e− 03 −2.33e + 00 −1.17e− 01 −7.30e + 01 1.43e + 01 103.00 76.00
(d) 3.31e− 02 2.23e− 03 −1.10e + 00 −7.08e− 01 7.58e + 01 −4.43e + 00 102.59 76.45
(e) 1.22e− 03 1.74e− 03 −8.23e− 01 2.32e + 00 3.15e + 01 −3.73e + 01 103.00 76.00
(f) 1.13e− 02 5.92e− 03 4.34e− 01 1.97e + 00 1.43e + 01 3.86e + 01 103.00 76.00
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(3) The control parameters of each algorithm are
(a) downhill simplex: maximal number of movements of the simplex

N = 4500;
(b) simulated annealing: initial temperature T = 1, size of the equilib-

rium state I = 20, maximal number of iterations N = 4500;
(c) evolutionary algorithm: crossover percentage pc = 0.80, mutation

percentage pm = 0.05, convergence percentage p f = 0.75, off-
spring number in the population P = 22, maximum number of
generations N = 2000 approximately equivalent to 4500 move-
ments.

(4) 30 samples for each test were performed.
(5) Each noisy window Ir(i, j) was normalized to the intensity values [0,

255] considering real numbers through the following function:

In( j, i) = 255
max

(
Ir( j, i)

)−min
(
Ir( j, i)

) Ir( j, i), (7.20)

where In( j, i) | i, j = 1, . . . , 2w + 1 is the normalized studied window
including Gaussian noise.

(6) Threshold is used as stop criterium ftol = 1× 10−09.
As a result of the test, Figures 7.7, 7.8, 7.9 were built. These figures show the

displacement of the corner position (ue, ve) of the structures (a), (b), and (c) re-
spectively, considering that a random Gaussian noise was applied over the test
image. Each figure shows the average corner point (ue, ve) and its final standard
deviation considering 30 samples for each optimization strategy. The charts on
the left of each figure represent the u coordinate and those on the right represent
the v coordinate of the image coordinate system (u, v). The horizontal straight line
denotes the corner position (ue, ve) of the synthetic image with free-noise λ = 0.
After a careful analysis of these figures, we conclude the following.

(1) Beyond λ = 80(SNR ≈ 3.5), see Figure 7.7, the contours of the structures
(a), (b), and (c) are difficult to be distinguished. However, the random Gaussian
noise does not blur the borders. Hence, the structure is more or less preserved
in shape. Then, it is possible to study the ability that each optimization strategy
offers, in order to integrate and reconstruct each structure.

(2) In the case of structure (a), the evolutionary algorithm presents the best
curve of behavior in presence of noise. Moreover, the maximum standard devia-
tion is obtained for λ = 20. This value is approximately 0.14 pixels.

(3) In the case of structure (b), the downhill simplex presents the best curve of
behavior in presence of noise. The maximum standard deviation occurs in λ = 60
over the u axis. This value is about 0.37 pixels compared to 0.47 pixels obtained by
the evolutionary algorithm also in λ = 60. The curve of the evolutionary algorithm
remains constant around the average value (xe, ye) in all cases.

(4) In the case of structure (c), the evolutionary algorithm presents the best
curve in presence of noise over the u axis. While the downhill simplex presents the
best curve around the v axis.
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Figure 7.7. Behavior of the downhill simplex (D), simulated annealing (R), and evolutionary algorithm
(E) considering a Gaussian noise scaled by a factor λ over the structure (a) of the synthetic image.

(5) The following conclusion rises after observing the standard deviation of
the algorithms. The evolutionary algorithm presents the best average for each ex-
periment as follows: (1) the average standard deviation of the evolutionary algo-
rithm is 0.19; (2) the average standard deviation of the downhill simplex is 0.25; (3)
the average standard deviation of the simulated annealing is 0.76 pixels.

As a result, the evolutionary algorithm is less sensitive to noise. Hence, it can
be considered more robust. However, the downhill simplex offers similar results
for the L-corner studied here. Finally, the simulated annealing shows the worst
behavior in the presence of Gaussian noise.

7.6. Summary and conclusions

Accurate L-corner measurement was obtained with a parametric model M′
L(x, y,

�P) using a global optimization approach. The goal was to obtain the best set of pa-

rameters �P = (σ1,μ1, ϑ1, σ2,μ2, ϑ2,A,B) that fits a window of 2w−1×2w−1 pixels
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Figure 7.8. Behavior of the downhill simplex (D), simulated annealing (R), and evolutionary algorithm
(E) considering a Gaussian noise scaled by a factor λ over the structure (b) of the synthetic image.

centered around a pixel (u0, v0) within a digital image. The optimization criterion
used was the maximum likelihood estimator χ2 obtained through a multidimen-
sional least squares fitting of the data to the L-corner model. We use the Levenberg
Marquardt method, which is a standard technique in computer vision. The Leven-
berg Marquardt method is considered as a local method. We propose an evolution-
ary algorithm using a novel representation that integrates the two main operators
into a single affine transformation. As a result, we obtain a local criterium embed-
ded into a global method. Hence, our algorithms are accelerated by the Levenberg
Marquardt Method. Concluding, the evolutionary algorithm presents the best be-
havior against noise. The downhill simplex is the simplest strategy to operate be-
cause it does not require any control parameter. On the other side, the evolutionary
algorithm has the ability to increase the population size, which increases the prob-
ability to find a better result in a smaller number of generations. The other two
strategies do not have this ability. Finally, the evolutionary algorithm can be easily
parallelized.
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Figure 7.9. Behavior of the downHill simplex (D), simulated annealing (R), and evolutionary algorithm
(E) considering a Gaussian noise scaled by a factor λ over the structure (c) of the synthetic image.
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8
Evolution of an abstract image
representation by a population of
feature detectors

Leonardo Bocchi

8.1. Introduction

Image segmentation is an essential step toward image understanding because it
allows to decompose the image into a set of units (or regions) representing the
actual objects which can be observed in it. In computer vision, segmentation is the
step of the elaboration chain where we start to analyze the logical and structural
relations between the entities, or the features, which are present in the image and
that have been emphasized during the low-level processing steps.

In the simplest case, to segment a (static and nontextured) image means to
identify regions composed of pixel having similar grey levels, and, therefore, the
boundaries between those regions. In the general case, we are interested in the
detection of regions composed of pixels having an homogeneous value of some
property, which can be related to texture, color, motion, or whatever else, depend-
ing on the actual application.

Region detection can be achieved using different approaches. For instance,
one may start the process by identifying the edges between objects and grouping
them to form boundaries between regions. In this case, we obtain a boundary-
based segmentation. In an opposite way, a region-based segmentation may be
achieved by grouping together pixels having similar properties. Both methods may
be described using a graph representation, where a set of nodes, associated with the
regions detected in the image, are connected by arcs describing the adjacency rela-
tionships between regions. In a similar way, the same graph may be realized using
a set of arcs, representing boundaries between regions. The arcs connect nodes,
which represent the points where more than two regions meet.

In both cases, the method is completely data-driven: the outcome of the seg-
mentation process is determined only by the features (edges or gray levels) present
in the image, and the method does not make use of any prior knowledge about the
type of objects that are present in the image.

A feasible alternative, which allows to introduce stricter constraints on the
kind of regions, or objects, which are identified by the segmentation process, is
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represented by deformable models. The expected shape of the object to be local-
ized is embedded into a set of primitives describing the model. The segmentation
is carried out by an optimization process, which involves minimization of an ob-
jective function depending both on the matching between the deformed model
and the observed image and on the degree of the deformation itself.

Several deformable models have been proposed in the literature, starting from
snakes [15]. A snake, or active contour, represents the boundary of an object,
which is modeled as an elastic band. The band, according to the elastic model,
has an internal energy given by bending and stretching. Therefore, we can embed
knowledge of the desired shape in the elastic parameters which describe the rigid-
ity of the band. While the original snake algorithm involved variational calculus, a
large number of minimization techniques have been proposed. Those include, for
instance, simulated annealing [13, 22], dynamic programming [1, 10] and greedy
algorithms [14, 25].

Evolutionary and genetic methods have been extensively proposed in this field,
both to identify the optimal edge detector and elastic model parameters [5] and to
carry out the minimization process [3].

Snakes are an example of the so-called free-form elastic models, which do not
impose a strong constraint on the shapes of the object. When some prior knowl-
edge of the geometrical shape is available, it is possible to incorporate this knowl-
edge in the elastic model. In this way, it is possible to constrain the shape of the
stretched model to be compatible with the object to be detected. At the same time,
the introduction of constraints on the model shape reduces the number of free pa-
rameters which are needed to describe the model, increasing the efficiency of the
method. In the approach known as parametric approach, the elastic model is com-
posed of a prototype template and of a parametric mapping. The template may be
represented as a mean shape of the expected object, computed from a learning set.
The parametric mapping usually describes the most natural deformations of the
shape. Several authors proposed methods to extract informations about the de-
formations from a training set. For instance, Grenander and Miller [11] described
a systematic framework to deal with shape deformations, while Cootes et al. [6]
associate the deformation patterns to the eigenvectors of the covariance matrix of
deviations from the mean shape.

The drawback of the parametric approach is the complexity of the proce-
dure which is necessary to model the shape of the object and its deformation
patterns. Moreover, most of the proposed methods require an accurate manual
segmentation of a large image dataset in order to extract the necessary informa-
tion.

A possible alternative approach, to avoid the overhead of a training phase re-
quiring manual intervention, is to use a self-organizing system, as the one which
can be achieved through neural networks [17]. Indeed, neural architectures have
been extensively proposed to identify correspondences between similar images
which have the same overall structure, but exhibit small differences which cannot
be represented by linear geometric deformations. Matching corresponding points
of different images is a problem which arises in several fields of the computer vision
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theory. For instance, this problem arises when we try to reconstruct 3D informa-
tion from stereo images: the key point is the identification of matching pairs of
points in two projections of the object [2]. Other common examples are object
recognition [4] or tracking.

An interesting neural architecture which has been proposed in order to per-
form a matching between images is the dynamic link architecture (DLA) [18, 24,
26]. DLA is a neural architecture able to associate each image with a graph. Image
recognition is based on the best match between one of the stored graphs and the
unknown image.

Each image is represented using a set of Gabor jets and the matching pro-
cess is done by minimizing a cost function which takes into account both graph
distorsion and similarity between sets of Gabor features. The input image is then
associated to the image corresponding to the best matching graph.

A possible extension is to build an architecture, somehow similar to DLA, but
with the added feature of being able to create its own knowledge representation
in an unsupervised way. This architecture will, therefore, build an abstract rep-
resentation of the image domain, which includes several representations of the
same class of objects. In order to achieve this result, the system needs to reveal the
common features which appear in all, or in most, input images. It also needs a
method to identify and extract the spatial relationships between the detected fea-
tures.

An architecture which is able to extract knowledge from a set of unlabeled
examples is the self-organizing map [17], which has several points of contact with
the DLA. The SOM, however, is designed to classify patterns which are indepen-
dent from each other. In the image segmentation task, patterns (corresponding to
local features of the image) have a set of spatial relationships coupling neighbor-
ing patterns. Actually, a large part of the information about image content is not
embedded in the pattern itself but in the relationships between patterns, that is,
the histogram does not describe the image because it takes only into account the
pattern (in this case, the gray level) and does not involve the relationships among
patterns (the spatial distribution of gray levels).

In order to capture the relevant part of the information, it is necessary to
change the concept of “organizing” in the SOM definition. The meaning of the
word “organization” in the SOM relates to similarity between patterns: similar pat-
terns are mapped onto neighboring units. In order to capture the spatial organiza-
tion, it is necessary to map patterns, which are spatially related, into neighboring
units.

A possible way to obtain this behavior is to transform neural units, which
are statically linked to a lattice, into active particles, each of which is adapted to a
particular feature of the image, which can move on the image plane.

When a new image is presented to the system, each particle begins to “chase”
local features of the image, trying to reach points where features appear. In order
to maintain spatial relationships between particles, an attraction among neigh-
boring particles has been introduced. Due to the introduction of this force, when
compared to a standard particle swarm optimization (PSO) [8, 16], the particles
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Figure 8.1. System architecture.

are constrained by the attraction forces to move in a much more coordinated way,
acting more like a platoon of soldiers than like a swarm of independent particles.

The resulting architecture, called elastic neural matching (ENM), can be de-
scribed as lattice of active neural units which is stretched until each particle (rep-
resenting a local feature) localizes the matching feature in the sample image. The
stretching process builds a mapping from the abstract representation stored inside
the unit weights into the image plane.

The performances of the proposed ENM network have been evaluated on the
problem of automatic labeling of anatomical regions in a set of hand radiograms.

8.2. System architecture

The overall system architecture may be schematized as a feature extraction block
feeding a platoon of active neural particles, as shown in Figure 8.1. The feature
extraction block processes an input image and produces a vector of feature maps.
Each feature map represents the spatial distribution of some local feature of the
image, and associates to each pixel of the input sample a feature vector describing
the local properties of the image in that point. The image may be described as a
world where particles live. Each location, or pixel, of this world is associated with
a local environment which is represented by the feature vector calculated from the
local values of the feature maps.

The neural network is composed of a platoon of neural particles, which at
rest are arranged on a square lattice. Neighboring particles are attracted toward
one another by “friendship” which is modeled as an elastic force having an elastic
constant c. The particles are assumed to differentiate during system adaptation, so
each neural unit ui j is associated to a personal ecosystem, modeled as a vector of
weights wi j , which represents its ideal environment, or the environment which is
best suited for the particle.
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In order to analyze an image, the platoon is superimposed on the vector of
feature maps. In this way, each unit ui j is located in a position Pi j = (x, y) in the
image plane. The position Pi j is called match point. Each unit is an autonomous
entity, which is set free to move around and look for a good environment for living.
In this process, the particle acts as a specialized feature detector, which tries to
locate, in a neighborhood of the match point, the point in the image having a
feature vector matching, as close as possible, the personal ecosystem of the unit. In
other words, the particle looks for a position, in a local neighborhood, which has
a local environment as close as possible to the ideal environment for the particle.

The unit is therefore attracted toward this position and starts to move in this
direction, while elastic constraints expressed by the elastic forces constrain neigh-
boring units to move in a coordinated way.

Without neighborhood attraction, the behavior of particles is similar to the
behavior of a group of roaches dropped on the floor: each roach starts to run to-
ward the best place for hiding, according to its judgement (in the model terminol-
ogy, each roach looks for the place which best matches its ideal environment). The
attraction forces can be represented, in this example, as a set of springs connecting
together roaches and forcing them to move in a coordinated way.

It is possible to describe the attraction force and the elastic bindings in terms
of energy of the unit, while the movement is associated to a process of energy
minimization, which will be called relaxation.

When the process is completed, each unit is located on the point in the im-
age which best corresponds to the personal environment stored in the vector of
weights in the unit and which best fulfills the topological relationships between
neighboring units. When this phase is completed, each particle may adapt to its
location, increasing the correspondence between the local environment and its
ideal environment.

Iterating this process over different images, the relaxation step and the follow-
ing adaptation of the weight vector let the network units differentiate from one
another, and each of them adapts to live in an environment described by a certain
feature vector, which appears in the input images, also when such feature vector is
located in different positions in the input samples. A particle which is often located
in a certain environment (e.g., a vertical edge) gets used to living on vertical edges,
wherever they appear in the input. When an unknown image is presented to the
system, the particle tries to reach a position which reminds it of a vertical edge. At
the beginning of the relaxation process, the unit tends, therefore, to move toward
any edge having the same direction. In the same time, attraction forces which act
on the units keep them from moving freely on the image. This forces neighboring
units to adapt to identify feature vectors which occur in neighboring points in the
input images used during the training phase. In this way, we obtain a mapping
between feature vectors and weight vectors, having the property that feature vec-
tors which are spatially adjacent in the image (although having different values)
are mapped into units spatially adjacent in the network grid.

For instance, Figure 8.2 shows a column of units (a), adapted to live on a ver-
tical edge. A curved edge is then presented to this part of the network (b). The
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(a) (b) (c) (d)

Figure 8.2. Example of network relaxation. (a) Five units have adapted to identify a vertical edge. (b)
A curved edge is presented. (c) The best matching between units and image: all units are located on the
vertical part of edge. (d) Elastic constraints force units to space almost evenly.

optimal match between the units and the image occurs in the point of the edge
which has vertical direction, and all units are attracted to reach that point (c). Us-
ing a different example, if different kinds of food are placed on a surface, a swarm
of units without constraints group together in the position where the most attrac-
tive spot of food is located. The elastic constraints, however, prevent an excessive
crowding of units by maintaining their relative distances. The balance between the
two forces distributes the units as in (d), where the elastic force due to stretching
balances the attraction toward the point where the edge has a vertical direction.

8.3. Feature maps

A proper selection of the set of feature maps is of primary importance to obtain
good performances of the system. As the matching between units and points of
the image is done by comparing the unit weights with the vector of features in
that point, it is mandatory that the features represent the local properties of the
image (presence and directions of edges, corners, and similar characteristics of the
image). Moreover, a set of optimal features needs to provide a compact description
of these local properties of the image, to have a feature vector of reasonable size.
This suggests that a feature set be selected having both a limited spatial support,
in order to capture local information, and a limited frequency response allowing
to reduce noise. These properties, as shown by several researchers [7, 19], are best
exploited by Gabor functions:

γk = αk,σ exp
(
− x2

2σ2

)
exp(ikx), (8.1)

where the constant αk,σ is a normalization constant to ensure that ‖γk‖ = 1. By
varying the parameters describing this basic function, it is possible to obtain sev-
eral families of curves, commonly called wavelets.
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We used a family of functions, called Morlet wavelets, strictly related with
(8.1), but with the additional properties of being self-similar at different scales.
Morlet wavelets, in the monodimensional space, can be expressed as

ψk = βk,σ exp
(
− k2x2

2σ2

)
exp(ikx). (8.2)

The extension of (8.2) to bidimensional images is achieved by replacing k and x
with vectors, and interpreting the products as scalar products:

ψk,θ = βk,σ exp
(
− v2

kx2

2σ2

)
exp

(
ivkx

)
, (8.3)

where βk,σ is a normalization constant. The parameter vk identifies the single Mor-
let function, determining its scale and orientation: the scale k of the wavelet, ex-
pressed in half octaves, is related to vk by the relation |vk| = 2k/2 and the direction
θ of vk gives the orientation of the function.

Morlet wavelets can be used to define the (discrete) Morlet transform. Starting
from (8.3), the (discrete) Morlet transform is defined as

Mk,x0 =
∑

x
ψk,θ

(
x − x0

) · I(x). (8.4)

For each value of k and θ, (8.4) can be interpreted as a map of features, having
a given scale and orientation, which are present in the original image.

8.4. Relaxation

When an image (and its associated feature maps) needs to be presented to the
network inputs, the position of each unit is reset to a start value P0. These points
are arranged on an equally spaced square grid over the input image. When the
units are superimposed to the image, one can expect that the input weights of
each unit do not match the features in P0. In other words, each unit will match
a point in the image which is located at a certain distance from the start point.
Therefore, it is necessary to introduce a relaxation phase, which consists of a series
of operations which will allow each particle to move toward the point in the image
which best suits its ideal environment.

8.4.1. Network energy

The dynamic behavior of the swarm of particles may be simulated either using
differential equations, or through an energy minimization problem. The energy
minimization problem has been preferred due to the great compactness of the
equation set, and the greater rejection of local noise.

It is possible to introduce a system energy as the sum of an internal energy
Ei, corresponding to the elastic energy of the attraction forces, and an external
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energy Ee which describes the match between each unit and the environment in
the same position of the image. Assuming that each unit is connected to the units
of a 4-connected neighborhood by elastic springs having an elastic constant c, the
corresponding elastic energy is expressed as

Ei =
∑
(i, j)

∑
(m,n)∈Si j

c
∣∣Pi j − Pmn∣∣2

, (8.5)

where Si j is the 4-connected neighborhood of the unit ui j and (i, j) are varied over
the whole network grid. As for the external energy, it is possible to introduce sev-
eral expressions to describe the similarity between the two vectors. Among those,
the most straightforward selection is obtained using the scalar product

Ee = −
∑
(i, j)

wi j × I
(
Pi j
)
, (8.6)

where I(Pi j) is the feature vector in the point Pi j of the image plane. The total
energy of the mesh is expressed as

Et = Ei + Ee, (8.7)

where the relative importance of the two components Ei and Ee can be balanced
by varying the elastic constant c. Lower values of c allow for a larger deformation
of the mesh, while higher values of c prevent the mesh from stretching.

The total value of the energy Et represents a sort of fitness of the entire pop-
ulation of units. The population has two ways to improve fitness: a short-term
relocation and a long-term adaptation. The short-term relocation, associated to
the energy minimization during the relaxation phase, from an evolutionary point
of view corresponds to finding the best distribution, over the available space, of
the individuals belonging to the population, without any evolution of the individ-
uals. During the long-term adaptation, each individual evolves trying to increase
its fitness, measured as the correspondence between its personal ecosystem and the
local environment.

8.4.2. Attention focus

The relaxation process is performed iteratively. In each step, we randomly select an
attention focus, corresponding to an image point Ps. The attention focus is shown
as a white circle in Figure 8.3(a). Because different points on the image provide
different amounts of information about the image structure, we assume that a
uniform probability is not the best distribution to use. Therefore, we developed
a spinning wheel method which increases the selection probability of significant
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(a) (b) (c)

Figure 8.3. Relaxation process: (a) selection of the attention focus, (b) detection of the best-matching
unit, (c) stretching of the network lattice.

points (e.g., edge points) with respect to points contained within regions having a
constant grey level. The resulting point selection scheme has performances similar
to the human vision system, where the fixation points of the gaze accumulate on
edges of the observed scene, disregarding zone with uniform color, as they have
usually a low information content.

The proposed spinning wheel procedure starts by assigning to each point in
the image a segment of the wheel proportional to its significance, which is ob-
tained as the sum of squares of the corresponding pixel in the feature maps. The
definition of the feature maps we used gives edge points a higher probability of be-
ing selected for evaluation. Afterwards, a random selection of a point of the wheel,
with uniform probability, allows to select points of the image based on the desired
probability distribution.

After the selection step is completed, the selected point, called Ps, acts as an
attention focus, which stimulates the particles which are located in a local neigh-
borhood and causing the activation of one of them. In order to get attracted by the
attention focus, and therefore to get activated, a particle needs to detect that the
attention focus presents a local environment which is better suited to it than the
local environment of the point where it is located (decrease of external energy),
but taking into account the attraction which ties the particle to its neighbors, pre-
venting it from getting attracted by locations which are too far from its current
position (internal energy).

In order to determine which unit gets activated, each unit in a suitable neigh-
borhood is tested by moving its match point from its current position Pi j to Ps,
and evaluating the decrease of the mesh energy before and after the unit is moved.
The active unit, shown in Figure 8.3(b) as a gray-filled circle, corresponds to the
unit which produces the maximum decrease of the energy.

8.4.3. Lattice deformation

Once the activation process is completed, the activated unit (i, j) moves toward the
sample point Ps of a distance λ(Ps−Pi j) (Figure 8.3(c)). The parameter λ, with 0 <
λ < 1, represents a speed factor for the units. With λ = 0, units cannot move, while
λ = 1 allows the winning unit to move from Pi j to Ps in one step. Together with
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the winning unit, to maintain the spatial organization of the particles, neighboring
units Pmn, included in a circular domain S, are also moved in the same direction,
according to the law

ΔPmn = λ
(
Ps − Pmn

)(
1−

∣∣(i, j)− (m,n)
∣∣2

r2
max

)
, (8.8)

where rmax is the radius of the domain S.

After the winning unit has moved, the process continues iteratively by select-
ing a new attention focus. The process is stopped either when a prefixed number
of iterations has been performed, or when the units reach a stable configuration,
and differences Ps − Pi j are small enough.

8.4.4. Parameter selection

The number of iterations which are required to reach an equilibrium point de-
pends greatly on the parameters used in the training process: the elastic constant
c, the relaxation speed λ, and the radius rmax of the domain S. A high value of
c, increasing the stiffness of the lattice, prevents units from being activated when
the attention focus is too far from the current position of the unit, slowing down
the deformation process. On the other end, a low value of c may reduce the sta-
bilizing effect of the grid, allowing the network to lose the spatial relationships
between neighboring units. The selection of a proper value of λ, too, greatly in-
fluences the convergence speed of the network, as a high value of λ dramatically
improves the speed, but increases the chances of instability of the final configura-
tion, where units may “bounce” between two attraction points. The stability of the
process, however, may be increased using a high value of rmax. Indeed, this param-
eter, forcing neighboring units to move in a coordinated manner, helps both to
preserve spatial relationships and to avoid the temporal instability. On the other
hand, as units are not allowed to move independently from one another, it de-
creases the precision of the network: the distance between the final position of
the unit and the point which best matches its feature vector tends, on average, to
increase.

A commonly used solution (which was introduced in the Kohonen map)
adopts a set of parameters which are slowly varied during the iterative process.
Indeed, in the first iterations, a large value of λ and a small value of c produce
a fast deformation of the network where the units move close to points which
match their features well, while a large value of rmax prevents a loss of organi-
zation in the network. Later, when the network is already partially deformed, a
reduction of λ and rmax helps the units to properly position themselves in the best-
matching point, while the increase of c prevents further deformations of the lat-
tice. Therefore, it has been assumed that a set of linear expressions can be used to
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describe the variation of the relaxation parameters:

λ =
(

1− i

imax

)
λ0,

rmax =
(

1− i

imax

)
r0,

c =
(

1− i

imax

)
c0 +

i

imax
c f ,

(8.9)

where i is the iteration number, imax is the maximum number of iterations, λ0, r0,
and c0 are the initial values of λ, rmax, and c, while c f is the final value of c.

8.5. Adaptation

The network, in order to build a knowledge about the imaged objects, needs to be
trained with a set of images which represent the same class of objects. During the
training process, each particle differentiates from the others, progressively adapt-
ing to live in a particular environment. The training procedure is similar, apart
from the relaxation step, to the training of an unsupervised neural network, which
can be described as follows. After a suitable initialization of the weights, the pat-
terns, or images, in the training set are presented to the network inputs, usually in
a random order. For each input pattern, the output of the network is evaluated,
and some, or all, of the weights of the network are adapted. The process is then
iteratevely repeated until convergence.

Once the training process has been completed, the weight of the units em-
bed an abstract representation of the imaged objects. Indeed, each unit represents
a feature which is present in the images, while topological relations between fea-
tures in the image are translated into the topological relation between the units
representing them. A simple example of the obtained representation is described
in Figure 8.4. The figure represents a small ENM network trained with a set of
digitized hand-drawn capital H (top row). In this case, the selected feature maps
include the gray level of the image, and a lowpass filtered version of the same im-
age. After the training, the first component (which corresponds to the gray-level
feature map) of the unit weights contains a “mean” shape of the letters used dur-
ing the training (bottom row). The network has stored in its weights an abstract
representation of the image set, by discovering that all the input images contain
the same basic shape, although stretched and deformed.

The adaptation process is performed iteratively. After an initialization phase,
an image from the data set is presented to the system, which relaxes, allowing units
to find a suitable position in the image. Then, each unit adapts to live in that po-
sition, by increasing the match between its personal ecosystem and the local envi-
ronment present in that point. At this point, it is possible to present a new image
and repeat the process until the system reaches the desired adaptation level.
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Image 1 Image 2 Image 3 Image 4 Image 5

Figure 8.4. Abstract representation extracted by a network trained with five images of a capital H (top
row). The network weights (bottom row) shown that the network has detected that a single shape is
present in all the images.

8.5.1. Initialization

The initialization of the network weights can be done either by a random selection
of the weights in a suitable range of values, or by direct assignment to some known
value. To enhance stability and convergence speed, it is usually advisable to assign
some “reasonable” value to the weights of the units. In this case, a good initializa-
tion value can be obtained by sampling the images in the training set. The network
grid may be used to assign to each unit a weight vector equal to the feature vector
evaluated in the match point before relaxation.

8.5.2. Presentation of input patterns

The main loop of the training phase starts by presenting the input patterns, one
at a time, to the network. In order to improve the learning and the generaliza-
tion properties of the network, the order of presentation of the input patterns is
randomized before each iteration. When each pattern has been presented to the
network, the relaxation process starts as described above. After the relaxation pro-
cess has completed, it is possible to let the units adapt to the new environment by
changing the associated weight vector. It is worth noting that in this kind of ar-
chitecture, the activation of the units does not relate to the output of the network.
The output, indeed, is described by the final position of each unit in the image
plane. For instance, Figure 8.5 reports the deformation patterns of the network
grid caused by the inputs reported in Figure 8.4 to the trained network.

8.5.3. Learning rule

The training phase, after the relaxation process has completed, has been designed
to increase the fitness of the unit to the environment, by increasing the match



Leonardo Bocchi 169

0 20 40 60
0
10
20
30
40
50
60

(a)

0 20 40 60
0
10
20
30
40
50
60

(b)

0 20 40 60
0
10
20
30
40
50
60

(c)

0 20 40 60
0
10
20
30
40
50
60

(d)

0 20 40 60
0
10
20
30
40
50
60

(e)

Figure 8.5. Deformation of the network grid representing the mapping between input images and
network units for the data reported in Figure 8.4.

between the weights of each unit and the image features. This has been done by
modifying the weights of the unit according to the following rule:

Δwi j = ε
(

I
(

Pi j
)−wi j

)
, (8.10)

where ε is the learning ratio, bounded between 0 and 1, and Pi j is the position of
the unit at the end of the relaxation process.

The proposed learning rule, similar to the one introduced by Kohonen [17],
improves the fitness of the unit by increasing the correspondence between each
unit and the image features. In the following relaxation steps, the unit will be,
therefore, attracted toward a point with the same feature vector. In this way, the
unit learns to act as a feature detector specialized to identify points having a feature
vector similar to I(Pi j).

8.5.4. Iteration

The process described above for a single image needs to be repeated for all the
images in the training set, which are presented to the network in a random order.
The entire sequence is then repeated iteratively, for a fixed number of iterations.
As happens for the parameters which drive the relaxation process, the best results
can be obtained by using a linearly decreasing learning rate.

8.6. Medical application

The system has been evaluated on a set of hand radiograms, in order to identify
each bone on the radiogram. Once the bones have been detected, they can be clas-
sified in order to obtain an assessment of the maturation level of the skeleton and
of the bone age.

8.6.1. Bone age assessment

The assessment of skeletal age maturity is a commonly used procedure in pediatric
radiology. A discrepancy between bone maturity and biological age indicates the
presence of some abnormality in skeletal growth. The assessment is commonly
performed using a radiogram of the left hand, due to the relatively small patient
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exposure to radiation and the simplicity of the test. Moreover, the hand presents
a large number of ossification centers which can be used to obtain an accurate
estimation of the degree of maturity.

Several methods have been proposed to allow the medical expert to obtain a
quantitative estimation of the skeletal age. Among them, the most commonly used
procedure is the Greulich and Pyle atlas matching method [12]. This procedure is
based on an overall matching between the observed radiogram and a set of refer-
ence images grouped in an atlas. The assessment consists of identifying the image
in the atlas which most resembles the examined radiogram.

The selection of the correct image is very difficult in cases where the radio-
gram presents a growth abnormality which affects the various bones in the hand
with a different degree of severity. In this situation, the outcome of the test depends
on the relative importance given to different bones by the observer.

The major drawback of the atlas matching method is the high degree of intra-
and interobserver variability due to the subjective comparison of the images. A
method which reduces the variability of the estimate is the Tanner and Whitehouse
method (TW2) [23].

The TW2 method uses a detailed analysis of twenty bones in the hand, which
are depicted in Figure 8.6. Each complex in the set is assigned to one of nine matu-
ration classes, labeled from A (no calcified bone is present) to I (maturation com-
pleted). This method produces a description of each bone in terms of scores. The
sum of all scores assesses the bone age. This method has a higher repeatability, but
the required execution time and its complexity prevent its rate of application from
exceeding 20% [21].

8.6.2. Material and methods

A successful application of the TW2 method requires a precise localization of the
bone complexes which have to be analyzed. Localization and labeling of the bones
is still the most challenging step toward the complete automation of the process.

Several factors concur to make identification a complex task. First of all, bones
vary greatly during the growth process. In early stages, some bones are either ab-
sent or very small, and consequently they produce well-separated shapes on the
image. During growth, carpal bones tend to enter in contact and overlap with one
another (cf. Figure 8.6 with the sample image in Figure 8.7, where the bones in
the carpal region are overlapping). In contrast, epiphyseal and metaphyseal bones
start to join, until they form a single bone.

In the meantime, the overall size of the hand and its mean gray level vary
greatly. One more source of problems is given by the hand position in the image.
Even if great care is applied during the imaging process to correctly position the
hand in the radiographic machine, the angles between fingers have a high degree
of variability.

Many authors proposed different strategies to overcome this problem and to
identify the location of bones in the fingers. Niemeijer et al. [20] propose a method
to detect a single bone region. They use an active shape model to align the sample
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No. Bone No. Bone
1 Ulna 11 Distal I
2 Radius 12 Distal III
3 Metacarpal I 13 Distal V
4 Metacarpal III 14 Capitate
5 Metacarpal V 15 Hamate
6 Proximal I 16 Trapezium
7 Proximal III 17 Trapezoid
8 Proximal V 18 Scaphoid
9 Medial III 19 Lunate
10 Medial V 20 Triquetral

(b)

Figure 8.6. Bone complex used in TW2 method (1–13: epiphyseal bones, 14–20: carpal bones).

image with a template of the desired bone. A few others tried to localize carpal
bones. For instance, Fan et al. [9] adopt a two-stage edge detection method for the
detection of a set of reference points. Using the reference point information, they
can locate the carpal bones.

8.6.3. Network configuration

An elastic neural network has been tested on a set of radiographic images of the
left hand. The radiograms have been acquired using an optical scanner, with a
spatial resolution of 100 dpi and a pixel depth of 12 bits, which means the image
size is in the range from 500× 700 pixel to 800× 1000 pixel. The images have been
labeled by a radiologist which has identified the ossification centers to be used for
the application of the TW2 method. These points have been used as a reference to
evaluate the performance of the network. In other words, the identification done
by the expert radiologist has been assumed to be absolutely correct. The data set
has been used to form a training set, composed of 20 radiograms, and a test set,
also containing 20 images.
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(a) (b)

Figure 8.7. A sample image from the dataset (a) and one of its feature maps (b).

Given the average image size, it is possible to select the number of units which
belong to the neural network, by defining the average distance between two neigh-
boring units. In this case, this distance has been assumed to be around 10 pixel,
and therefore the number of units on each side of the grid is about 60, which has
been rounded down to 50.

The selection of the desired feature maps has been done using the same heuris-
tic approach. When a small scale is selected, the feature maps contain a lot of
fine-detail features which can hide the overall structure of the image, while the
selection of a scale which is too large may smooth out important properties of the
image. According to this principles, in this application example we selected a set of
feature maps having the same value of |k| = 9 and four different orientations, cor-
responding to angles θ = 0, π/4, π/2, and 3π/4. This selection gives a single-scale
representation of the image.

The selection of a scale k = 9 allows to smooth out part of the fine structure of
the bone. Lower values of k allow for the presence of high-frequency details which
could prevent the network from identifying the global minimum of the energy,
corresponding to the correct deformation of the network, by trapping units on
local minima. On the other side, higher values of k will decrease the accuracy of
the matching performed by the network. Figure 8.7 shows a sample image from
the data set and one of the corresponding feature maps.

8.6.4. Network training

The network has been trained using 100 iterations over the data set. During each
iteration, all images have been presented to the network in a randomly selected
order.

Several combinations of network parameters have been tested in order to
compare the relative influence on the learning results. A good combination of pa-
rameters can be obtained by keeping reasonably low the relaxation speed (around
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0.2-0.3) and high the number of relaxation steps (around 106, which means that
each unit, on the average, gets activated a few hundred times). Moreover, relax-
ation speed has been reduced linearly during the process.

The results obtained during the training phase indicate that a larger size of the
neighborhood S increases the robustness of the network against local minima, and
helps the units to maintain their relative positions. At the same time, however, a
smaller neighborhood increases the accuracy of the final positioning of the units.
In the final configuration, we used a neighborhood size starting with a radius equal
to 8, which linearly decreases during the relaxation phase.

As concerns the learning ratio, it can be observed that it strongly affects net-
work convergence time. Best results are obtained when the learning ratio is de-
creased during the training process. It conforms to the results achieved in most
self-organizing architectures [27].

8.6.5. Evaluation of results

Once the training phase was completed, the results were evaluated by feeding the
network with a set of labeled images, where a set of tag points had been identified.
The procedure has been designed to transfer the labels from an image pixel to
network units, and to transfer them to a different image. It can be described as
follows (Figure 8.8). Each test image is applied to the network input, and the mesh
completes the relaxation process. At the end of the relaxation process, it is possible
to identify the unit whose match point is located closest to the label placed on the
image. That unit is assumed to represent the tag point in the first image. When a
new image is presented to the network and the relaxation process has completed,
the units is located in a new point. This point is assumed to represent the label in
the new image.

An evaluation of the performance of the network can be therefore achieved
by measuring the distance from the transferred label and the manually applied
label. A perfect matching between the images would produce a null relative dis-
placement, as the same unit should be located on the same marker in all images.
Experimental results indicate that the average absolute displacement between the
marks is about 1.5 units.

The average execution time required to complete the relaxation step is be-
tween 2 and 5 minutes, on a 1.6 GHz PC.

8.7. Conclusions

The proposed architecture is designed to learn the common image structure em-
bedded in a set of image representing the same class of objects. During the training
phase, the image structure is stored in the unit weights, which may be viewed as a
representation of the topological relationships between image features.

The results indicate that the proposed architecture can be effectively used to
recognize complex images, containing several structures, as a hand radiogram. It
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Figure 8.8. Results evaluation: a label marks a significant point of the image. At first (1) the match
point which is closer to the label is identified. This allows to mark (2) an unit in the grid. A second
image is presented to the network, and the unit identifies a new match point (3). The distance between
the match point and a label (4) placed on the new image gives an estimate of the results.

automatically identifies distinctive features, performing a matching between the
stored representation and the sample image.

However, the proposed architecture can still be enhanced in order to be
adapted to different applications. For instance, an interesting field is the design
of methods to optimize the elastic connections between units. A promising field
seems to be the introduction of a multiscale representation in the feature maps, in
order to improve the performances of the network.
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Genetic snakes: active contour models
by genetic algorithms

Lucia Ballerini

Genetic snakes are active contour models, also known as snakes, with an opti-
mization procedure based on genetic algorithms. Genetic snakes are proposed to
overcome some limits of the classical snakes, as initialization and existence of mul-
tiple minima, and successfully applied to segment different kinds of images. In this
chapter, we review and extend the formulation of genetic snakes. New energy func-
tionals are also described. Experimental results on synthetic images as well as on
various real images are conducted with encouraging results.

9.1. Introduction

The active contour models or snakes [22] are an effective method to detect object
boundaries in an image. The widely recognized power of deformable models is
that they can exploit constraints derived from the image data along with a priori
knowledge about the location, size, and shape of objects to segment. Originally
developed for application to problems in computer vision and computer graph-
ics, deformable models have been extensively applied in medical image analysis
in problems including segmentation, shape representation, matching, and motion
tracking, and have achieved considerable popularity.

However, the application of snakes to extract regions of interest suffers from
some limitations. In fact, a snake is an energy minimizing spline and the classical
model employs the variational calculus to iteratively minimize energy. There may
be a number of problems associated with this approach such as algorithm initial-
ization, existence of local minima, and selection of model parameters. Simulated
annealing [18, 33], dynamic programming [2, 16], and greedy algorithms [21, 38]
have been also proposed for minimization.

However, they are restricted both by the exhaustive searches for the admissible
solutions and complicated parameter control and by the accurate initialization
they require.

We propose the use of genetic algorithms (GAs) [17] to overcome some of the
limits of the snake model. GAs offer a global search procedure that has shown its
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robustness in many tasks. Their usefulness in pattern recognition and image pro-
cessing has been demonstrated [1, 6]. The idea here is to address the initialization
and the optimization of snake points through genetic minimization of the snake
energy.

The purpose of this work is to review and extend the genetic snakes and to
present additional energy functionals useful for specific applications. The organi-
zation of the chapter is as follows: in Section 9.2, we briefly review active contours,
the basic notions, their limitations, and some improvements proposed in litera-
ture; in Section 9.3, we describe the genetic snake model; in Section 9.4, we dis-
cuss the new energy functionals and we present experimental results on synthetic
images to test them. Several applications of genetic snakes to realistic problems are
reported in Section 9.5, where we also illustrate new external image functionals
specifically tailored for the applications under consideration.

9.2. Active contour models (snakes)

Due to the wide and successful application of deformable models, there exist sur-
vey papers focusing on different aspects of the model and its variants proposed in
the literature [10, 20, 25, 28, 39].

Snakes are planar deformable contours that are useful in several image analysis
tasks. They are often used to approximate location and shape of object boundaries
on the basis of the reasonable assumption that boundaries are piecewise continu-
ous or smooth.

Representing the position of a snake parametrically by v(s) = (x(s), y(s)) with
s ∈ [0, 1], its energy can be written as

Esnake =
∫ 1

0
Eint
[

v(s)
]
ds +

∫ 1

0
Eext
[

v(s)
]
ds, (9.1)

where Eint represents the internal energy of the snake due to bending and it is asso-
ciated with a priori constraints, Eext is an external potential energy which depends
on the image and accounts for a posteriori information. The final shape of the
contour corresponds to the minimum of this energy.

In the original technique of Kass et al. [22], the internal energy is defined as

Eint[v(s)] = 1
2

[
α(s)

∣∣∣∣∂v(s)
∂s

∣∣∣∣2

+ β(s)
∣∣∣∣∂2v(s)

∂s2

∣∣∣∣2
]
. (9.2)

This energy is composed of a first-order term controlled by α(s) and a second-
order term controlled by β(s). The two parameters α(s) and β(s) dictate the sim-
ulated physical characteristics of the contour: α(s) controls the tension of the con-
tour, while β(s) controls its rigidity.
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The external energy couples the snake to the image. It is defined as a scalar
potential function whose local minima coincide with intensity extrema, edges, and
other image features of interest. The external energy, which is commonly used to
attract the snake towards edges, is defined as

Eext
[

v(s)
] = −γ∣∣∇Gσ ∗ I(x, y)

∣∣2
, (9.3)

where Gσ ∗ I(x, y) denotes the image convolved by a Gaussian filter with a stan-
dard deviation σ ,∇ is the gradient operator, and γ a weight associated with image
energies.

The application of snakes and other similar deformable contour models to
segment structures is, however, not without limitations. For example, snakes were
designed as interactive models. In noninteractive applications, they must be ini-
tialized close to the structure of interest to guarantee good performance. The in-
ternal energy constraints of snakes can limit their geometric flexibility and prevent
a snake from representing long tube-like shapes or shapes with significant protru-
sions or bifurcations. Furthermore, the topology of the structure of interest must
be known in advance since classical deformable contour models are parametric
and are incapable of topological transformations without additional model ad-
justments. Due to its own internal energy, the snake tends to shrink in case of
lack of image forces, that is, constant image backgrounds or disconnected object
boundaries.

Various methods have been proposed to improve and further automate the
deformable contour segmentation process. A review of some of them can be found
in [3] and in the above-mentioned surveys.

Few authors, to the best of our knowledge, propose the application of GAs to
active contours. MacEachern and Manku [23] introduce the concept of active con-
tour state and encode the variants of the state in the chromosome of the genetic
algorithm. Tanatipanond and Covavisaruch [34] apply GAs to contour optimiza-
tion with a multiscale approach. The fitness function is trained from a previously
segmented contour, so that the system can learn the target’s preselected features.
Ooi and Liatsis [29] propose the use of coevolutionary genetic algorithms. They
decompose the contour into subcontours and optimize each subcontour by sep-
arate GAs working in parallel and cooperating. Mishra et al. [27] apply GAs in
contour extraction for noisy images. Echocardiographic images are preprocessed
in order to find a rough boundary, GAs are then used to optimize this contour
along radial search grid. However, in these approaches, the optimization is done
in the neighborhood of the snake control points.

In other existing GA-based active contours, the optimization is done indi-
rectly, that is, optimizing the parameters of the contour such as encoding the
polygon [35], point distribution models [13, 31, 37], Fourier descriptors [14, 36],
probability density functions [26] or edge detector, and elastic model parameters
[8].
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N x1 y1 · · · xN yNRepresentation:

N = no. of snake points
(xi, yi) = snake positions

Fitness: Esnake =
∫ 1
0 Eint[v(s)]ds +

∫ 1
0 Eext[v(s)]ds

(a)

Initialization:

y

r
R

x

Feature

Region of interest

(b)

Figure 9.1. Genetic snakes: basic elements.

9.3. Genetic snakes

In this section, we review the genetic snake model, that is, our model of active
contours, where the energy minimization procedure is based on GAs [4].

The basic elements of genetic snakes are solution representation, fitness defi-
nition, and initialization as illustrated in Figure 9.1. The parameters that undergo
genetic optimization are the positions of the snake in the image plane v(s) =
(x(s), y(s)). The coordinates x and y are encoded in the chromosomes using a
gray code. The total number of snake points is also encoded in the chromosomes
and optimized using the GA. The user defines their range. The fitness function,
that is to be minimized, is the total snake energy previously defined in (9.1), where
Eint and Eext are defined in (9.2) and (9.3).

The genetic optimization requires the definition of a region of interest given
by r and R (the minimum and the maximum magnitude allowed for each v(s)).
The initial population is randomly chosen in such a region, and each solution lies
in this region (r and R are user defined). This replaces the original initialization
with a region-based version, enabling a robust solution to be found by searching
the region for a global solution. Setting r = 0 and R = max the solution is searched
in the whole image, making initialization fully automatic.

The effect of the genetic operators on snake encoding is simple and intuitive
(see Figure 9.2). Mutation randomly moves one snake point (x, y) to another point
in the image plane. Crossover divides two parent snakes in two parts and recom-
bines them to create two children snakes.

The GA implementation adopted in this work is GAucsd-1.4 [32]. Tests have
shown that the model is not very sensitive to the control parameters of the GA. In
our applications, we use most of the default parameters proposed by the GAucsd
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Mutation

Before

After

Crossover

Figure 9.2. Genetic operators on snakes.

package, that is, gray code, fitness sigma scaling, two-point crossover, population
size, and maximum number of generations computed according the length of the
genome, roulette wheel selection. In case of use of different parameters, these are
reported along with the experiment description. The main reason of using gray
code is its simplicity. Further work using real encoding, which may provide a sub-
pixellic positioning of the snake, can be done.

The genetic search strategy optimizes the snake model also in case of constant
image background, where other optimization methods may fail, and overcomes
difficulties related to spurious edge-points that can drive the snake to local min-
ima. To reach an optimal minimum while avoiding local minima, alternative ap-
proaches suggest that the whole set of admissible curves be considered and the best
one be chosen. Other methods are for local optimization, where only suboptimal
solutions can be guaranteed. The GAs are particularly useful in simultaneously
handling possible solutions and achieving a global minimum, while avoiding an
exhaustive search.

It is known that the snake model requires either a local minimizer with good
initialization or, otherwise, a global minimizer. Genetic snakes confront and over-
come at the same time the two primary problems of initialization and optimiza-
tion, and provide a global optimization with an automatic initialization.

9.4. Energy functionals

The classical optimization techniques impose different restrictions on the type of
image functionals that can be employed (e.g., the existence of derivatives); the use
of GAs gives us more freedom on the choice of such functionals. For this reason,
we experiment new energy terms.

9.4.1. Internal energy

The internal energy term, Eint, controls the properties of the snake and it is ex-
pressed as defined in (9.2). This energy provides an efficient interpolation mech-
anism for recovering missing data. In our work, the values of the parameters α(s)
and β(s) are empirically chosen and they do not depend on the positions s of the
snake, that is, we set α(s) = α and β(s) = β, where α and β are constant values. In
this way, different segments of the snake cannot have different elastic behavior.
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The most adequate set of parameters for our snakes depends on several im-
age characteristics. Therefore, given a particular application, some experimenta-
tion is required for choosing the best parameters. We performed experiments on
synthetic images with different patterns and with additive noise having different
variance.

The choice of the weights controls the type of solution produced by the ac-
tive contour: large values of the weights associated with image functionals tend
to move the snake boundary towards object contours, while large values of α and
β increase smoothness and continuity. The signal-to-noise ratio (SNR) can affect
the choice of weights: in low SNR images, or where missing and/or false edges are
present, an increased contribution from the continuity and smoothness terms to
the total energy is usually desirable. Large values for the continuity and curvature
weights will discourage convergence to a “busy” contour, with notchings and in-
dentations. On the other hand, small weights may allow the contour to be trapped
into false edges or leak out through gaps in the boundary.

The first experiment uses synthetic images containing boundary of circles,
squares, and star-shaped objects. The intensity images are generated by assigning
grey level value 255 to pixels belonging to the boundary, and 100 otherwise. The
boundary is smoothed by convolving the images with a 3× 3 window who acts as
a lowpass filter. These images are constructed to study the snake ability to capture
corners as well as low curvature boundaries. Zero mean, white Gaussian noise is
added to the images. Three different noise levels (corresponding to the standard
deviation values: 20, 40, 60) are considered. This allows to study the robustness of
our segmentation technique with respect to noise variance and to determine an
adequate set of weights. Figure 9.3 shows some examples of simulated images.

On these images, we performed experiments using snakes having not more
than 50 points, varying the energy weighting coefficients (α = 0.5, 0.8, 1, 1.2, 1.5,
β = 0.5, 0.8, 1, 1.2, 1.5, and γ = 1) running the GA for 23 00 000 iterations each
time on a population of 10 000 individuals. The crossover rate and mutation rate
are set respectively to 0.6 and 0.000006 based on experimental observations.

Figure 9.4 reports some of the results obtained. We observe that snakes with
larger values of α and β have better noise rejection capabilities, but snakes having
too large values of α and β tend to collapse on themselves. We also observe that
snakes having a larger number of points are selected by our GA for the last set of
images Figures 9.4(g), 9.4(h), and 9.4(i).

9.4.2. Area energy

The area energy is proportional to the area enclosed by the snake which has the
effect of causing the contour to expand or contract. The area energy term we pro-
pose is

Earea
[

v(s)
] = δA, (9.4)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9.3. Examples of synthetic test images with different values of Gaussian noise (from left to
right: σnoise =20, 40, 60).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9.4. Simulation results on synthetic test images with different shapes, different values of Gauss-
ian noise, and with the best set of snake coefficients.
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where A is the area enclosed by the snake. The sign of δ determines whether the
snake tends to expand or contract. For the case of a positive δ, this energy is a
positive term in the fitness and causes the snake to choose regions enclosing small
areas. On the other hand, for a negative δ, the snake tends to prefer regions having
larger area.

The area is calculated as

A = 1
2

∣∣∣∣∣
N∑
i=1

(
xi yi+1 − xi+1yi

)∣∣∣∣∣, (9.5)

where (xi, yi) denotes the coordinates of a vertex and by convention (xN+1, yN+1) =
(x1, y1). This expression holds for any polygon provided that the vertices are or-
dered around the contour and no line segments joining the vertices intersect. Our
representation of the coordinates, along with the use of polar coordinates, does
not require any explicit check to ensure that this relationship is applicable.

The effect of this area energy is similar to the balloon force employed by L. D.
Cohen and I. Cohen [11, 12]. In their model, they add an additional force in the
normal direction of the snake. The implementation advantage is that in our for-
mulation the area energy term depends on the snake positions, but not on deriva-
tives.

We propose also an area energy which forces the snake to enclose a preset area:

Earea[v(s)] = δ
(
A− Aref

)2
. (9.6)

This energy has the form of a harmonic potential with a minimum when the
area enclosed by the snake is equal to the reference area Aref.

The experiment performed to show how the area energy works uses syn-
thetic images containing circular shapes having an inner and an outer boundary as
shown in Figure 9.5(a). The shape has grey level 100 on a black (grey level 0) back-
ground. These images are constructed to study the snake capability to be attracted
by either the inner or the outer boundary according to the area energy term.

On these images, we performed experiments using snakes having 50 points,
varying the energy weighting coefficients (α = 0.1, 0.15, 0.2, β = 0.1, 0.15, 0.2, γ =
0.1, 0.2, 0.3, and δ = −0.3,−0.2,−0.1, 0.1, 0.2, 0.3), running the GA for 2 000 000
iterations each time on a population of 10 000 individuals.

The results obtained with δ = +0.3 and δ = −0.3 are reported in Figures
9.5(b) and 9.5(c), respectively (other weight values are: α = 0.1, β = 0.2, γ = 0.2).
When the sign of δ is positive the snake chooses the inner boundary (b), while
when it is negative the snake is attracted by the outer boundary (c).

9.4.3. Image energy

The external energy Eext is composed by the image functionals. It is chosen accord-
ing to the properties of the images of interest. The image functionals are designed
to produce minima corresponding to target objects in the image. It is shown that
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(a) (b) (c)

Figure 9.5. Simulation results: (a) example of synthetic test image, (b) genetic snake segmentation
results with δ = +3, and (c) δ = −3.

the choice of the image functionals can affect the performance of the optimization
technique. For this reason, we did experiment using various forms. For retinal im-
ages, we employ an image energy term which considers both the magnitude and
the direction of the gradient and of the Laplacian of Gaussian. For color images,
the image energy considers the gradient of the three RGB (red, green, blue) com-
ponents separately.

As the external energy is strictly dependent on the specific application, we
discuss image energy terms in the following section where we describe the appli-
cations of genetic snakes to realistic problems.

9.5. Applications

9.5.1. Medical images

Images used in this application are ocular fundus images, snakes are used in the
segmentation of the foveal avascular zone (FAZ). Diabetic retinopathy is the lead-
ing cause of new adult blindness; one way to early detect diabetic retinopathy is the
study of the FAZ. In fact, retinal capillary occlusion produces an FAZ enlargement.
Moreover, the FAZ is characterized by qualitative changes showing an irregular
contour with notchings and indentations [7]. The segmentation of FAZ boundary
is usually considered the starting point for this analysis.

Retinal images are taken by a Scanning Laser Ophthalmoscope, with a fre-
quency of 25 frames per second following the injection of a bolus of fluorescein.
These images are digitized into 512 × 512 pixel matrices with 256 gray levels per
pixel. The region of interest, that is, the FAZ, is approximately in the center of
these images. For simplicity, the origin of the coordinates, that is, the snake center,
is located at the center of the FAZ. Its position can be chosen approximately by
the user. The image energy functionals are chosen according to FAZ properties as
follows.

First, we consider a functional which localizes bright lines since FAZ bound-
aries are ultimately bright lines (i.e., capillaries) with an intensity maximum at
their center. A simple external energy functional that attracts a snake towards lines
is the image intensity:

Eimg
[

v(s)
] = γI(x, y), (9.7)
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(a) (b) (c)

Figure 9.6. Retinal images: (a) image intensity, (b) image convolved by gradient of Gaussian (σ = 2),
(c) image convolved by Laplacian of Gaussian (σ = 2).

where γ is a weight factor whose sign determines whether the snake is attracted
by dark or bright lines. For the case of a negative γ, the snake is attracted to local
minima of Eimg, which corresponds to local maxima of intensity, that is, bright
lines. This functional (see Figure 9.6(a)) can detect roof edges. For our purpose
this functional localizes the medial axis of the capillaries. However, the achievable
performances are only partially satisfactory, due to the adjacency of the snake to
the bigger vessels exhibiting a strong maximum; moreover, dye leakage introduces
a light haze with consequent artifacts on the image function.

Then, we consider a functional which attracts the snake towards image edges,
that is, in our case, vessel boundaries. In this case, if edges are of interest, the image
energy is defined as

Egrad[v(s)] = −∣∣∇I(x, y)
∣∣2

, (9.8)

where∇I(x, y) is the gradient of the image. An easy implementation of this func-
tional can be obtained by computing the gradient of Gaussian (GoG) of the image
intensity:

EGoG[v(s)] = −∣∣∇Gσ ∗ I(x, y)
∣∣2
. (9.9)

The resulting image functional is shown in Figure 9.6(b). The weight in this case
is negative so that local minima of EGoG correspond to maxima of the gradient,
that is, strong edges. Simple use of this functional for FAZ boundary extraction
also does not give fully satisfactory performance. The fact that it is the edge of the
vessels that is localized and not the point of maximum intensity provides a basis
for uncertainty.

This suggests that we consider both the gradient magnitude and the gradient
direction of the image. A suitable functional may be obtained by constructing the
dot product of the contour tangent with the normalized gradient vector:

Edir[v(s)] =
∣∣∣∣∂v
∂s
· ∇I(x, y)∣∣∇I(x, y)

∣∣
∣∣∣∣. (9.10)
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(a) (b)

Figure 9.7. The x and y components of the gradient of the image. The intensity of each pixel is pro-
portional to the gradient component in that point.

The weight of this factor is positive, so that orientation inconsistencies tend to
be penalized. Anyway, edge points whose orientation disagrees with that of the
overlaying snake may also yield minimal values of the external energy. Hence, the
snake is able to discriminate against phantom lines, while allowing for the presence
of corners. The two components of the gradient are shown in Figure 9.7.

In order to increase the locus of attraction of a minimum, we experiment with
a slightly different edge functional (also proposed by Kass et al. [22]):

ELoG[v(s)] = −∣∣∇2Gσ ∗ I(x, y)
∣∣2
. (9.11)

Minima of this functional lie on zero-crossings of ∇2Gσ ∗ I(x, y) which defines
edges in the Marr-Hildredth theory [24]. This image functional is shown in Figure
9.6(c).

In addition, since image gradient and Laplacian of Gaussian (LoG) produce
random edges in the background region where some noise is present, we can im-
prove FAZ boundary localization by including a Gaussianly smoothed version of
the image intensity (with large σ).

Thus, the proposed image energy is composed of four terms and is expressed
as

Eext
[

v(s)
] = −γ1Gσ ∗ I(x, y)− γ2

∣∣∇Gσ ∗ I(x, y)
∣∣2

+ γ3

(
n · ∂v

∂s

)
− γ4

∣∣∇2Gσ ∗ I(x, y)
∣∣2

,
(9.12)

where n = ∇Gσ ∗ I(x, y)/|∇Gσ ∗ I(x, y)|.
In this application, the internal energy weights α and β are normally kept

constant while the image energy weights are varied to find a good balance between
the four terms. We observe that values of α and β close to 1 give good results. The
values of the weights associated with image functionals are chosen in the range
[0.5, 0.8].

In Figure 9.8, we can see some examples of retinal images with FAZ outlines
segmented by our snake model.
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(a) (b)

Figure 9.8. Images of (a) normal and (b) diabetic FAZ with superimposed genetic snakes.

9.5.2. Radar images

The aim of this application is to determine the shape and size of aircrafts in ad-
vanced surface movement guidance and control systems (A-SMGCS). Genetic
snakes are used to segment and detect target moving along runways and taxiways
of an airport from images provided by a surface movement radar, even with a very
noisy image.

The images used in this application are radar images obtained by courtesy
of Oerlikon Contraves Italiana SpA. The radar sensor is a prototype operating in
the millimeter band (95 GHz) [15]. The images are recorded in the range/azimuth
reference system, directly from the video output of the radar receiver. From these
images, smaller areas are extracted around positions where most probably an air-
craft is present [30]. The target is extracted by resampling the radar image in a
rectangular grid of known resolution.

It is important to notice that the target echoes do not resemble exactly the real
shape of the target itself. The appearance of the target in a radar image depends
on its electromagnetic properties, on the radar resolution, and on the position of
the target with respect to the sensor. Usually the target appears on the image as
a fragmented shape, reflecting a multipoint scattering model, in which the echo
is supposed to be due to a number of points, scattered all over the target itself.
Radar images taken into account have poor dynamic range, so target and back-
ground clutter have often a similar echo strength. For instance, in several images
the aircraft wings are undistinguishable from the grass below. An adaptive filtering
scheme, based upon real-time histogram analysis, is applied to the images in order
to enhance the contrast and to let the next steps of the algorithm work in better
conditions.

Several image processing algorithms can be used to get some parameters about
the airplane from the image. Among the others, parameters such as approximate
dimensions, shape, or directions are very useful in order to guess what it is and
what it is doing. We apply genetic snakes to segment and detect these aircraft pa-
rameters.

The energy functionals used in this application include the gradient of Gauss-
ian and the Laplacian of Gaussian of the enhanced image.

In Figure 9.9, we can see an example of original image, an edge detector re-
sults, and the corresponding aircraft outlines segmented by our genetic snake
model.
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(a) (b) (c)

Figure 9.9. (a) Original image containing the echo from a B747 and strong clutter. (b) The output of
an edge extractor algorithm. (c) The image segmented with our method.

Figure 9.10. Digital camera photograph of a representative beef meat (in original color).

In this application, we can observe that the advantage of genetic snakes over
methods like edge extractor operators is their flexibility to operate on fragmented
shapes which are not as easy with convolutional operators.

9.5.3. Food images

Genetic snakes are here applied to meat images in order to segment them, with the
special purpose of separating connective tissue from the remaining parts of the
meat.

In another work, we have developed a method to solve the specific problem
of measuring the percentage of fat [5]. In particular, a color segmentation algo-
rithm to classify different substances as muscle, fat, and connective tissue has been
optimized for camera photographs of meat. The classification is fully automatic
and combines a fuzzy clustering algorithm, the fuzzy c-means algorithm with a
GA. There is still an open problem with these images: fat and connective tissue
present almost the same color and are therefore almost indistinguishable by any
color segmentation technique, therefore the idea of using genetic snakes.

Color images of many samples of beef meat are captured by a Sony DCS-D700
camera. Images are 1024×1024 pixel matrices with a resolution of 0.13×0.13 mm.
They are represented in an RGB (red, green, and blue) format (see Figure 9.10).

Images are preprocessed to suppress background; the choice of green color as
background was very helpful for this stage. Three thresholds (RGB) are used in
this phase. An example of background suppression is shown in Figure 9.11. Then
we apply genetic snakes to segment meat from connective tissue.

In order to apply genetic snakes to color images, we employ a modified version
of the image energy. When the goal is to fit a snake to a boundary within an image,
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Figure 9.11. Background suppression from image shown in Figure 9.10.

it is useful to preprocess the image with an edge detector so that the points of
maximum gradient are emphasized. One of the most commonly employed edge
detectors uses the gradient of the image convolved with a Gaussian smoothing
function.

Here we consider the gradient of the three-color RGB components, that yields
an image energy functional composed of three terms:

Eimg
[

v(s)
] = −γR∣∣∇Gσ ∗ IR(x, y)

∣∣2

− γG
∣∣∇Gσ ∗ IG(x, y)

∣∣2

− γB
∣∣∇Gσ ∗ IB(x, y)

∣∣2
,

(9.13)

where IR(x, y), IG(x, y), IB(x, y) are the three components of image intensities.
The weights are negative so that local minima of Eimg correspond to maxima of
the gradient, that is, strong edges.

We observe that the connective tissue is usually located close to the border
of meat and that there is a strong edge between it and the muscle. Moreover, the
percentage of connective tissue is usually around 4÷ 5%. Thus, the proposed area
energy functional is expressed as

Earea
[

v(s)
] = δ

(
A− 0.95Aref

)2
, (9.14)

where Aref is the reference area computed on the background suppressed images.
Hence, we use a snake energy composed of three terms: the internal energy,

Eint, defined in (9.2), the image energy, Eimg, defined in (9.13), and the area en-
ergy, Earea, defined in (9.14). We use snakes having 50 points, running the GA for
40 000 000 iterations on a population of 100000 individuals. Crossover and muta-
tion rate are set, respectively, to 0.43 and 0.000001. Weight values are α = 0.15,
β = 0.15, γR = γG = γB = 0.3, and δ = 0.2.

In Figure 9.12, we can see the segmentation results obtained by our genetic
snake model. Note that the connective tissue in the bottom part of the image is
separated from the rest of the meat.

9.6. Conclusions

In this chapter, we have discussed genetic snakes and presented an extension of
our previous model. The present method deals with two important and difficult
problems of the conventional snakes, namely, initialization and optimization.
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Figure 9.12. Digital camera photograph of a representative beef meat with superimposed the final
position of our genetic snake model.

The energy minimization procedure based on GAs overcomes the problems
associated with sensitivity to initialization and local minima, which are crucial
problems of classical techniques. Genetic snakes do not need to be initialized close
to the structure of interest to guarantee good performance. Indeed, all possible ini-
tial choices can be considered within the GA framework, where the user has only
to define the region where the search takes place. Local minima, caused be spu-
rious edges or constant image background, are easily avoided by the genetic op-
timization. Furthermore, the new model is better at extracting nonconvex shapes
compared to conventional snakes.

We have also described additional energy terms, like an area energy and a
modified version of the image energy, which accounts for both the magnitude and
the direction of the gradient and the Laplacian of Gaussian, that exhibits interest-
ing properties in the localization of FAZ boundary. Other energy terms may be
easily added using the genetic optimization procedure. This is not possible in the
classical snake formulation that requires energy to be a differentiable function. In
our model, there is no restriction on the form of the energy functionals.

The real-world experiments show that the new model works well for contour-
based segmentation in a variety of image analysis applications. The results re-
ported are the best results obtained in several runs (usually 10 for each set of ex-
periment and value of the parameters). Statistical analysis of them proved their
consistency and repeatability. The main problem with this method is the time re-
quired and the impossibility to exploit the ability of GAs to generalize, as each
individual image needs to be processed from scratch.

In this work, we applied GAs to the positions of the snake. The management
of the weights for different energy terms is still an open important problem and
it is usually fulfilled empirically, except for a promising emerging idea suggested
in [9]. Their framework consists in a learning section and a detection section, and
provides a training mechanism to obtain the weights from a desired object contour
given manually. This mechanism first employs Taguchi’s method to determine the
weight ratios among distinct energy terms, followed by a weight refinement step
with a GA. Further work on this technique could be the study of the evolution
of the parameters and the functionals governing the snake behavior; and possibly
discovery of new snake-like models as, for example, the deformable organisms
proposed by [19].

At this stage, we used genetic snakes for segmenting a single object in the
image. The case of multiple objects is a challenging problem. Future studies could
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consider parallel optimization of multiple intercommunicating genetic snakes, as
well as an extension to 3D.
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1999.
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10
Visual texture classification
and segmentation by genetic
programming

Vic Ciesielski, Andy Song, and Brian Lam

10.1. Introduction

While there is a considerable history of work on visual texture, the definition of
texture is still imprecise. However, it is generally agreed that a texture is spatially
homogeneous and contains repeated visual patterns. In synthetic textures, such as
horizontal lines, vertical lines, or a checkerboard, the basic structure is repeated ex-
actly. In natural textures, such as grass, wood, sand, or rocks, there is some random
variation in size, shape, intensity, or colour in the repetitions of the basic structure.
Figure 10.1 shows some examples of artificial (a,b) and natural (c,d) textures.

Texture information is potentially very useful in computer vision applications
such as image/video retrieval, automated industrial inspection, and robot naviga-
tion. However, currently deployed systems do not use texture, primarily because
current algorithms result in unacceptably long computation times. Fast and accu-
rate texture recognition could have a major impact on the design of future vision
systems.

From the perspective of computer vision there are two main problems relating
to texture: classification and segmentation. The classification task assumes we have
images of single textures and we are required to distinguish them. For example, if
we have images like Figures 10.1(c) and 10.1(d), or subimages cut out from them,
we need to identify which are grass and which are sand. In a texture segmentation
task, we have images containing several textures and are required to identify the
regions in the image occupied by each texture, as shown in Figure 10.2. The input
image contains arbitrary regions of two different textures and the segmented image
is a two-color image with one colour used for each texture. A problem in which
we are required to retrieve all images containing, for example, a sandy beach are a
variant of the segmentation problem in which only one texture is of interest.

Texture classification and segmentation problems can be supervised, where
the set of textures is known in advance, or unsupervised, where it is not known.
This paper is concerned with supervised situations.
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(a) Vertical lines (b) Checkerboard (c) Grass (d) Sand

Figure 10.1. Examples of synthetic and natural textures.

(a) Original image (calf leather and netting) (b) Segmented image

Figure 10.2. Examples of segmentation by texture.

10.1.1. Conventional approach to texture classification

The conventional approach to texture classification is shown in Figure 10.3. The
task is to assign a texture label to an image like one of those in Figure 10.1. A
two-step procedure is used. In the first step, a vector of features, based on human
derived theories and models of texture, is computed. In the second step, a classi-
fier such as a decision tree, neural network, or nearest neighbour classifier is used
to assign a class to the feature vector (a large number of classifiers and their im-
plementations are described in [30]). Most of the research in texture classification
is focused on the first stage and a large number of different ways of getting use-
ful, highly discriminatory features have been investigated. These include Haralick
features [10], Laws masks [16], and various wavelet transforms [4, 9, 17, 26]. The
most widely used features over the last 35 years are the Haralick features which are
based on an intermediate data structure called the grey level cooccurrence matrix.
Over the years there have been many refinements to the basic Haralick approach,
for example, [19]. More recently, features based on wavelets have generated con-
siderable interest. Most new algorithms for texture features are compared against
the Haralick features. Work on texture up until 1993 is reviewed in [28], the most
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Figure 10.3. The conventional approach to texture classification.

recent review of texture analysis. In some very recent work, there has been a fo-
cus on developing models of a texture unit or “texton” and using the models to
develop classifiers [8, 31]. However, expensive computation is required as various
Gabor and Laplacian transforms at a number of locations, scales, and orientations
are used.

The conventional approach has three main drawbacks. Firstly, there is no uni-
versal set of optimal texture features. Some of the features work very well for some
textures and very badly for others. While there are many texture features, it is not
clear which combination of features will suit a given problem and a trial and error
process is needed for each new texture classification/segmentation task. Secondly,
some of the approaches generate an enormous number of features, perhaps more
than there are pixels in the image. This necessitates complex dimensionality re-
duction in feature space. Thirdly, most of the texture feature extraction algorithms
are computationally expensive. They require the generation of Fourier-type trans-
forms or other complex intermediate data structures and then additional com-
putation on these structures. In this paper, we show that the use of the genetic
programming techniques can overcome some of these drawbacks.

10.1.2. Aim

The aim of this paper is to describe a number of ways in which genetic program-
ming can be used in texture classification and to show how some of the classifiers
can be used for fast, accurate texture segmentation.

There are at least three ways in which genetic programming can be used in
texture classification. They are as follows.

(1) Use conventional feature extraction followed by evolving a genetic pro-
gramming classifier, that is, use a genetic programme as a classifier in
step 2 of Figure 10.3.

(2) Use a one-step procedure in which the classifiers are evolved directly
from example images of the textures of interest, that is, replace steps 1
and 2 with a single step which does the classification directly from the
pixels without any feature extraction.

(3) Evolve the actual feature extraction programmes which can then be used
with a conventional classifier or a GP classifier, that is, replace the human
constructed feature extraction programmes in step one with evolved fea-
ture extraction programmes.

In Sections 10.3 to 10.5, we describe these approaches. In Section 10.6, we
show how the fastest classifiers can be used for segmentation.
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All of the texture images used in this paper are taken from the Brodatz album
[5]. The original photographs were taken by a commercial photographer, Phil Bro-
datz, and intended for creative designers. The photographs have been digitized and
have become a kind of de facto standard in texture research. We have used the im-
ages from [1]. Altogether there are 111 different textures labeled D1 to D112, with
D14 missing.

10.2. Genetic programming

Genetic programming is a methodology for obtaining computer programmes to
solve a particular problem by a process of simulated evolution. An initial popula-
tion of programmes is constructed. Each programme is executed on the problem
at hand and its success on the task, its fitness, is measured. A new population
of programmes is then constructed by selecting the fitter programmes as parents
and generating children by recombining selected parts of the parents (crossover)
and/or making random changes to the parents (mutation). This process continues
until the problem is solved or until some preset number of generations has been
completed. If the process is working well, the programmes will gradually become
fitter and fitter through the generations until the problem is solved.

At the current state of the art the evolved programmes are not in conven-
tional programming languages such as C or Java. Rather, they are in languages
which have been designed with restricted syntax and semantics so that two arbi-
trarily combined programme fragments will form a syntactically valid executable
programme. Approaches include tree-based genetic programming in which the
programmes are in a subset of LISP, linear genetic programming in which the
programmes are in an assembly language, and Cartesian genetic programming in
which the evolved programme is a network of specialised computing nodes. Our
work uses tree-based genetic programming.

In tree-based genetic programming, programmes are represented as tree
structures. An example tree and the corresponding code are shown in Figure 10.4.
The internal nodes are functions and the terminals are inputs to the programme.
The tree is evaluated in a bottom up fashion and the value of the root node is the
output of the programme.

In specifying the configuration of a genetic programming run it is necessary to
give the functions, the terminals, a method of evaluating fitness, and a number of
parameters for the evolutionary parameters. These include the population size, the
maximum number of generations to compute if a solution is not found, the elitism
rate (the percentage of best individuals in the current generation copied without
change to the next generation), the crossover rate (percentage of individuals in
the new population that are created by crossover), mutation rate (the percentage
of individuals in the new population created by mutation), and the maximum
permitted tree depth.

While there has been previous work on texture recognition using evolution-
ary computation techniques, for example, [27], genetic programming for image
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Numeric output

∗

ATTR5 IF

<= −0.5 +

0.23 ATTR2 ATTR2 ATTR7

Tree form

(∗ ATTR5
(IF (<= 0.23 ATTR2)

[then] −0.5
[else] (+ ATTR2 ATTR7)

)
)

Text form

Figure 10.4. A programme in tree-based genetic programming.

processing tasks [21, 22], and genetic programming for texture synthesis [12],
there is no significant prior work on genetic programming for texture recognition.

10.2.1. Genetic programming classifiers

There has been prior work on evolving genetic programming classifiers [14, 18].
For a problem in which there are only two classes, for example, images of grass and
sand, the most straightforward approach is to use positive values of a programme
like the one shown in Figure 10.4 as texture 1, for example, grass, and negative
outputs as texture 2, for example, sand. To obtain the classifier the available data
is split into a training and test set, following the machine learning methodology
for learning from examples. To get the fitness of an evolved programme, it is ap-
plied to each example in the training data and the number of classification errors
is counted. The fewer the errors, the fitter the programme. Once a programme
achieves a fitness of zero the evolutionary run can be terminated.

We have used a refinement of this basic method which is described in [18, 25].
In this refinement, called dynamic range selection, the real line is split into a vari-
able number of ranges, not just two (less than 0, greater than 0) as in the straight-
forward approach. The range boundaries are evolved along with the classification
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(* -0.208533 (if (n= (- ATTR39 ATTR69) (+ ATTR114 0.299995)) (- ATTR222
0.253174) ( + ( + (if (Between ( * ATTR189 ( + ATTR205 ATTR74)) ATTR164
ATTR12) ATTR108 ( if (Between ( - (* 0.253174 ATTR129) 0.9875) 0.128228
(/ ATTR189 0.940897)) ( + ATTR39 (if (Between -0.947054 ATTR164 ATTR12)
ATTR160 ATTR124)) (* 0.5979 0.230855))) ( + ( + (if (Between (+ ATTR205
ATTR74) ATTR164 ATTR12) ATTR108 ( if ( Between -0.947054 ( if ( Between
-0.947054 ATTR164 ATTR12) ATTR160 ATTR124) ATTR12) ( + ATTR39 (if (
Between -0.947054 ATTR164 ( - (/ ATTR149 ( if (Between -0.947054 (if (
Between -0.947054 ATTR164 ATTR12) ATTR160 ATTR124) ATTR12) ATTR108
0.135714)) (* ATTR164 ATTR129))) ATTR160 ATTR124))(* 0.5979 0.230855)))
(if (Between (* ATTR189 (+ (if (Between (- (* 0.253174 ATTR129) 0.9875)
0.128228 ( / ATTR189 ( - 0.987674 0.747389))) ( + ATTR39 ( if ( Between
-0.947054 ATTR164 ATTR12) ATTR160 ATTR124)) ( * 0.5979 0.230855))
ATTR74)) ATTR164 ATTR12) ATTR205 ( + ( + ( if (Between (* (* ATTR189 (+
ATTR205 ATTR74)) ( + ATTR205 ATTR74 )) ATTR164 ATTR12 ) ATTR108 (if (
Between (- (* 0.253174 ATTR129) 0.9875) 0.128228 (/ ATTR189 (- 0.987674
0.747389))) ( + ATTR39 (if ( Between -0.947054 ATTR164 ATTR12) ATTR160
ATTR124)) ( * 0.5979 0.230855))) ( + ( + ATTR160 (if (Between -0.947054
ATTR164 ATTR12) ATTR160 ATTR114)) ( * 0.253174 ATTR129))) ATTR205)))
(* 0.253174 ATTR129))) ATTR205)))

Ranges:
Class 1: D112 : -131 ∼ -107 and 24 ∼ 136 and 175 ∼ +250
Class 2: Other Textures: -250 ∼ -132 and -106 ∼ 23 and 137 ∼ 184

Figure 10.5. A typical evolved programme. ATTRx is the value of the pixel at position ((x−1) mod 16,
(x − 1)/16) of the input image.

programme. In Figure 10.5, for example, if the output of the programme is less
than −250, then the example is class 2; if the output of the programme is between
−131 and −107, it is class 1. These classifiers are more accurate and are evolved
in fewer generations than the ones from the straight forward approach [18]. Also,
they can be easily extended to more than two classes.

10.3. Two-step texture classification: GP classifier

In this approach conventional texture feature extraction programmes are used to
generate a feature vector, but a genetic programming classifier will be used in sec-
ond step of the process described in Figure 10.3.

In determining which features to use there are thousands of options. As indi-
cated in Section 10.1.1 there have been many papers on approaches to extracting
visual texture features, some of which generate hundreds of features. In our ex-
periments, we have used a selection of Haralick [10] and Gabor wavelet features
[9, 17].

We used thirteen Haralick feature functions. They are (1) angular second mo-
ment, (2) contrast, (3) correlation, (4) variance, (5) inverse difference moment,
(6) sum average, (7) sum variance, (8) sum entropy, (9) entropy, (10) difference
variance, (11) difference entropy, and (12) and (13) mean of correlation. Every
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Table 10.1. Functions used in the genetic programming runs.

Name Return type Argument types Description

+ Dbl Dbl Dbl Arithmetic addition

− Dbl Dbl Dbl Arithmetic subtraction

× Dbl Dbl Dbl Arithmetic multiplication

% Dbl Dbl Dbl Protected division

IF Bool Bool Dbl Dbl
If arg1 is true return

arg2 else return arg3

≤ Bool Dbl Dbl True if arg 1 ≤ arg 2

≥ Bool Dbl Dbl True if arg 1 ≥ arg 2

= Bool Dbl Dbl True if arg 1 = arg 2

Between Bool Dbl Dbl Dbl
True if the value of arg1

is between arg2 and arg3

function is computed at four angles (0◦, 45◦, 90◦, and 135◦) for five distance val-
ues (1, 3, 5, 7, 9). At each distance, the average of each feature for the four angles
is used as an additional feature. This gives a total of 13 × 4 × 5 = 260 Haralick
features.

For the Gabor features, we have used five fragment sizes from 2× 2 to 32× 32
and six orientations (0◦, 30◦, 60◦, 90◦, 120◦, 150◦). For each combination of scale
and orientation, the mean and the standard deviation of the transform coefficients
are computed. Thus there are 5 × 6 × 2 = 60 Gabor features extracted from each
image.

In total, the feature vector for each image contains 260 + 60 = 320 elements,
which form the terminal set. The function set is shown in Table 10.1.

10.3.1. Configuration of genetic programming

We have performed 110 experiments on the Brodatz textures to determine how
well one texture can be distinguished from the other 110. The details of the ex-
periments are given below. The images used have been randomly cut out from the
original 640 × 640 Brodatz texture images from [1]. The experiments have been
done using the RMIT-GP package [2].
Images: 1110 subimages from the chosen texture make up class 1 and 10 random
subimages from each of the other 110 make up class-2, giving a total of 2210 ex-
amples per experiment.
Image size: 64× 64 pixels.
Number of classes: 2.
Error estimation: 10-fold cross-validation.
Functions as shown in Table 10.3.
Terminals: as shown in Table 10.2, the values of each extracted feature, together
with a random number generator, comprise the terminals.
Fitness: classification error.
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Table 10.2. Terminal set.

Name Return type Description

Random(−1, 1) Double Random constant

Feature[x] Double Value of feature x, 0 ≤ x ≤ 295

Table 10.3. Comparison of classification accuracy on textures pictured in this chapter.

FE + C4.5 FE + GP One step GP

No. Texture Train Test Train Test Train Test

D2 Fieldstone 98.72 92.14 93.79 93.15 84.26 80.38

D3 Reptile skin 99.77 98.03 97.65 96.80 95.56 94.13

D4 Pressed cork 99.86 98.85 99.67 99.54 86.55 86.10

D5 Expanded mica 99.22 94.01 93.79 91.78 83.28 82.76

D9 Grass 99.26 94.74 93.40 89.49 82.04 81.44

D12 Bark 99.49 93.74 91.90 89.95 82.76 74.72

D15 Straw 99.81 97.89 98.82 98.63 90.53 90.93

D16 Herringbone 99.81 98.76 99.41 99.54 84.53 80.81

D19 Woollen Cloth 99.26 94.74 93.01 92.69 84.72 84.78

D21 French canvas 99.95 99.77 100.00 100.00 97.58 96.12

D24 Calf Leather 99.77 98.12 98.23 98.17 89.62 89.46

D29 Beach Sand 99.72 96.71 97.06 95.89 88.31 84.34

D34 Netting 100.00 99.90 100.00 100.00 99.28 99.55

D38 Water 99.72 97.57 98.36 97.26 96.60 95.84

D57 Straw matting 99.86 99.26 99.73 99.08 91.25 87.13

D68 Wood grain 99.72 98.81 99.73 99.08 95.69 94.44

D84 Raffia 99.81 97.53 98.75 98.63 93.79 94.42

D92 Pigskin 99.54 96.75 95.88 95.89 83.81 82.36

D94 Brick Wall 99.45 96.84 97.51 96.80 93.14 92.19

D112 Plastic Bubbles 99.49 95.38 96.54 92.23 88.44 87.17

Average of 110 95.67 94.17 87.86

Parameters: population size, 200; max generations, 50; elitism rate, 0.10;
crossover rate, 0.85; mutation rate, 0.05; maximum tree depth, 30.

10.3.2. Results

The results for the textures pictured in this chapter are given in Table 10.3. The
reasons for choosing these textures are given in Section 10.5. For each classifier 10
runs were performed and the performance of the best evolved classifier is shown
in the two columns labeled FE + GP (feature extraction, genetic programming
classifier). The averages over all 110 experiments are shown as the last line. For
comparison, the results of using the same features with a well known, commonly
used classifier, the C4.5 decision tree classifier, are shown in the columns labeled
FE + C4.5. The J48 implementation of the C4.5 algorithm in the Weka machine
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learning toolkit was used with the default parameters [3]. The complete results for
all 111 textures can be found in [23].

Over the entire image set the C4.5 classifier is slightly more accurate. How-
ever, there was considerably more over training with C4.5 than with the genetic
programming classifier. The major drawback of the GP approach is the training
time, which is considerably longer than C4.5.

Interestingly, when the same experiment was repeated with a set of synthetic
binary textures such as Figures 10.1(a)-10.1(b), the GP classifier achieved 100%
accurate classification on all test data while the C4.5 classifier made a small number
of errors.

10.4. One-step texture classification

In this section, we look at a novel approach to performing texture classification in
one step. The texture images are given directly to the GP system and the classifiers
are evolved from the image pixels directly, bypassing the feature extraction step.

10.4.1. Configuration of genetic programming

Number of images: as in Section 10.3.1.
Image size: 64× 64 as in Section 10.3.1 except that the images were scaled to 1/4 of
their original size.
Error estimation: 10-fold cross-validation.
Functions: as shown in Table 10.3.
Terminals: as shown in Table 10.2, except that there are 256 terminals and the
terminal “Attribute[x]” returns the intensity value of the pixel at position ((x −
1) mod 16, (x − 1)/16) of the input image.
Fitness: classification error.
Parameters: population size, 200; max generations, 50; elitism rate, 0.10; crossover
rate, 0.85; mutation rate, 0.05; maximum tree depth, 30.

Scaling of the images to 16 × 16 results in 256 terminals in a genetic pro-
gramming run. Unscaled images would require 64 × 64 = 4096 terminals. This
is beyond the capacity of our genetic programming system. We have found em-
pirically that around 500 terminals is the limit. This is due to the increase in the
size of the search space because of the large number of possibilities whenever it is
necessary to choose a terminal.

The classification results for this approach for a sample of the 111 textures are
shown in the last column of Table 10.3. In 18% of the experiments, or 20 cases,
accuracies above 95% were achieved. Of these 20 cases, five were classified nearly
perfectly with accuracy above 99%. None of the cases reached 100% test accuracy.
In three cases early termination occurred, that is, the evolutionary process termi-
nated with 100% classification accuracy on the training data before 50 generations
was reached. The one step classifiers tended to be more accurate when the texture
images are roughly homogeneous in terms of the structure of the texture or inten-
sity distribution and when geometric regularity (e.g., bricks) was present. The one
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step classifiers were least accurate when the images are extremely inhomogeneous
and the subimages cut from different parts of the original image vary significantly.

It can be seen from Table 10.3 that the one-step classifiers are generally less
accurate than classifiers based on extracted features. This is not unexpected as the
feature extraction algorithms are based on well-thought out human models and
theories. What is surprising is that the evolved classifiers which are based solely
on image pixels are so accurate over such a large variety of natural textures. In
addition, the evolved classifiers are very fast compared to those using feature ex-
traction. They involve the evaluation of a relatively simple arithmetic expression
based on the values of a relatively small number of pixels. This suggests that these
classifiers could be useful for texture segmentation in algorithms that require a
classifier to be executed at each pixel position. The decreased accuracy could per-
haps be offset by the knowledge that neighbouring pixels are likely to be in the
same texture region. We come back to this issue in Section 10.6.

A typical-evolved programme is shown in Figure 10.5. The programmes var-
ied in size, but no successful programme contained more than 700 nodes. A neg-
ative aspect is that the programmes are too complex comprehend and the under-
lying algorithm cannot be recovered. It is not possible to tell whether some real
texture regularities have been captured or whether some artifact of the training
data has been captured. In order to determine whether any texture regularities are
being captured in the evolved programmes we have carried out a number of ex-
periments with simple binary textures involving horizontal, vertical, and diagonal
lines. We have used a small number of terminals and functions and encouraged
the evolution of small programmes by using a size penalty in the fitness function.
Analysis of the evolved programmes revealed that the evolved programmes could
be interpreted as texture masks which did capture regular differences between the
textures. This work is described in [23, 24]. This result, together with the large
number of training images used with the Brodatz textures, gives us confidence
that texture regularities are being discovered even though the programmes are too
complex for analysis.

10.5. Two-step texture classification: evolved features

In this section, we return to the two-step procedure. However, in this case we
replace the hand-crafted texture feature extraction programmes by evolved pro-
grammes. The feature extraction programmes will be evolved from a selection of
textures which we call the learning set. The evolved features will then be evaluated
using a train-and-test methodology on the learning set and on a problem involving
a different set of Brodatz textures.

Following the successful use of direct pixel inputs in the one-step approach,
our original intention was to use pixel inputs from the examples of the learning
set for the evolution of the feature extraction programmes. However, feature ex-
traction programmes evolved in this fashion were not very discriminatory. From
an analysis of the evolved programmes and results it appeared that some kind of
aggregation of pixel information was needed. We subsequently experimented with
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histograms, which give a very coarse aggregation, and discovered that this worked
surprisingly well. The methodology and results are described in this section.

The histogram of an 8-bit grey level image is a vector of length 256 in which el-
ement i gives the number of pixels which have a grey level value of i. In a histogram
all information about the spatial arrangement of pixels is lost, which suggests that
histograms might not be very useful for texture.

To evolve the feature extraction programmes we have selected a learning set
of 13 textures, shown in Figures 10.11(a)–10.11(m). These textures were chosen to
enable comparison with [29] in which 18 texture feature extraction algorithms are
compared on a set of classification problems using this data set.

We have evolved 78 feature extraction programmes, one from each pair of
textures shown in Figure 10.11. The evolutionary procedure described in the next
section was repeated 78 times, once for each pair of combinations of the 13 textures
in the learning set.

10.5.1. Configuration of genetic programming

Images: two textures selected from the 13 shown in Figure 10.11.
Image size: 64× 64 cut randomly from the original large images.
Number of images: 80 images of texture 1 and 80 of texture 2.
Functions: one only {+}. We began with the function set used in the earlier ex-
periments (Table 10.3). However, we found that using fewer operators resulted in
programmes that were just as accurate, but which were easier to comprehend.
Terminals: histogram [i], 0 ≤ i ≤ 255.
Fitness evaluation: a feature extraction algorithm is considered useful if the feature
values result in high classification accuracy. This will occur if the feature values
computed for each class are well separated in feature space. Thus, to evolve feature
extraction algorithms, we need a way to implement the intuition that “the better
the separation, the better the fitness.” We have done this by computing the overlap
between clusters generated by the K-means clustering algorithm. An example of
this, for the case where there are two texture classes in the learning set, is shown in
Figure 10.6. To get the data shown in the figure, a programme in the population
has been evaluated on a learning set of 160 images which consist of 80 examples
of texture (a) from Figure 10.11 and 80 examples from texture (b). The averages
of the feature values for each class give cluster centroids at 561 and 323. The mid
point of the two centroids is the cluster boundary, that is, 443. There are 4 cluster1
feature values below the boundary and 6 cluster2 features above it, thus 10 points
are incorrectly clustered. Equivalently, it can be considered that there are 10 errors.
This represents quite good discrimination. In contrast, if there were 150 errors, the
discrimination would be very poor.
Parameters: population size, 100; max generations, 200; elitism rate, 0.02;
crossover rate, 0.78; mutation rate, 0.28; maximum tree depth, 9.

10.5.2. Results

The 78 feature extraction programmes were used on a 4-class problem involving
the textures shown in Figure 10.7 to generate a feature vector of length 78. Note
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Figure 10.6. Feature space for two texture classes, D9 and D12.
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Figure 10.7. Four Brodatz textures used for testing evolved features.

that these are not in the learning set. There were 33 training images and 67 test
images. Using a nearest neighbour classifier, the evolved features gave a test accu-
racy of 100% while the Haralick features gave a test accuracy of 95.5%. This result
suggests that some generalization has occurred, the evolved programmes have cap-
tured some texture regularities that apply not just to the learning set but to other
textures as well.

We have tested our evolved features on the two benchmark texture classifica-
tion problems used in [29]. In [29], 18 human derived texture feature extraction
algorithms are compared on two problems. The first problem is a 13-class prob-
lem involving the textures shown in Figures 10.11(a)–10.11(m). On this problem
the evolved features outperformed 5 of the human derived methods. The second
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Figure 10.8. Histograms of D9 (Class1) and D12 (Class2) textures.

problem is a 15-class problem involving textures from a different texture data base,
the Vistex data base. Vistex problems are generally considered to be more difficult
than Brodatz problems. This is because textures in a class are at different resolu-
tions. In the Brodatz textures, images with three different sizes of bricks would
be three different texture classes. In the Vistex textures they are one class. On this
problem the evolved features outperformed 8 of the human derived methods. Full
details of the results are in [15].

Using only histograms means that spatial relationships between pixels are be-
ing ignored. Two quite different textures could give similar histograms. Ways of
incorporating spatial relationships still need to be investigated.

10.5.3. Analysis of evolved feature extraction programmes

Since + is the only function, all of the evolved algorithms are sums of the number
of pixels at certain grey levels. For example, using grass (D9) as class1 and bark
(D12) as class2 gives the feature extraction programme X109 + 2 ∗ X116 + 2 ∗
X117 + X126 + 2∗X132 + X133 + 2∗143 + X151 + X206 + X238 + 3∗X242 + X254,
where Xnnn represents the value of the histogram at grey level nnn. If we examine
the histograms of two images, shown in Figure 10.8, we can see the programme
has made use of the points between grey level 100 and grey level 150 and those
above grey level 200 where class1 is significantly different from class2.
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Original image, size 320× 320 Segmentation output

Figure 10.9. Segmentation of a mosaic of four textures, D21, D24, D34, D57.

10.6. Texture segmentation

The one step texture classifiers described in Section 10.4 can be readily adapted for
texture segmentation. If it is known that there are only two textures in the image to
be segmented, as in Figure 10.2 for example, then a binary classifier can be evolved
from small windows cut out from each of the textures. In the segmentation step
the classifier is then evaluated at each pixel position in the image to be segmented
and each pixel given a colour based on the output of the classifier. This is what has
been done to achieve the segmentation shown in Figure 10.2. A window size of 16
was used.

The choice of window size is important, it cannot be too small or too big.
Since a texture T is composed of repeated visual patterns, subimage should also
exhibit the texture. If we take smaller and smaller cutouts, these should still be
texture T . However, the cutout cannot be too small, if the cutout is smaller than
the basic repetitive unit, we no longer have texture T . For example, if we cut Figure
10.1(d) into quarters, then we still have a recognisable sand texture. If we cut those
quarters into quarters, we still have sand. However, if we cut too many times, a
subimage will no longer look like sand. As another example, consider bricks. As
long as the cutout is at least as big as a brick we still have a brick texture; if it is
smaller, the regular rectangular pattern of a brick texture is lost. In evolving one
step classifiers for a segmentation task it is important that the window size is not
smaller than the size of the basic repeating unit. If the window size is too big, there
will be many ambiguous pixel labels around the boundaries between textures. For
natural textures such as those in the Brodatz album it is difficult to determine an
optimal window size a priori. We have empirically fixed on 16.

If there are more than two textures in the image to be segmented, as in the
left-hand image of Figure 10.9 where there are four, the segmentation algorithm is
more complex. We need 4 “me-versus-everybody-else” classifiers of the kind de-
scribed in Sections 10.3 and 10.4. Each of the classifiers is evaluated at each pixel
position, with the pixel of interest at the centre of the window. Each classifier la-
bels each pixel as “my-texture” or “not-my-texture.” The final label or colour is



Vic Ciesielski et al. 209

D24 versus others D34 versus others D21 versus others D57 versus others

Figure 10.10. Areas claimed by each classifier: (light: “my-texture,” dark: “not-my-texture”).

then determined as follows: if a pixel has 4 “not-my-texture” labels, it is rendered
in black. If it has 3 “not-my-picture” labels and 1 “my-texture” label, then it is la-
beled and rendered as the claiming texture. If it is claimed by 2 or more textures, it
receives the label of the classifier that achieved the highest accuracy on the training
data. The output of this algorithm is shown in the right-hand image of Figure 10.9.
In Figure 10.10 the areas claimed by each of the classifiers are shown in grey and
the areas not claimed are shown in black. It can be seen that all but the last are
quite accurate. Even though the last classifier has made some mistakes, the final
segmentation is still very accurate because of the voting procedure.

10.6.1. Segmentation speed

The classifiers generated by the single-step approach are relatively small. No clas-
sifier for Brodatz textures was observed to have more than 700 functions, which
are simple operators like +, −, ∗, /, and IF. This characteristic enables a fast vot-
ing strategy which can lead to much faster segmentation than the conventional
“feature extraction plus classification” approaches. In contrast, feature extraction
algorithms are much more complex. Using Haralick features [11] as an example,
at least one 256×256 cooccurrence matrix needs to be generated in computing the
features for an image with 256 gray levels. One of the simplest Haralick features,
energy, is computed as

255∑
i=0

255∑
j=0

M2(i, j), (10.1)

where M(i, j) denotes one cell of the matrix. Such a calculation requires 256×256
repetitions of “+” and “∗.” Therefore, more than 100 000 operations are needed.
Thus extracting Haralick features is much more expensive than executing GP gen-
erated classifiers. Even if the construction of the cooccurrence matrix and the cost
of the subsequent classification step of the conventional approach required zero
computation, the single-step classifier would still be much faster than the two-step
approach.

In a texture segmentation task the feature extraction and classification must
be performed many times. Consider a situation where the binary segmentation al-
gorithm described above is being used. We have measured the time for performing
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(a) Grass [D9] (b) Bark [D12] (c) Straw [D15] (d) Herringbone [D16]

(e) Woollen cloth [D19] (f) Calf leather [D24] (g) Beach sand [D29] (h) Water [D38]

(i) Wood grain [D68] (j) Raffia [D84] (k) Pigskin [D92] (l) Brick wall [D94]

(m) Plastic bubbles
[D112]

(n) Fieldstone [D2] (o) Reptile skin [D3] (p) Pressed cork [D4]

(q) Expanded mica [D5] (r) French canvas [D21] (s) Netting [D34] (t) Straw matting [D57]

Figure 10.11. The Brodatz textures used in this paper.
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one calculation of the Haralick features on a Sun SPARC computer and found that
it is approximately 0.7 seconds. This means that the time to perform a segmenta-
tion of 256× 256 gray level image using a window size of 16× 16 is approximately

2562 × 0.7 ≈ 45 000 s. (10.2)

There are various ways of speeding up the approach, some heuristics are described
in [20]. One method is to evaluate only every 2nd or 3rd pixel position. Another is
to use a split-and-merge approach where the image is recursively split into quar-
ters to some predetermined size and the texture label of each fragment computed.
Adjacent areas of the same texture are then merged into one region. If the split is
limited to only 3 levels, features are required to be computed on four 128 × 128
quarters for the first split, on sixteen 64× 64 smaller quarters for the second split
and on sixty-four 32× 32 squares for the third split. The total CPU time for com-
puting these features can be estimated as

4× 4.58 + 16× 4.10 + 64× 1.70 = 192.72 s. (10.3)

The times for computing Haralick features for images of size 128×128, 64×64,
and 32× 32 on the SPARC computer are 4.58, 4.10, and 1.70 seconds, respectively.

Clearly, whether the voting strategy or the split-and-merge strategy is used,
the times taken on the SPARC computer for computing these features are much
longer than 2.58 seconds, the time for segmenting a 320× 320 image by our pro-
posed algorithm. Furthermore, it is not hard to see that with only three levels of
split, where 32 × 32 is the smallest size, the output will be too coarse to produce
smooth boundaries. Further splitting requires even more computation time. To
achieve an equivalent segmentation performance, the time spent by a conventional
method based on Haralick features or Gabor features would be more than one
hundred times the time spent by our method. There are many reports in the liter-
ature which describe long computation times for texture segmentation. Jain and
Karu reported 122 seconds of processing time on a SUN SPARC-10 workstation to
segment a 256×256 gray-level image using Gabor filters and 109 seconds process-
ing time by their proposed method [13]. Chang et al. evaluated different texture
segmentation algorithms and reported the run times of “feature extraction plus
classification” on a Sun Ultra SPARC. All of the reported times were more than 28
minutes [6]. In 2002, Chen and Chen proposed a new feature for fast texture seg-
mentation [7]. The runtime for their experiment of segmenting 256× 256 images
on a Pentium III-500 PC was about 1 minute. Although the run times reported in
the literature are measured under different conditions and not suitable for direct
comparison, it is clear that the proposed method requires much less computation
time since there is no computational expensive feature extraction.

10.7. Conclusions

We have described 3 different ways in which genetic programming can be used in
texture classification: (1) as the classifier in the conventional “feature extraction +
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classification” approach, (2) as a one-step classifier which bypasses feature extrac-
tion and uses pixel values directly, and (3) as a method for evolving texture feature
extraction programmes to be used in the classical two-step procedure. Overall the
genetic classifiers are competitive with conventional classifiers in terms of accu-
racy. The major drawback is that they require long computation times to get a
classifier. However, once evolved, the classifiers are very fast. This result suggests
that the genetic classifiers could be used in real-time situations where speed is
more important than accuracy. A drawback of the genetic programming classifiers
is that the programmes are hard to comprehend.

An exciting outcome of this work is the accuracy and speed of the one-step
classifiers. This offers the prospect of fast real-time segmentation in application
areas such as robot vision, industrial inspection, and image/video retrieval, appli-
cations in which texture is currently not being used because the computational
cost is too high.
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11
A framework for
the adaptation of
image operators

Mario Köppen and Raul Vicente-Garcia

11.1. Introduction

The automated tuning of image processing operations is an important task for
the improvement of the robustness, reliability, and versatility of image process-
ing systems. Nearly every approach in this field is based on the classical image
processing chain (IPC), which consists of a sequence of single image processing
operations steps that are designed independently. Mostly notable steps here are
the image acquisition, the computation of features and their classification. Other
steps that might extend the processing chain are image enhancement, region-of-
interest specification or image segmentation before feature computation, feature
selection or feature transformation before classification, and semantic processing
of images classes or object detection following the classification. Among many
textbooks about this field, see especially [15] for an excellent introduction and
motivation.

The versatility of the IPC scheme is usually achieved by means of a train-
ing procedure (see Figure 11.1). Given a training set (either labeled data supplied
by the user, or unlabeled ones in the so-called unsupervised learning mode), the
training scheme may modify some of the internal settings of the steps in the IPC in
order to achieve the best mapping function from images to classes. A remarkable
issue here is that the single steps in the processing flow consider their input usually
as immutable: the feature computation does not modify the image acquisition pro-
cedure, the classification does not influence the manner in which the features were
computed. The training overcomes this drawback by being given some influence
on these settings, like modification of some parameters of the feature computa-
tion, or modification of internal parameters of the classification. However, from
the fact that each step was designed independently, it follows that training can
always be broken into parts, which tune a single step only.

From this description, the most important drawback of the IPC approach be-
comes obvious: the IPC as a whole cannot perform better than its worst configured
part.
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Training

Training data

Feature computationImage acquisition Classification

Image Features Class

Figure 11.1. Typical processing flow for the training of an image processing system.

However, another problem with the IPC approach is not that obvious: each
free parameter of an IPC gives an additional dimension of the search space of
the optimization problem that corresponds to the training. Thus, the search space
seems to become quite large. However, a simple quantitative investigation of the
case gives, that the search space, if given in terms of the represented image (and
not the IPC free parameters) is apparently greater, since it is given by a mapping.
The number of possible mappings of n variables with m possible values onto k
values is k(mn). In fact, the percentage of possible image processing operations that
can be represented by an IPC with respect to the total number of all possible image
processing operations is nearly zero, even if the domain of the latter ones is highly
restricted.

When soft computing techniques like genetic algorithms, genetic program-
ming or neural networks are to be applied to the design of image processing oper-
ations, the question of how image processing operations can be adequately repre-
sented for this purpose becomes very important.

The evolutionarily designed primary visual system of higher mammals gives
an important hint on this issue. Here, for example, the model of the Boundary
Contour System/Feature Contour System [5] introduced two independent path-
ways in the cortical processing of (at least) static images, which are perceived by
the retina and cortical cells.

The point of interest in the context mentioned afore is the use of several path-
ways instead of a single one (i.e., an IPC). Within the final fusion of the processing
results of each pathway, a mapping can be included, which dramatically increases
the number of representable operations. If the mapping can be specified indepen-
dently, it can be expected that the task of image processing operation tuning can
be solved much more effectively.

Once having the general idea of such n-dimensional frameworks, the main
body of this chapter is considering a realization of such a framework. It comes out
that a basic generic algorithm, originating in the image processing discipline of
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mathematical morphology, the so-called 2D lookup, provides all that is needed to
design such a framework.

For adapting the framework to the solution of a given image processing task,
genetic programming (GP) will be used. The task here is to evolve the operations
(“pathways”) that give the input for the mapping in the framework. Using GP for
adapting the IPC has been studied a few times in the past. The seminal work of
Tackett [20] used GP to derive efficient feature computations, and the applica-
tion was the recognition of targets. Harris and Buxton proposed the use of GP
for deriving edge detectors in 1D signals [6], while Poli studied the more general
use of GP in several image processing tasks like image enhancement, image filter-
ing, and feature classification [14]. A specialization to the detection of objects or
regions-of-interest was presented by Bhanu and Lin [2, 3]. All these approaches
followed the general idea to synthesize more complex operators from simple ones
and showed the efficiency of such approaches. Using rules instead was considered
by Stanhope and Daida in [18]. A recent work by Lam and Ciesielski introduced
the computation of translation invariant features that are evolved by GP and eval-
uated by a clustering procedure [12].

The motivation to use a 2D-Lookup algorithm as internal mapping in an IPC
was firstly inspired by the successful application of a 2D-Lookup for the segmen-
tation of background texture in images of bank checks [4]. Later on, a refined
version was presented by Köppen et al. in [8, 9]. The application of the presented
framework to an industrial collagen-sheet inspection system can be found in [13],
and its application to texture detection (with the intention to select appropriate
image region for digital watermarking) can be found in [7].

In this contribution, the 2D frameworks based on this general idea and means
for its extension will be presented. In Section 11.2 the concept of an n-dimensional
framework will be presented and discussed, followed by Section 11.3 that intro-
duces the 2D-Lookup algorithm for realizing such a framework. Details of the
framework are presented in Section 11.4, and the possible extensions are discussed
in Section 11.5. After the provision of some results for the application of the frame-
work in Section 11.6, the chapter concludes with a short summary and the refer-
ence.

11.2. Multidimensional frameworks

In this section, a rough estimation should be made about the dimensionalities of
the search problem involved in an optimization approach to IPC configuration.
The basic assumption is that the result of the IPC should resemble a given goal
image as good as possible, or that some properties are fulfilled by the result image.
From this, the configuration of an IPC comes out to be an optimization problem.

Consider Figure 11.2, where a simple unit IPC is given. It is assumed that
the computations are restricted within a 3 × 3 neighborhood at each pixel. All
grayvalues at image pixel locations are assumed to be values between 0 and 255.
The result of the operation should be a binary one, that is, the computations give
a value of either 0 or 1. Then, such a unit IPC can be considered as a mapping
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Operation 0/1

0 . . . 255

Figure 11.2. The unit IPC which maps nine grayvalues onto two.

f : {0, . . . , 255}9 → {0, 1} from nine grayvalues onto the set of binary values {0, 1}.
If there is a quality function q that assigns a quality value to each mapping f , a
mapping fopt is searched, for which its quality value becomes optimal. However,
since for the mapping f there are 2569 function values to specify, each of which
can either be 0 or 1, there are 2(2569) possible mappings for the unit IPC. This is the
number of elements of the search space, too.

As an example, consider the class of convolution operations. A weighted mask
is given by the mapping of an index set M (the mask) into the set of weights, like

Mw =
w(−1,−1) w(0,−1) w(1,−1)

w(−1,0) w(0,0) w(1,0)

w(−1,1) w(0,1) w(1,1)

(11.1)

and assuming here that wij ∈ {0, . . . , 255}. Then, convolving the image I at posi-
tion (x, y) with the weighted mask Mw can be written as

R(x, y) =
∑

(i, j)∈M
w(i, j)I(x + i, y + j). (11.2)

By thresholding the result with a value ϑ, a binary image is obtained. For this
unit IPC with nine parameters, there are 2569 possible choices for the parame-
ters. Compared with the number of search space elements 2(2569), this is only a
marginal amount of representable operations. The number p of parameters with
a domain {0, . . . , 255} that would be needed to cover the search space completely
is 2569/8. This follows from equating 2(2569) = 256p = 28p.

A serious problem arises from this consideration. If adaptive techniques like
soft computing methods should be applied to such an image processing problem,
the search space is much too big to be covered by the search method. There seems
to be no way to represent an arbitrary mapping of the kind of mappings used in
image processing operations.

The number of represented operations could be dramatically increased, if a
mapping would be involved into the IPC operations. This leads to the definition
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Operations

0/1 0/1

Fusion

op1

op2

op3

opn

Figure 11.3. An n-dimensional framework, which decomposes an IPC into n operations performed in
parallel and a final fusion of the operation results. The fusion can be based on a mapping, thus heavily
increasing the number of representable operations.

of n-dimensional frameworks. An n-dimensional framework is a decomposition
of the processing flow into n parallel parts op1 to opn and a final fusion procedure
(see Figure 11.3). Each single operation is applied onto the original image, and
then, the n result images are fused by an appropriate algorithm. If the fusion is
specified by a mapping of n values out of a set of m values each onto the set {0, 1},
the framework, as seen from the “outside,” serves as a unit IPC of the kind given
above. There are 2(mn) mappings specified. If m is set to 256 and n to 9, we exactly
meet the requirements of the unit IPC.

This is the key idea of n-dimensional frameworks: they allow for its adaptation
as a whole by adapting the parameters of n operations (each of which could be an
IPC itself), thereby sampling the search space to a much more larger degree as can
be achieved by setitngs a number of internal parameters only.

The question is, of course, if there is a fusion algorithm that really supports the
adaptation of image processing operators. The answer is positive, and in the next
section, the 2D-Lookup algorithm will be identified as such a fusion procedure.

11.3. 2D-Lookup algorithm

The 2D-Lookup algorithm stems from mathematical morphology [16, 17]. It was
primarily intended for the segmentation of color images. However, the algorithm
can be generalized for using on grayvalue images as well.

For applying the 2D-Lookup algorithm, two input images g1 and g2 of same
size and number of bits per pixel are required. These two images can be the result
of applying two image operators onto a single input image, or by extracting color
channels from a color representation of an input image. The nature of the image
operators or channel selections itself does not matter for the application of the 2D
lookup. The other component of the algorithm is a matrix of dimension Ng × Ng

(with Ng being the number of different grayvalues in the two input images) and
having entries from a set of labels, with preference to the same grayvalue range as
the input images.
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for x=0 to img width-1 do
begin

for y=0 to img height-1 do
begin

g1 = g1(x, y)
g2 = g2(x, y)
out (x, y) = l (g1, g2)

end y
end x

Algorithm 11.1

The 2D-Lookup algorithm goes over all common positions of the two-opera-
tion images. For each position, the two pixel values at this position in the images
g1 and g2 are used as indices for looking up the 2D-Lookup matrix. The matrix
element, which is found there, is used as pixel value for this position of the result
image. If the matrix is bi-valued, the resulting image is a binary image.

Let I1 and I2 be two grayvalue images, defined by their image functions g1 and
g2 over their common domain P ⊆ N ×N :

g1 : P �→ {0, . . . , gmax
}

,

g2 : P �→ {0, . . . , gmax
}
.

(11.3)

The 2D-Lookup matrix is also given as an image function l, but its domain is
not the set of all image positions but the set of tupels of possible grayvalue pairs
{0, . . . , gmax} × {0, . . . , gmax},

l :
{

0, . . . , gmax
}× {0, . . . , gmax

}
�→ S ⊆ {0, . . . , gmax

}
. (11.4)

Then, the resulting image function is given by

r : P �→ S,

r(x, y) = l
(
g1(x, y), g2(x, y)

)
.

(11.5)

In standard applications, every grayvalue is coded by eight bit, resulting in a max-
imum grayvalue of 255. Also, the domain of the image function is a rectangle. In
this case, the 2D-Lookup is performed by the pseudocode shown in Algorithm
11.1.

To give a simple example for the 2D-Lookup procedure, gmax = 3 is assumed
in the following. Let

g1 :
0 1 2
0 3 3

, g2 :
2 3 1
2 3 2

(11.6)
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be the two input images and let the 2D-Lookup matrix be given by

l :

g1
g2 0 1 2 3

0 0 0 1 1
1 0 1 2 2
2 1 2 3 3
3 2 3 3 2

(11.7)

Then, the resulting image is

r :
l(0, 2) l(1, 3) l(2, 1)

l(0, 2) l(3, 3) l(3, 2)
= 1 3 2

1 2 3
(11.8)

In the following, the 2D-Lookup matrix will only contain the two entries: Black
(0) and White (1).

A typical base for the matrix can be the so-called 2D histogram. Using the
former notation, the 2D histogram of two images g1 and g2 is a mapping

H
(
ga, gb

) = ∑
(x,y)∈P

δ
(
g1(x, y), ga

)
δ
(
g2(x, y), gb

)
(11.9)

with δ(a, b) being 1 for a = b and 0 otherwise. The entry of H at position of a
grayvalue pair (ga, gb) contains the number of pixel positions (x, y) where image
g1 has grayvalue ga and image g2 has grayvalue gb. Using a normalization factor
(like the maximum value in H), the 2D histogram can be given as an image and
used as a 2D-Lookup matrix.

Figure 11.4 illustrates the relations between 2D histogram and 2D lookup by
means of the Lena image. The subimage to the middle right is the 2D histogram
of the Lena image that was obtained from the red and green channels of the Lena
image (taken as grayvalue images). There are some obvious clusters in this his-
togram that give rise to a labeling as shown in the figure. The five binary images
were obtained by using a 2D-Lookup matrix image each, having all positions of the
segment number i set to black, and white otherwise. So, it can be seen that the bi-
nary image generated by setting all points of label 3 to black (lower-left subimage)
basically covers the mirror structure in the image background. Since the projec-
tion of label 3 into both axis directions of the label image is crossing label 2, it is
not possible to extract this mirror structure from the red or green channel image
of the Lena image alone. More precisely: if one tries to extract the grayvalue range
spanned by the positions of the mirror structure, in either case (red or green) also
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Figure 11.4. Various segmentations of Lena image based on labeling of the 2D histogram of red and
green channels.

some other structures are always selected as well that do not belong to the mirror
structure. The projections of the 2D histogram gives a clear indication for this. The
2D-Lookup algorithm is able to separate the mirror structure directly. From this
simple example, the potential of the 2D-Lookup algorithm for segmentation tasks
can be seen.

11.4. 2D-Lookup-based framework

The 2D-Lookup-based framework (see Figure 11.5) is composed of (user-given)
original image, filter generator, operation images 1 and 2, result image, (user-
supplied) goal image, 2D-Lookup matrix, comparing unit, and filter generation
signal.

The framework can be thought of as being composed of three (overlapping)
layers.

(1) The instruction layer, which consists of the user-supplied parts of the
framework: original image and goal image.

(2) The algorithm layer performs the actual 2D-Lookup, once all of its com-
ponents (original image, operation 1, operation 2, and 2D-Lookup ma-
trix) are given.

(3) The adaptation layer contains all adaptable components of the frame-
work (operation 1, operation 2, 2D-Lookup matrix) and additional
components for performing the adaptation (comparison unit, filter gen-
erator).
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Filter generator Original image

2D-lookup matrix

Filter generation signal

Operation 1 Operation 2

Result imageGoal image

Comparison Fitness

Chromosome

Figure 11.5. 2D-Lookup-based framework: overview.

For the instruction layer, the user interface has been designed as simple as possi-
ble. The user instructs the framework by manually drawing a (binary) goal image
that provides the wanted segmentation of the original image into foreground and
background. In this image, all pixels of the background segment are set to White
and all pixels of the foreground (e.g., the location of a texture fault, or the hand-
writing on a textured bankcheck background) are set to Black. No special texture
model has to be known by the user. There are no further requirements for the goal
image.

For making the framework the subject of an evolutionary adaptation, several
aspects have to be considered in more detail.

(1) Fitness function: assuming the operation images and the 2D-Lookup
matrix to be given, the result of 2D lookup has to be compared with the
user-supplied binary goal image (indicated as “comparison” in Figure
11.5). This is achieved by a fitness function that measures the degree of
spatial correspondence between two binary images.

(2) Derivation of 2D-Lookup matrix: once the two-operation images are
known, it can be expected that the 2D-Lookup matrix can be adapted in
order to give the best fitness to the goal image as result of the 2D lookup.
Later on (see Section 11.4.2) we will provide exactly such a procedure,
making the 2D-Lookup matrix a function of the operation images 1 and
2 and the goal image alone, and without the need of any further adapta-
tion.

(3) Having the fitness function and the method to derive the 2D-Lookup
matrix, it only remains to specify the two-operation images. Here, the
task can be handled by an evolutionary procedure. In summary, we de-
cided to use the representation of operations as expression trees, and us-
ing genetic programming in order to derive optimal image operations.
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Figure 11.6. Terms for fitness evaluation.

In the following sections, these necessary specifications of the framework will
be presented.

11.4.1. Fitness function

In order to compare the output image of the 2D Lookup with the goal image,
a quality function has to be designed for the comparison of two binary images.
First, the definition of this fitness function will be given, then it will be discussed.

Consider Figure 11.6, where two sets are shown, the reference set of the goal
image and the pattern set of the result image. The reference set of the goal image
is the set of all black pixels in the goal image that is given by the user. The pattern
set of the result image is the set of all black pixels of the result image.

Therein, countBlack is the number of black pixels in the result image (B +C),
matchBlack is the number of black pixels of the result image, which are also black
in the goal image (B), and refBlack is the number of black pixels of the goal image
(A + B). Then, the following ratios can be computed:

r1 = matchBlack
refBlack

, (11.10)

where r1 is the sensitivity, or amount of reference pixels matched by the pattern,

r2 = 1.0− countBlack−matchBlack
N − refBlack

, (11.11)

where r2 is the specificity, or amount of correct white pixels set in the result image
(N is the total number of image pixels), and

r3 = matchBlack
countBlack

, (11.12)
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where r3 is the positive predictivity, or percentage of matching pixels of the result
image. In case of empty reference or pattern sets (white images), r1 and r3 are set
to 0, respectively.

The multiple objective here is to increase these measures simultaneously. Af-
ter performing some experiments with the framework, it was decided to use the
following weighted sum of these three objectives as fitness measure:

freference(pattern) = 0.1r1 + 0.5r2 + 0.4r3. (11.13)

This fitness measure has the following properties.
(1) It counts better for patterns that are subsets of the reference. Subsets

obtain a fitness value of at least 0.9, since in this case specificity r2 and
positive predictivity r3 both take the value 1.

(2) It counts better for patterns that are subsets of the reference, and which
are supersets of other patterns that are also subsets of the reference (su-
persets of patterns have a larger value for sensitivity r1 than the pattern,
and again, r2 = r3 = 1).

(3) A white image as pattern gives a fitness of 0.5 (only specificity r2 �= 0),
therewith refusing to assign a good fitness value to the empty subset of
the reference.

These properties make this fitness measure useful for heuristic search procedures.
Initially, higher fitness values can be obtained by increasing the higher weighted
objective first. In our case this means that specificity r2, weighted with 0.5, is im-
proved first. In other words, the first subgoal of the search could be to allocate as
many correct white positions as possible. Due to the slightly smaller weighting of
0.4 for the positive predictivity r3, the search then could continue to allocate also
correct black positions of the reference, while the correct white allocations persist
in the pattern. Once, by this exploration, the pattern is reduced to a subset of the
reference, the only way to increase the fitness is to expand the subset towards the
whole reference set. This begins, when the fitness exceeds a value of about 0.9, and
exploitation starts.

11.4.2. Deriving a 2D-Lookup matrix

It was already noted that the specification of a 2D-Lookup matrix can be done
without the need for a separate adaptation. To make this more clearly, we recall
the dependencies between the parts of the framework. Using the notations in for
the original image, goal for the goal image, op1 and op2 for the two-operation
images after applying the operators o1 and o2 to in, res for the result image and lt2
for the 2D-Lookup matrix, the 2D-Lookup LU2 can be formally written as

res = LU2
(
o1(in), o2(in), lt2

) = LU2
(
op1, op2, lt2

)
, (11.14)
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and thus it can be expected that there is also an operation or algorithm REL to
specify lt2 from the other terms in (11.14):

lt2 = REL
(
op1, op2, res

) = REL
(
op1, op2, goal

)
. (11.15)

The replacement of res with goal expresses the fact that the primary intention of
the adaptation is to have the relation res = goal fulfilled as good as possible.

For specifying REL, we consider a family of simple 2D-Lookup matrices,
where all positions but one position (a, b) are set to White (1), and the remain-
ing position (a, b) is set to Black (0). Then, the 2D lookup will give a resulting
image with all positions (x, y) set to Black, for which operation o1 yielded pixel
value a at (x, y) in op1 and operation o2 yielded pixel value b at (x, y) in op2. Usu-
ally, there will be only a few black pixels within the result image. Now, we compute
the fitness measure in (11.13) taking the set of black positions in the result image
as the pattern set, and the black pixels of the goal image as reference set. As it was
remarked in the former section, the fitness measure will give values above 0.9, if
the pattern set of black pixels lies completely within the reference set, even if this
set contains only one pixel. So, a simple criterion can be derived for setting a pixel
to Black or White in the 2D-Lookup matrix.

Let l(a,b) be a two-dimensional matrix constituted by setting only the position
at (a, b) to Black (0) and all others to White (1), and let res(a,b) be the result of the
2D lookup with the operation images op1 and op2 and this matrix l(a,b). Then we
use for REL:

lt2(a, b) =
⎧⎨⎩Black (0) if fgoal

(
res(a,b)

)
> 0.88,

White (1) otherwise.
(11.16)

It can be seen that this procedure REL only requires the operation images op1

and op2, and the goal image goal. In case there are no black pixels in res(a,b) at
all, lt2(a, b) is set to Gray (0.5), which stands for positions within the 2D-Lookup
matrix, whose pixel value pairs do never occur within the operation images op1

and op2 at the same location. The value 0.88 has been chosen instead of 0.9 to
tolerate a few black pixels in res(a,b) to be out of the goal set.

Figure 11.7 shows the result of the algorithm REL for the derivation of a
suitable 2D-Lookup matrix for two example operation images. This procedure,
which resembles a relaxation procedure, gives a quasioptimal 2D-Lookup matrix
for given operation images op1 and op2.

By this specification, the algorithm looks rather time consuming. However,
by doing some book keeping, and using the fact that only points will be set to
Black in the 2D-Lookup matrix, for which the corresponding grayvalue pairs in
the operation images have at least one position that is also set black in the goal im-
age, the processing time can be remarkably reduced. In the pseudocode shown in
Algorithm 11.2, the 2D-Lookup matrix is derived as a grayvalue image lt of size
256× 256 and with Black positions set to grayvalue 0, White psoitions to 255, and
Gray positions to 127.
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g1

g2 lrelaxation(g1, g2)

Result image

Goal image

Figure 11.7. In the middle, the result of applying algorithm REL to two-operation images (left) and
given goal image (bottom right) can be seen, and top right is the result of the application of this 2D-
Lookup matrix to the two-operation images.

Algorithm REL:
Input: op1, op2 - operation images; goal - goal image
Output: lt - grayvalue image of size 256x256
−−−
Init:
- set all pixels of lt to 127
- compute refBlack from goal

Algorithm:
for all pixel positions (i, j) with goal (i, j) = 0
begin

g1 := op1(i, j), g2 := op2(i, j)
if lt (g1, g2) = 127 then

countBlack := 0; matchBlack := 0;
for all pixel positions (k, l) in op1

if op1(k, l) = g1 and op2(k, l) = g2 then
countBlack++;
if goal (k, l) = 0 then matchBlack++; end if

endif
compute f = f (countBlack, matchBlack, refBlack)

if f >= 0.88 then lt (i, j) := 0;
else lt (i, j) := 255;

endif
end for all (k, l)

endif
end for all (i, j)

Algorithm 11.2

The following section describes the manner by which the two operations
needed are derived by an individual of a GP.
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g1 g2 g3

g4 g5 λ−

Original image

Figure 11.8. Example for the intermediate images that were generated for an operator tree with oper-
ation images 1 and 2 on the top row.

11.4.3. Generic operator design

The operator selection is based on a tree-like representation of the image process-
ing operations. Each node in the tree refers to a generic image processing opera-
tion out of the set squaring, square root, move, ordered weighted averaging (OWA
[21]), fuzzy T-norm, and fuzzy integral [19] for nodes of arity one, and pixelwise
addition, subtraction, multiplication, and T-Norm for nodes of arity two (higher-
arity nodes are not used). The parameters of such a node operation are given by a
parameter structure resource, with the same structure for all nodes. This parameter
structure resource indicates an offset vector (for move operation), a weighted mask
(for OWA, T-norm and fuzzy integral), a weighting vector (for OWA) and some
flags and mode values. See [8] for more details on the operation specifications.

In the framework presented here, the operator selection is performed two
times, to get the operation images, from which the 2D-Lookup matrix is derived.
In all cases, the operation trees and the parameter structures are randomly ini-
tialized, and adapted later on by genetic programming [10, 11] as optimization
procedure to gain high fitness values.

The structuring of image processing operations by the trees has been chosen
in this manner for the following reasons.
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(i) The random selection of operations, which are represented by such trees,
can be done in a user-driven manner that favors well-known image pro-
cessing operations. Thus, a tree could be made more likely to represent
operations as dilation, erosion, closing, opening, morphological gradi-
ents, Sobel operator, statistical operators, Gaussian filtering, shadow im-
ages and so forth.

(ii) The represented operations are unlikely to give unwanted operation im-
ages, which are completely white or black.

(iii) The employed operators are local, that is, for each position of the result
image, the computed value is a function of the grayvalues of a bounded
domain (containing the same position) of the original image.

The maximum arity of a node is set to two. Also, maximum tree depth was re-
stricted to five. This was set in order to allow for the maintenance of the obtained
trees, for example, for manually improving the designed filters by removing re-
dundant branches. Processing time is kept low, too (but in the present version of
the framework, processing time does not go into the fitness function itself!).

Figure 11.8 shows a typical tree constructed in this manner and applied to
an input image with a fault structure on textured background (bottom subimage).
Figure 11.9 gives some operation images obtained from the same original image by
different randomly constructed and configured trees. These images demonstrate
the variabilty of the generated operations, each of which enhances or surpresses
different image substructures, and none of which gives a trivial image operation.

11.5. Framework extensions

In this section, we will introduce two optional extensions of the framework. The
next section is devoted to the aspect of obtaining filters with higher generalization
ability, and then, an optional preprocessing module based on 2D lookup with the
2D histogram is presented.

11.5.1. Reconstruction of the 2D-Lookup matrix

An important question is the generalization ability of the designed filters. While
they were designed for one and only one input-goal image pair, it may not be
obvious how the filter performs, if they are applied to the same situation presented
by another image.

The key for checking generalization ability of such a designed filter is given
by the generated 2D-Lookup matrices. These matrices can be manipulated for
improving the filter’s generalization ability. Figure 11.10 shows some 2D-Lookup
matrices, which were the result of applying the framework to various texture fault
examples (the texture faults themselves are of minor interest for the following). By
considering these matrices, the following can be noted.

(i) Some matrices seem to be separable, that is, the textured background is
represented by a group of compact white regions. The fault appearance
(the black dots) are well separated from these regions.
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Figure 11.9. Result images of a random initialization of a population of image processing operators.

Figure 11.10. Example for 2D-Lookup matrices generated by the 2D-Lookup framework.
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(ii) The gray parts of the matrices represent positions, for which no special
rule could be assigned, since the corresponding pair of grayvalues was
not present in the operation images at the same position.

(iii) There are noncompact, noisy regions, where black and white dots are
completely admixed. This seems to be a combined effect. The grayvalues
around some position, which was indicated as foreground in the goal
image, could be similar (but not equal) to grayvalues around positions
that were indicated as background in both operation images. This is a
conflict in the assignment, as given by the goal image, and the rapid
changes between black and white for closeby positions reflect such an
ambiguity of an optimal assignment. The conclusion is that these filters
are not able to achieve a good separation between image foreground and
background.

(iv) Some matrices are separable by a horizontal or vertical straight line (e.g.,
lower left example of Figure 11.10). This means that the 2D-Lookup al-
gorithm can be simplified to thresholding op2 or op1, respectively.

To summarize: compactness within the 2D-Lookup matrices is considered as main
provision for filter’s high generalization ability. If the matrices are manipulated in
a manner, which enhances compactness of its black and white regions, the filter
will perform better on newly presented images (possibly for the price of a slightly
lower performance on the input image, from which the filter was designed).

But filter performance is not the only advantage of such a procedure. If it
would be possible to provide a description of the compact regions within a 2D-
Lookup matrix on a higher level than by its plain pixel sets, this information would
allow for deriving texture models from the framework’s results.

This leads to a new statement of the problem: to find out about compactness
within the class of images, to which 2D-Lookup matrices belong.

Neural networks would give a suitable procedure for the segmentation of the
matrix, since they attain generalization from data. In the following, an approach
based on the use of the unit radial basis function network (Unit-RBF), as proposed
in [1] will be given. The Unit-RBF approach is directly applicable to the problem
of approximating 2D-Lookup matrix images. The derived 2D-Lookup matrix was
decomposed into a black part and a white part. Since there are often fewer fore-
gound pixels in the goal images than background pixels, the black part image was
further processed by morphological closing operation (to join some isolated black
dots into a single segment). Then, the Unit-RBF approach was used to reconstruct
both images, rec1 from the black part, rec2 from the white part, and both images
were pixel-wise fused into a single image by using the rules given in Table 11.1.
Note that the entry 127 stands for undecidable positions, where no evidence can
be obtained from the framework adaptation.

Figures 11.11 and 11.12 give some examples for the replacement of the derived
2D-Lookup matrix with the reconstructed one. It can be seen that the differences
between the results are not very large, and that the reconstructed matrices have a
much simpler structure.
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Table 11.1. Rules for fusion of the two Unit-RBF images at position (x, y).

rec1 rec2 rec

> 127 >127 max(rec1, rec2)
>127 ≤127 rec1

≤127 >127 127
≤127 ≤127 min(rec1, rec2)

Figure 11.11. Reconstruction of 2D-Lookup matrix. Upper row shows the original image, the 2D-
Lookup matrix as it was adapted by the 2D-Lookup-based framework, and its reconstructed version.
The lower row shows the goal image, the result of 2D lookup using adapted 2D-Lookup matrix, and
the result using the reconstructed matrix.

Figure 11.12. Another example for 2D-Lookup matrix reconstruction. The lower row shows the goal
image, the result of 2D lookup using adapted 2D-Lookup matrix, and the result using the reconstructed
matrix.

11.5.2. Optional preprocessing module

The framework has shown a good performance on a broad range of filtering tasks.
Filtering here means the separation of image foreground and background.
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(a) (b) (c)

Figure 11.13. Low-contrast stroke processing (a) shows a stroke on a collagen sheet, (b) shows a detail
enlarged, (c) gives the output of best 2D-Lookup adaptation, demonstrating the poor performance of
this algorithm in this case.
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Figure 11.14. Extended framework for 2D-Lookup adaptation, with optional 2D histogram lookup
preprocessing module.

However, it also showed some falacities. So, a rather poor performance on
foreground appearance with very low contrast against the background was noted.
Figure 11.13 gives an example. The stroke-like fault structure in Figure 11.13(a) (a
scratch in a collagen sheet), clearly visible for a human, becomes nearly “invisible”
while getting enlarged (see Figure 11.13(b)). Figure 11.13(c) shows the result of
2D-Lookup adaptation, revealing only some random dot locations of the fault.

Analyzing this problem, it came out that the framework employs local image
processing operators only. Local processing here means that the domain of the
image processing operations is bounded to a spatial neighborhood of each pixel.
Detection of a stroke as the one in Figure 11.13 cannot be achieved by such a local
processing.

This subsection presents an approach to solving such problems, by introduc-
ing an extension of the 2D-Lookup framework, referred to as 2D histogram lookup
procedure. It is also based on the 2D lookup, but uses the normalized 2D his-
togram as 2D-Lookup matrix. The main advantage of this approach is that the
mapping assigns a low grayvalue to positions with grayvalue pairs that appear in-
frequently in the operation images (there are fewer corresponding entries in the
2D histogram). This increases the contrast of “untypical” image structures against
the background, and thus simplifies the following 2D-Lookup adaptation task.

Figure 11.14 shows the general framework for 2D-Lookup adaptation, with
the optional 2D histogram lookup extension. The components will be described in
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the following sections. As can be seen, the extension has nearly the same structure
as the framework without extension, only the specification of the lookup matrix
LT is different.

The 2D histogram lookup is the 2D-Lookup algorithm with using the nor-
malized 2D histogram as lookup matrix (see end of Section 11.3).

For using the 2D histogram as lookup matrix, its entries have to be scaled into
the range of feasible grayvalues. For usual goal image sizes, entries in the 2D his-
togram are seldom larger than the maximum grayvalue, so the entries themselves
can be used as lookup matrix values, bounded at 255. Also, a contrast improve-
ment by linearization is reasonable, for gaining better contrast in the result image.
Linearization is the operation of making the sum-histogram of grayvalues stepwise
linear. It replaces each grayvalue in the image with the relative number of grayval-
ues equal or below this grayvalue. Hereby, the large number of zero entries in the
2D histogram is neglected, thus starting linearization at grayvalue 1.

While gaining higher contrast by linearization, the number of different gray-
values now in the result image becomes reduced. This gives images with a cluttered
appearance of the 2D-Lookup matrices in the following 2D-Lookup adaptation
step. This effect can be reduced by using a Gaussian smoothing operator of size 3
on the linearized image.

The framework for 2D-Lookup adaptation was extended in order to enable
the processing of low-contrast foregrounds. Figure 11.15 gives a complete example
for such an adapted filtering. This example demonstrates several things.

(i) The final result image in the lower left is much more similar to the goal
image than in Figure 11.13(c).

(ii) The result of the 2D histogram lookup preprocessing step has increased
the contrast of the stroke against the background. This allows for the fol-
lowing 2D-Lookup adaptation step to achieve that better performance.

(iii) The operation trees are not “smart” in the sense that parts of them may
do not have much influence on the operation result of the full tree. So,
the left wing of the operation 1 of the 2D lookup (the tree left below
in Figure 11.15) basically produces a gray image, from which a shifted
version of the preprocessed image is subtracted. Such parts can be re-
moved in a manual redesign phase of the filters after adaptation (espe-
cially when they involve computationally more expensive node opera-
tions like the fuzzy integral).

(iv) The 2D lookup for this example is basically a lookup with the cooccur-
rence matrix of the preprocessed image.

(v) The essential part of this filter lies in the operation 2 of the preprocessing
(upper right tree): the 2D histogram, with its line-like structure, forks
for some higher grayvalue pairs, thus stimulating a separation of image
parts into foreground and background.

Figure 11.16 shows another example, without the intermediate results. This is
a so-called “vibrating knife” fault that may occur in collagen slicing. The extended
framework shows a good performance here as well.
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Figure 11.15. Complete example for the extended framework adapted to the low-contrast stroke in
Figure 11.1.

11.6. Some results

In this section, some results of the application of the presented framework to some
texture analysis problem are presented. For the genetic programming, setting was
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(a) (b)

Figure 11.16. Result of the extended framework for vibrating-knife fault.

Figure 11.17. Application of the framework to textile fault problems.

standard: 40 trees were used in each generation, and standard tournament cross-
over was the only genetic operator used in each generation to produce 80 children
nodes. The size of initial trees was restricted to have at least three nodes and to have
not more than 9 nodes. The evolution ran until there was no diversity anymore in
the population, which usually happened after about ten generations.

In Figures 11.17–11.20 the subimage order of each block is: upper-left
subimage is the original image, lower-left is the user-given goal image. Right and
below the original image are the two-operation images that are the result of the
application of the evolutionary adapted trees to the original image, and that are
the input operands for 2D-Lookup algorithm. The arrows from the operation im-
ages point to the used 2D-Lookup matrix (also indicated as a function of the two-
operation images and the goal image), and lower right is the obtained result image.

11.7. Summary

A framework was presented, which allows for the design of texture filters for fault
detection (two class problem). The framework is based on the 2D-Lookup algo-
rithm, where two filter output images are used as input.
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Figure 11.18. Application of the framework to further textile fault problems.

Figure 11.19. Application of the framework to floor pattern fault problems.

The approach can be applied to a large class of texture analysis problems. The
results, obtained without “human intervention,” are ready-to-use texture filters.
Also, they can be tuned in order to obtain even more better results, or combined
in a superposed inspection system. The following are our experiences during the
use of the system.

(i) The framework was able to design texture filters with good or very good
performance.

(ii) The goal image matched the fault region quite satisfactorily.
(iii) Bordering regions should be neglected for fitness evaluation.
(iv) The framework was able to design filters for the detection of noncom-

pact fault regions and fault regions with varying appearance.
(v) The designed filters may be subjected to further improvements by the

user.
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(a) (b)

Figure 11.20. (a) application of the framework to cast fracture problem and (b) extraction of sheering
area on torned paper piece.

Improvements of the whole architecture were considered as well: one is based
on an evaluation of the 2D-Lookup matrix by neural networks in order to get a
more comprehensive solution for a given texture filtering problem, the other for
extending the application scope to low-contrast texture fault processing, that is,
faults which are hard to separate from the background texture. The second ex-
tension of the framework is a two-stage one, based on 2D histogram lookup and
consecuting 2D-Lookup adaptation.
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[7] M. Köppen and X. Liu, “Texture detection by genetic programming,” in Proceedings of the IEEE
Conference on Evolutionary Computation (CEC ’01), vol. 2, pp. 867–872, Seoul, South Korea, May
2001.
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[9] M. Köppen, A. Zentner, and B. Nickolay, “Deriving rules from evolutionary adapted texture filters
by neural networks,” in Proceedings of IEEE International Conference on Fuzzy Systems (FUZZY
’99), vol. 2, pp. 785–790, Seoul, South Korea, 1999.

[10] J. R. Koza, Genetic Programming—On the Programming of Computers by Means of Natural Selec-
tion, MIT Press, Cambridge, Mass, USA, 1992.

[11] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press, Cam-
bridge, Mass, USA, 1994.

[12] B. T. Lam and V. Ciesielski, “Applying genetic programming to learn spatial differences between
textures using a translation invariant representation,” in Proceedings of the IEEE Conference on
Evolutionary Computation (CEC ’05), vol. 3, pp. 2202–2209, Edinburgh, UK, September 2005.

[13] M. Köppen, A. Soria-Frisch, and T. Sy, “Using soft computing for a prototype collagen plate
inspection system,” in Proceedings of the IEEE Conference on Evolutionary Computation (CEC ’03),
vol. 4, pp. 2844–2850, Canberra, Australia, December 2003.

[14] R. Poli, “Genetic programming for feature detection and image segmentation,” in Evolutionary
Computation, AISB Workshop, T. C. Forgarty, Ed., pp. 110–125, Springer, Brighton, UK, April
1996.

[15] D. G. Stork, R. O. Duda, and P. E. Hart, Pattern Classification, John Wiley & Sons, New York, NY,
USA, 2nd edition, 2000.

[16] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, UK, 1982.
[17] J. Serra, Image Analysis and Mathematical Morphology 2: Theoretical Advances, Academic Press,

London, UK, 1988.
[18] S. A. Stanhope and J. M. Daida, “Genetic programming for automatic target classification and

recognition in synthetic aperture radar imagery,” in Proceedings of the 7th International Conference
on Evolutionary Programming (EP ’98), pp. 735–744, Springer, San Diego, Calif, USA, March 1998.

[19] M. Sugeno, Fuzzy Control, Nikkan Kogyo Shimbun-sha, Tokyo, Japan, 1988.
[20] W. A. Tackett, “Genetic programming for feature discovery and image discrimination,” in Pro-

ceedings of the 5th International Conference on Genetic Algorithms (ICGA ’93), S. Forrest, Ed., pp.
303–309, Morgan Kaufmann, Urbana-Champaign, Ill, USA, June 1993.

[21] R. R. Yager, “On ordered weighted averaging aggregation operators in multi-criteria decision
making,” IEEE Transaction on Systems, Man and Cybernetics, vol. 18, no. 1, pp. 183–190, 1988.
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A practical review on
the applicability of different
evolutionary algorithms to
3D feature-based image
registration

Oscar Cordón, Sergio Damas,
and José Santamaŕıa

12.1. Introduction

Image registration (IR) [9, 59] is a fundamental task in computer vision used to
finding either a spatial transformation (e.g., rotation, translation, etc.) or a cor-
respondence (matching of similar image entities) among two (or more) images
taken under different conditions (at different times, using different sensors, from
different viewpoints, or a combination of them), with the aim of overlaying such
images into a common one. Over the years, IR has been applied to a broad range
of situations from remote sensing to medical images or artificial vision and CAD
systems, and different techniques have been independently studied resulting in a
large body of research.

IR methods can be classified in two groups according to the nature of im-
ages: voxel-based IR methods (also called intensity-based), where the whole im-
age is considered for the registration process; and, on the other side, feature-based
methods, which consider prominent information extracted from the images, being
a reduced subset of them. The latter methods take advantage of the lesser amount
of information managed in order to overcome the problems found in the former
when the images present some inconsistences to deal with, for example, regardless
of changes in the geometry of the images, radiometric conditions, and appearance
of noise and occlusion. These features correspond to geometric primitives (points,
lines, surfaces, etc.) which are invariant to the transformation to be considered
between the input images. Moreover, the latter methods perform faster than the
former ones due to the reduced amount of data they take into account, at the ex-
pense of achieving coarse results.

Likewise, IR is the process of finding the optimal spatial transformation (e.g.,
rigid, similarity, affine, etc.) achieving the best fitting/overlaying between two (or
more) different images named scene and model images. They both are related
with the latter transformation, measured by a similarity metric function. Such
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transformation estimation is interpreted into an iterative optimization procedure
in order to properly explore the search space. Two search approaches have been
considered in the IR literature: matching-based, where the optimization problem
is intended to look for a set of correspondences of pairs of those more similar
image entities in both the scene and the model images, from which the registra-
tion transformation is derived; and the transformation parameter-based, where the
strategy is to try to directly explore inside each range of the transformation pa-
rameters. Both strategies can be used with either a voxel-based or a feature-based
approach.

Aspects such as the presence of noise in images, image discretizations, orders
of magnitude in the scale of the IR transformation parameters, the magnitude of
the transformation to be estimated cause difficulties for traditional local optimiz-
ers (gradient- and nongradient-based) and they become prone to be trapped in lo-
cal minima. Hence, the application of several well-known evolutionary algorithms
(EAs) (see Section 12.3) to the IR optimization process has introduced an out-
standing interest in order to solve those problems due to their global optimization
techniques nature. The first attempts to solve IR using evolutionary computation
[5] (EC) can be found in the early eighties. Fitzpatrick et al. [25] proposed such
approach based on a genetic algorithm (GA) [27] for the 2D case and applied it
to angiographic images in 1984. Since then, several evolutionary approaches have
been proposed to solve the IR problem.

In this chapter, we develop a practical review of the most relevant contribu-
tions (evolutionary and nonevolutionary techniques) that deal with the 3D
feature-based IR problem using similarity transformations. Techniques based on
both the matching and the transformation parameters approaches will be consid-
ered. Likewise, the experiments considered refer to four different realistic brain
images, commonly used in IR literature for testing new IR methods, as well as to
four significant test transformations to be estimated. Results are obtained always
under the same conditions for all the IR methods considered, taking into account
a number of different runs in order to avoid execution dependence. Because of
the random nature of the EAs, it is mandatory to perform a minimum number
of runs in order to guarantee the reproducibility of the experiment results. With
this work, we want to highlight the performance of the EC paradigm to solve the
IR problem and to encourage researchers in this field (and others) to increase the
performance achieved by the present methods by contributing with new and im-
proved EC mechanisms.

Addressing the structure of this chapter, in Section 12.2, we give some IR
basics analyzing each of the principal components of a general IR method, and
underlining those vulnerable aspects found by traditional IR methods. Next, we
make a critical review of the existing evolutionary approaches to the IR problem in
Section 12.3. Then, we develop a practical review in Section 12.4 where we make
a broad benchmarking to test those IR methods which we consider most rele-
vant in the literature together with some of our proposals in the field. Finally, in
Section 12.5, conclusions and future open lines are addressed.
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Figure 12.1. The IR optimization process.

12.2. The image registration problem

An extensive survey on IR methods is out of the aim of this contribution. Nev-
ertheless, we want to introduce the key concepts related to the IR methodology.
During the last decades, many different taxonomies have been established to clas-
sify the huge amount of IR methods presented so far [9, 59], considering different
criteria: the image acquisition procedure, the search strategy, the type of transfor-
mation relating the images, and so forth.

Besides, there is not a universal design for a hypothetical IR method that
could be applicable to all registration tasks, since various considerations on the
particular application must be taken into account. However, IR methods usually
require the four following components (see Figure 12.1): two input Images (see
Section 12.2.1) named as Scene Is = {�p1, �p2, . . . , �pn} and Model Im = {�p′1, �p′2, . . . ,
�p′m}, with �pi and �p′j being image points; a registration transformation f (see Section
12.2.2) being a parametric function relating the two images; a similarity metric
function F (see Section 12.2.3) in order to measure a qualitative value of closeness
or degree of fitting between the transformed scene image, denoted by f ′(Is), and
the model image; and an optimizer which looks for the optimal transformation
f inside the defined solution search space (see Section 12.2.4). In the subsequent
subsections, we will deeply analyze each of these four IR components.

Hence, the key idea of the IR process is focused on determining the unknown
parametric transformation, that relates both images, by placing them in a common
coordinate system bringing the points as close as possible. Because of the uncer-
tainty underlying such transformation, the IR task arises as a nonlinear problem
that cannot be solved by a direct method (e.g., resolution of a simple system of
linear equations). It should be solved by means of an iterative procedure search-
ing for the optimal estimation of f , following a specific search space optimization
scheme aiming at minimizing the error of a given similarity metric of resemblance.
Classical local optimizers can be used for this task although their main drawback
(see Section 12.2.4) is that they usually get trapped in a local minima solution. The
main reasons for such behavior are related to both the nature of the problem to be
tackled and the greedy/local search features of these methods. Hence, the interest
on the application of EAs to the IR optimization process has increased in the last
decade due to their global optimization nature.
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12.2.1. Nature of images

According to the nature of images, IR methods can be classified as voxel-based (or
intensity-based) and feature-based [59]. While the former directly operate with the
whole raw images, the latter approaches introduce a previous step: before the ap-
plication of the registration process, a reduced subset of the most relevant features
are extracted from the images. Since voxel-based methods can deal with a major
amount of image information, they are often considered as fine-tuning registration
processes, while feature-based methods typically achieve a coarser approximation
due to the reduced data they take into account.

One important drawback of voxel-based approaches relies on the commonly
used rectangular window for the correspondence estimation. If the images are de-
formed by complex transformations, this type of window will not be able to cover
the same parts of the transformed scene and model images. Moreover, if the win-
dow contains a smooth image region without any prominent detail, it will prob-
ably be incorrectly matched to other smooth image region in the model image.
Nevertheless, the principal disadvantage of voxel-based methods comes from situ-
ations where there are changes in illumination during the acquisition of the scene
and the model images. In that case, the similarity metric offers unreliable mea-
surements and induces the optimization process to be trapped in local minima.

With the intention of avoiding many of the drawbacks related to voxel-based
methods, the second IR approach is based on the extraction of prominent geo-
metric primitives (features) from the images. The proper comparison of feature
sets will be possible using a reliable feature detector that confronts the accurate ex-
traction of invariant features, that is, regardless of changes in the geometry of the
images, radiometric conditions, and appearance of noise. There are many differ-
ent features that can be considered, for example, region features, line features, and
point features, among which corners are widely used due to their invariance to the
image geometry.

For the final practical review of the most relevant IR methods (Section 12.4),
we have decided to choose the feature-based approach, where the features con-
sidered are prominent image points extracted from magnetic resonance images of
brains using local curvature information (see Section 12.4.1).

12.2.2. Transformations

We can classify IR methods according to the registration transformation model
used to relate both the scene and the model images. The first category of trans-
formation models includes linear transformations, which preserves the operations
of vector addition and scalar multiplication, being a combination of translation,
rotation, global scaling, and shear components. Among the most common linear
transformations are rigid, similarity, affine, projective, and curved.

Linear transformations are global in nature, thus not being able to model local
deformations. The second category of transformation models includes “elastic” or
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“nonrigid” transformations. These transformations allow local warping of image
features, thus providing support for local deformations.

The kind of transformation model considered will depend on the particu-
lar application addressed and the nature of images it will take into account. The
registration transformation f that we will use in the latter practical benchmark-
ing (Section 12.4) is a 3D similarity one composed of a translation, a rotation,
and a uniform scaling, which has been considered to register aerial and satellite
images, bony structures in medical images, and brain multimodal images [29],
among other applications.

12.2.3. Similarity metric

One of the most important components of any IR method is the similarity metric.
This is considered as a function F that measures the goodness of a given registra-
tion solution, that is, of a registration transformation f . The final performance of
any IR method will depend on its accurate estimation.

Each solution is evaluated by F applying such transformation f to one of
the two images, usually to the scene image ( f (Is)). Next, the degree of closeness
or fitting between the transformed scene and the model images, Ψ(·) must be
determined,

F
(
Is, Im, f

) = Ψ
(
f
(
Is
)
, Im
)
. (12.1)

There are many approaches trying to estimate such function Ψ(·) depending
on the dimensionality (2D or 3D) and the nature of the considered images, for
example,

(a) voxel-based approach: sum of squared differences [7], normalized cross-
correlation (i.e., correlation coefficient [52] or phase correlation [20]),
and mutual information [54];

(b) feature-based approach: feature values-based metrics (i.e., registration
based on the curvature) and distance between corresponding geometric
primitives [2, 4, 11, 47].

Like in the previous IR components, the F function is affected by both the
discretization of images and the presence of noise, causing worse estimations and
favoring the IR method to get trapped in local minima.

Notice that the huge amount of data (images) required in some applica-
tions makes the problem-solving very complex and the IR procedure very time-
consuming. Therefore, in order to speed up the similarity metric computation,
most of the IR contributions use any spatial indexing data structure in order to im-
prove the efficiency of the considered optimization method, each time the closest
point assignment computation between the transformed scene and model images
must be done. Likewise, this data structure is computed only once at the beginning
of the IR method. Two main variants of spatial indexes can be found in the 3D IR
literature as follows.
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(i) Kd-tree, which consists in a generalization of bisection in one dimension
to k-dimensions in order to build, in the 3D case (k = 3), a binary tree that suc-
cessively cuts the whole space into two rectangular parallelepipeds such that there
is an approximately equal number of points on each side of the cutting plane, for
the xy, xz, and yz planes. We find the first proposal of applying kd-trees to the IR
problem in [58].

(ii) Distance map, a volume (typically a 3D grid) containing a surface, where
each voxel (a given cell on the 3D grid) within the volume links to the closest point
on that surface. Such a data structure has been widely used in computer vision
and recently applied to solve IR with GAs [49]. Yamany et al. [56] considered a
particular distance map, named grid closest point (GCP), which consists of two
cubes splitting the 3D space. The first one divides it into a set of L ×W ×H cells
and covers the two images. The second one only encapsulates the model image
within a rectangular volume of double resolution (2L× 2W × 2H cells). The goal
of this second grid is to reduce the discretization error of the first one, in order to
achieve more accurate outcomes in the final stages of the IR process.

12.2.4. Search space strategies

The derivation of the registration transformation f that relates two given images
has received a great deal of attention during the past. A good review on the topic
can be found in [9, 59] according to transformation estimation.

The IR process performs an iterative exploration to obtain that optimal trans-
formation f (previously introduced in Figure 12.1). So, the closer f to the un-
known global optimum, the better the fitting (measured by the similarity metric
F) between scene and model. The optimization process considered to obtain those
solutions can be deterministic or stochastic (either a global or a local one).

Although the final registration problem solution consists of the right values
for the parameters which determine f , we can distinguish, from the IR literature,
two different strategies to solve the problem, each of them working in a different
solution space: (i) the first searches in the matching space to obtain a set of corre-
spondences of pairs of the most similar image entities in both the scene and the
model images, from which the registration transformation is derived; and (ii) the
second directly makes a search in the space of the f parameters guided by the F
function, called transformation parameters space. We will analyze both strategies
more deeply as follows.

12.2.4.1. Matching-based search space

This search space exploration strategy needs to compute the two following steps
at once: first, a set of matchings (correspondences) with those more similar pairs
of regions of pixels (voxel-based) or geometric primitives (feature-based) in both
the scene and the model images must be established; next, the transformation f is
retrieved by numerical methods considering such matching. Least squares (LS) es-
timators are the most commonly used numerical methods [3, 23, 34], due to their
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special and interesting properties, for example, they only require means, variances,
and covariances to be finite [41].

In the classical theory of estimation, the notion of outliers is vague. They can
be interpreted as erroneous (noisy) observations which are well separated from
the bulk of the data, thus demanding special attention. Besides, we assume that
outliers will not provide any outstanding information about f parameters. On the
contrary, they can damage their correct estimation.

LS estimators assume that the observation of errors must be normally dis-
tributed to perform correctly. In the related literature, we can find some works
proposing extensions of the LS estimator based on the analysis of residuals of the
L2 norm (least squares) to identify erroneous observations [21, 26]. Since out-
liers have an unknown distribution of observations, this kind of estimators can-
not guarantee inferring the true transformation, thus a robust estimator may be
better suited. For instance, the Danish method [36] could be considered, being a
reweighting scheme based on a predefined function that disallow errors by avoid-
ing their corresponding weights, or the well-known M-estimators technique [35],
widely used due to their robustness.

Therefore, the complexity of the matching step and of the following registra-
tion transformation estimation depends on the method being considered. Like-
wise, an iterative process may be followed either for the estimation of the match-
ing, or the registration, or both, until convergence within a tolerance threshold
of the concerned similarity metric. This is the case of the iterative closest point
(ICP) algorithm [8], well-known in CAD systems and originally proposed to re-
cover the 3D transformation of pairs of range images. Next, we will briefly describe
the structure of this local optimizer in order to get a better understanding of the
strategy. The method proceeds as follows.

(i) A point set P with Np points �pi (cloud of points) from the data shape
(scene) and the model X—with Nx supporting geometric primitives: points, lines,
or triangles—is given. The original paper dealt with 3D rigid transformations
stored in the solution vector

�q = [q1, q2, q3, q4, t1, t2, t3
]t

, (12.2)

where the first four parameters corresponded to the four components of a quater-
nion determining the 3D rotation, and the last three parameters stored the trans-
lation vector.

(ii) The procedure is initialized by setting P0 = P, the initial registration trans-
formation to �q0 = [1, 0, 0, 0, 0, 0, 0]t, and k = 0. The next four steps are applied
until convergence within a tolerance τ > 0.

(1) Compute the matching between the data (scene) and model points by
the closest assignment rule: Yk = C(Pk,X)

(2) Estimate the registration by least squares: fk = �(P0,Yk).
(3) Apply the registration transformation to the scene image: Pk+1 = fk(P0).
(4) Terminate iteration if the change in mean square error (MSE) falls below

τ. Otherwise, k = k + 1.
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The original ICP proposal has two main drawbacks: (i) one of the two im-
ages (typically the scene one) should be contained in the other, for example, in
feature-based IR problems, the geometric primitives of one image should be a
subset of those in its counterpart image; and as it has been previously said, (ii)
it cannot handle non-normally distributed observations. Since it was introduced,
many contributions have been proposed extending and partially solving the latter
problems of the original proposal [24, 39, 58]. On the other hand, other proposals
of matching-based IR approaches are to be found in [15, 18].

Notice how the operation of these matching-based IR methods is not guided
by the similarity metric but by the computed matching. In this strategy, the func-
tion F (MSE) only plays the role of the stopping criterion. Moreover, the transfor-
mation estimator (numerical method) is dependent on good choices performed
in the matching step. So, the better the choice of the matchings done, the more
precise the transformation f and, consequently, the more accurate the value of the
similarity metric will be for a proper convergence.

For the later practical benchmarking, among other methods, we have consid-
ered our point-matching contribution that makes use of the scatter search [38]
(SS) EA. Unlike the ICP-based proposals, the SS-based approach is not so depen-
dent on the initial orientation of the scene and model images.

12.2.4.2. Transformation parameters-based search space

Opposite to the previous approach, the second one involves directly searching for
the solution in the space of parameters of the transformation f . To do so, in this
strategy, each solution to the IR problem is encoded as a vector composed of each
one of the values for the parameters of f .

In this way, the IR method works by generating possible vectors of parameter
values, that is, possible registration transformations. Likewise, the second princi-
pal major difference with ICP-based strategies is that the search space exploration
is guided by the similarity metric F. Each solution vector is evaluated by such met-
ric thus clearly stating the IR problem as the parameter optimization procedure of
finding the best values defining f that minimize F.

It is interesting to highlight the fact that the orders of magnitude in the scale
of f parameters are crucial for IR methods dealing with this search space strategy.
Unit changes in angle have much greater impact on an image than unit changes
in translation. Indeed, when applying a rotation, the further a given point on the
image from its center of mass (origin of rotation), the greater the displacement.
Meanwhile, in case of translations, the distance between the transformed scene
and the model images is kept constant. This difference in scale appears as elon-
gated valleys in the parameter search space, causing difficulties for the traditional
gradient-based local optimizers [8, 30]. Thus, if the considered IR method is not
robust tackling these scenarios, the theoretical convergence of the procedure is not
guaranteed, and in most cases, it will be trapped in local minima.

Together with the commonly used local (gradient- and nongradient-based)
optimizers [42], EAs (see Section 12.3) are the most used optimization procedure
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for IR when working with this search space strategy, as can be seen from the large
number of contributions made [10, 13, 15, 17, 30, 45, 49, 51, 56, 57]. Unlike IR
methods based on local optimizers, the main advantage of using EA-based IR
methods is that they do not require a solution near to the optimum one to achieve
high-quality registration results.

12.3. Evolutionary computation and image registration

As we will briefly depict in this section, the application of EAs to the IR optimiza-
tion process has caused an outstanding interest in the last few years. Thanks to the
nature of their global optimization techniques, EAs aim at solving the problems
described in the latter sections, not satisfactorily tackled by traditional IR meth-
ods.

This section is devoted to make an analytical review of the different EC-based
IR approaches proposed in the literature. Some of them will be considered for our
later experimental study based on 3D feature-based IR applied to brain images
(Section 12.4).

The first attempts to solve IR using global optimization techniques can be
found in the early eighties. The size of data, as well as the number of parame-
ters that are looked for, prevents from an exhaustive search for the solutions. An
approach based on a GA was proposed in 1984 for the 2D case and applied to an-
giographic images [25]. Since this initial contribution, different authors solved the
problem but we can still find important limitations in their approaches.

The first of them is the use of a binary coding to solve an inherent real-coding
problem. This leads us to the situation of having to balance the magnitude of the
transformation being considered and the precision of the returned solution, for
a given number of bits in the encoding. Such situation can only be allowable in
environments where precision is not a critical requirement or where we know the
range of change in the parameters of the transformation. Moreover, if we try to get
a more accurate solution increasing the number of bits of the encoding, then the
required time of the algorithm to converge will rise as well.

For instance, in 1989, Mandava et al. [44] used a 64-bit structure to represent
a possible solution when trying to find the eight parameters of a bilinear transfor-
mation. Tsang [53] used 48-bit chromosomes to encode three test points as a base
for the estimation of the 2D affine registration function. In the more recent pro-
posals by Yamany et al. [56] and Chalermwat et al. [10], the same binary coding is
found when dealing with 3D and 2D rigid transformations, respectively. Yamany
et al. enforced a range of ±31◦ over the angles of rotation and ±127 units in dis-
placement by defining a 42-bit chromosome with eight bits for each translation
parameter and six bits for each rotation angle. Meanwhile, Chalermwat et al. used
twelve bits for the coding of the 2D rotation parameter to get a search scope of
±20.48◦, therefore allowing the use of a precision factor for the discretization of
the continuous rotation angle interval, while other ten bits stored each of the two
translation parameters (±512 pixels).
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Apart from the use of the basic binary coding, the kind of GA considered is
usually based on the original proposal by Holland [33]. In this way, a selection
strategy based on fitness-proportionate selection probability assignment and the
stochastic sampling with replacement, as well as the classical one-point crossover
and simple bit flipping mutation, are used. On the one hand, it is well known
that such a selection strategy causes a strong selective pressure, thus having a high
risk of premature convergence of the algorithm. On the other hand, it has also
been demonstrated that it is difficult for the single-point crossover to create useful
descendants as it is excessively disruptive with respect to the building blocks [27].

Another major drawback of many contributions is that they only handle im-
ages related to a rigid transformation [13, 30, 51]. The use of such transformations
can be compatible with a limited number of applications, but this is not the case
in many real situations where at least a uniform scaling is desirable. Different pro-
posals have been made in the 2D case [44, 45, 53] to consider either bilinear or
affine transformations.

In addition, we would like to analyze in deep three recent and very interesting
contributions.

In their proposal [49], Rouet et al. face 3D MR-CT registration by means of
a three-step algorithm. First, global rigid transformation parameters are deter-
mined by a GA working directly on real numbers. Second, they use another point-
matching GA trying to determine a global trilinear transformation. Last, they in-
troduce a post-analysis of the output population of the previous step in order to
achieve a fine tuning of the solution using a local optimization process. This pro-
posal provides one of the most overall approaches to the IR problem using GAs we
have found in the literature. Nevertheless, we still identify different weak points.

(i) Different studies have shown that a balance between population diver-
sity and convergence to the solution is needed in order to get a good
behavior of any GA (to avoid being trapped in local minima). Although
Rouet et al. used the principle of Latin squares1 to control the distribu-
tion of the population over the search space, there are other approaches
that can perform this task better. Niching techniques [19, 28, 27, 43], or
even the principles of the CHC2 algorithm [22] are well-known schemes
for the EC community and seem to be more suitable approaches.

(ii) Moreover, the success of the second step of the algorithm depends on a
precise definition of the curvature class of each point.

(iii) Finally, the use of simple operators (like uniform crossover) in a real-
coded GA is not the best option even if we want to improve the efficiency
of our algorithm [32].

He’s and Narayana’s proposal [30] denoted by GAHe in the experimental
study developed in this contribution, it is a slight improvement of Yamany et al.’s
[56] approach, proposing a real-coding scheme that makes use of an arithmetic

1This procedure is not known in the EC community and we only recognize it as a diversity in-
duction mechanism due to the authors’ explanation.

2CHC stands for Cross generational elitist selection, Heterogeneous recombination, and Cata-
clysmic mutation.
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crossover and a uniform mutation operators within an elitist generational model
that considers a restart mechanism. GAHe deals with rigid transformations fol-
lowing a two-step technique making a first coarse parameter estimation using a
real-coded GA, and then refining such results with the dividing rectangle method
to perform a local search. In the coarse resolution, the ranges of the parameters
were set to:±20 voxels along x- and y-directions and±40 voxels along z direction,
and rotation of±10◦ around x- and y-axes, and±20◦ around z-axis. However, the
setting of the parameters range as well as the rigid transformation between both
images may be a weak point when trying to apply this method to some real-world
environments.

Chow et al.’s GA-based proposal [12] denoted by GAChow, has the same gen-
erational and proportionate-fitness models for population reproduction than the
previous one, and introduces a crossover operator that randomly selects the num-
ber of genes to be swapped. The value to be accumulated for a mutated gene is gen-
erated randomly within a constant range for the rotation genes and dynamically
computed for the translation ones according to the fitness value of the chromo-
some. It makes also use of GAs with more suitable components to the current EC
framework such as a real-coding scheme and a sophisticated restart mechanism
(“dynamic boundary”). In spite of these improvements, there are some drawbacks
in terms of accuracy, as the authors work with a smaller randomly selected data
set from scene images with a huge amount of data. Besides, although the algo-
rithm aims at getting a quick registration estimation with the latter procedure,
the efficiency could be reduced since it needs to perform a sort operation for each
evaluation of the fitness function. As in many of the mentioned proposals, it also
has the limitation of only considering a rigid transformation (translation and ro-
tation). Finally, the restarting scheme assumes that, prior to its application, the
population will fall in a search space zone located into or near to the global opti-
mum.

On the other hand, several approaches based on the use of advanced EAs able
to solve the said problems have been introduced by our research group and are
briefly described as follows.

SS [38] is based on a systematic recombination between solutions from a Ref-
erence Set, instead of a randomized one like the one usually carried out in EAs, and
on a local optimization of the solutions. We have adopted this approach to pro-
pose our SS-based registration method (denoted by SSm) [18] in a combinatorial
optimization fashion that makes use of problem dependent (context) information
by taking into account the curvature information extracted from the tackled im-
ages. We proposed new designs for three of the five SS components, the generator
of diverse solutions, and both the improvement and the combination methods, to
develop a method with improved performance working on the matching search
space.

As said, the main novelty of our SSm contribution is that the heuristic values
of the features of the image isosurfaces (the curvature information that will be
seen in Section 12.4.1) are used to guide the matching. So, we defined a function
merror(·) evaluating the goodness of the matching stored in a given solution coded
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as a permutation, denoted by π, by using the said curvature values. In [18], we
chose the following:

merror(π) = Δk1 + Δk2, where Δkj =
r∑
i=1

(
kij − kπij

)2
, j = {1, 2}, (12.3)

Δk1 and Δk2 measure the error associated to the curvature matching of scene and
model points with different values for the first and second principal curvatures,
respectively.

Meanwhile, the objective function of the SSm method will include both infor-
mation regarding the usual IR measure g(π) (mean square error of point match-
ing) and the previous criterion as follows:

minF(π) = w1 · g(π) +w2 ·merror(π), (12.4)

where w1,w2 are weighting coefficients defining the relative importance of each.
As in CHC EA [16], denoted by CHCbin, we used the sophisticated CHC EA

for the registration of magnetic resonance images (MRIs). To do so, we made use of
binary-coded solutions and the HUX crossover. The second of our proposals in
[16], denoted by CHCreal, was based on the afore-mentioned approach but ex-
tending it to work in a real-coded fashion as well as using different operators as the
BLX-α crossover. In that contribution, f was a similarity transformation. There-
fore, the objective/fitness function of the considered transformation parameters-
based IR algorithms was slightly extended to take into account the scaling param-
eter of such f , since most of these IR methods only dealt originally with rigid
transformations,

F′
(
f ′, Is, Im

) = ω1 ·
(

1

1 +
∑N

i=1

∥∥(sR�pi +�t
)− �p′j∥∥2

)

+ ω2 ·
(

1
1 +

∣∣ρsc − ρm∣∣
)

,

(12.5)

where Is and Im are the scene and model images; f ′ is the transformation encoded
in the evaluated solution; �pi is the ith 3D point from the scene and �p′j is its corre-
sponding nearest point in the model obtained with the spatial index data structure;
ω1 and ω2 (ω1 + ω2 = 1) weight the importance of each function term; ρsc is the
radius of the sphere wrapping up the scene image transformed with the current
f ; and ρm is the radius of the sphere wrapping up the model image. As the first
term of F′ reveals, the error modelled corresponds to the MSE one. Note that F′

maximizes to 1.0 for a rarely perfect fit.
The SS in the transformation parameters-based search space [17]. We intro-

duced a particular design of the SS EA to register MRIs, denoted by SSp, for exam-
ple, using the BLX-α combination method, the Solis and Wets’ local optimizer for
the improvement method, and a frequency-based solution generator for the gener-
ator of diverse solutions.
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12.4. Benchmarking of 3D feature-based IR methods

This section is devoted to developing a practical review of the most relevant
(evolutionary and nonevolutionary) solutions to the 3D feature-based IR prob-
lem using the similarity transformation. Both matching-based and transformation
parameters-based search strategies will be considered with the main goal of com-
paring the ICP-based contributions with the remaining ones dealing with complex
IR scenarios.

12.4.1. 3D images considered

As said, our results correspond to a number of registration problems with four dif-
ferent 3D test brain images. These images have been obtained from the BrainWeb
database at McGill University [14, 37]. The purpose of this simulator is to provide
researchers with ground truth data for image analysis techniques and algorithms.
BrainWeb has been widely used by the IR research community [31, 48, 55].

To establish a more realistic scenario, every medical image under considera-
tion corresponds to one MRI. Moreover, we have added different levels of noise
to three of the four images used to model noisy conditions related to the images
acquired by some devices. Likewise, we cannot neglect one of the most important
goals of IR supporting critical decisions concerning the evolution of a patient’s
lesion. To do so, two of our images will include a multiple sclerosis lesion. The
influence of these two factors (the noise intensity and the presence or absence of
lesion) will allow us to design a set of experiments with different complexity levels.

A preprocessing step has been applied to all these 3D images in order to ob-
tain problem dependent information to guide the IR process as well as to reduce
the huge amount of data stored in the initial instances of the images. Therefore,
we extract the isosurface and select crest-line points [46] with relevant curvature
information from both the scene and model images.

The first image (I1, shown at the top left of Figure 12.2) corresponds to an
MRI of a healthy person obtained with an ideal scanner, that is, no lesion is present
and it is a noise-free scenario. After the isosurface extraction to identify the brain
and the crest-line points study to choose those features with relevant curvature
information, 583 points have been selected. Image I2 (second row of Figure 12.2)
corresponds to a low level of noise scenario (1% of Gaussian noise) of a healthy
person. After using the isosurface extraction, 393 crest-line points have been cho-
sen. The third image (I3, see first cell at the third row of Figure 12.2) includes a
multiple sclerosis lesion (located within the circle) and the same level of noise of
I2. After the isosurface extraction to identify the brain and the crest-line points
study to choose those features with relevant curvature information, 348 points
have been selected. Finally, image I4 (the last one at the bottom left of Figure 12.2)
corresponds to a multiple sclerosis patient where the MRI has been acquired using
a poor device (5% of Gaussian noise is introduced). Blurring can be easily ob-
served in the extracted isosurface. Finally, 284 points with relevant curvature have
been identified.
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Figure 12.2. From top to bottom: the images I1, I2, I3, and I4. For all of them, (a) original MRI with
three views (transverse, sagital, and coronal). Different organs (skull, brain, eyes, etc.) can be clearly
identified. (b) Isosurface corresponding to the brain from the MRI. (c) Crest line points with relevant
curvature information.

12.4.2. IR problems considered

Our results correspond to a number of IR problem instances for the different 3D
images presented above which have suffered the same four global similarity trans-
formations (denoted by T1, T2, T3, and T4 in Table 12.1), to be estimated by the
different 3D IR algorithms applied (see Section 12.4.3). These are ground truth
transformations and they will allow us to quantify the accuracy of the IR solution
returned by every algorithm. Hence, we will know in advance the optimal (i.e., the
true) registration transformation relating every scene and model input, thus being
able to compute the fitness function value (or the similarity metric) associated to
the optimal problem solution (see Section 12.4.5).

As mentioned in Section 12.2.2, similarity transformations involve rotation,
translation, and uniform scaling. They can be represented by eight parameters:
one for the rotation magnitude λ, three for the rotation axis (axisx, axisy , axisz),
three for the translation vector (tx, ty , tz), and one more for the uniform scaling
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Table 12.1. Global similarity transformations applied to every 3D image.

T1 T2 T3 T4

λ 115.0 168.0 235.0 276.9

axisx −0.863868 0.676716 −0.303046 −0.872872

axisy 0.259161 −0.290021 −0.808122 0.436436

axisz 0.431934 0.676716 0.505076 −0.218218

tx −26.0 6.0 16.0 −12.0

ty 15.5 5.5 −5.5 5.5

tz −4.6 −4.6 −4.6 −24.6

s 1.0 0.8 1.0 1.2

Table 12.2. From top to bottom: increasing complexity ranking of the IR problem scenarios consid-
ered.

Scene image Model image

IR problem Lesion Noise Lesion Noise

I1 versus Ti(I2) No No No 1%

I1 versus Ti(I3) No No Yes 1%

I1 versus Ti(I4) No No Yes 5%

I2 versus Ti(I4) No 1% Yes 5%

factor, s. In order to achieve a good solution, every algorithm must estimate these
eight parameters accurately. Values in Table 12.1 have been intentionally selected
as complex transformations to be estimated. Both rotation and translation vectors
represent a strong change in the object location. In fact, the lowest rotation angle
is 115◦. Meanwhile, translation values are also high. Likewise, the scaling factor
ranges from 0.8 (in the second transformation) to 1.2 (in the fourth one). This
way, complex IR problem instances are likely to be generated.

Moreover, in order to deal with a set of problem instances with different com-
plexity levels (see Table 12.2), we will consider the following scenarios (from lower
to higher difficulty): I1 versus Ti(I2), I1 versus Ti(I3), I1 versus Ti(I4), and I2 versus
Ti(I4). Therefore, every algorithm will face sixteen different IR problem instances,
resulting from the combination of the four scenarios and these four different trans-
formations Ti.

12.4.3. IR methods considered

This subsection is devoted to describe the different IR methods to be compared in
the subsequent practical benchmarking. Methods belonging to the matching and
the transformation parameters search space strategies, as well as having either an
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evolutionary or nonevolutionary nature will be considered (see Section 12.4.1 for
all the descriptions of the different EA-based IR approaches).

Concerning the considered matching-based IR methods, I-ICP and ICP + SA
are two of the nonevolutionary techniques found in the specialized literature. The
former IR method considers the rejection of false matchings as robust mechanism
for the point-matching step and inspired on the colinearity constraint. I-ICP was
proposed by Liu [39] for addressing the registration of range images. On the other
hand, the latter was proposed by Luck et al. [40] for the pairwise IR of range images
as an hybrid approach that combines an ICP-based algorithm with a Simulated
Annealing [1] procedure within an iterative process. Moreover, we have considered
our proposal inspired on the SS EA (SSm) as the third matching-based IR method.

With respect to the transformation parameters-based IR methods, three well-
known EA-based IR methods as well as three proposals developed by the au-
thors are used. Yamany et al. [56], denoted by GAYamany, proposed a binary-coded
GA with a generational model for population reproduction and a proportionate-
fitness selection together with a multipoint crossover operator. Two other transfor-
mation parameters-based IR methods considered are those from He and Narayana
[30] (GAHe) and Chow et al. [12] (GAChow). Our three own proposals following
the transformation parameters-based approach SSp, CHCreal and CHCbin were de-
scribed in Section 12.3.

In our experimentation similarity transformations will be considered because
they are the most appropriate for the current medical application. Since some of
the EA-based IR methods were constrained to use rigid transformations, there is
a need to extend them to make them able to deal with the latter kind of registra-
tion transformations. Due to this reason, all of the evolutionary transformation
parameters-based IR methods and the ICP + SA annealing stage will make use of
the same objective function, that shown in (12.5). Thanks to this, we will be able
to develop a fair comparison respect to our previous proposals3.

All the previous IR methods have been implemented with the C++ program-
ming language and compiled with GNU/gcc without code optimization options.

12.4.4. Parameter settings

Before performing the final experimentation, we have just made a preliminary
study on the most suitable parameter values for the different IR algorithms to be
considered. Both the preliminary tests and the subsequent experimentation have
been made on a platform with an Intel Pentium IV 2.6 GHz processor.

For the I-ICP algorithm, we set a maximum of 40 iterations to ensure its
success under some needed favourable initial conditions. For example, an initial
registration transformation close to the ground truth is needed by the algorithm
to achieve good results. Unfortunately, such information from which an optimal

3Note that GAChow slightly modifies the first term of (12.5) to consider the median square
error.
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starting point could be inferred is not usually available, thereby we have chosen
an arbitrary rotation, a translation given from the subtraction of both scene and
model centroids, and a uniform scaling factor estimated as in [34]. Furthermore,
the parameter associated to I-ICP has been set to the same value the author used
in [39].

For the ICP + SA algorithm, a maximum of 40 iterations for the wrapped I-
ICP algorithm has also been fixed. The annealing process considers a maximum
of 50 trial solutions for each one of the 20 annealing iterations, with an initial
temperature value estimated with T0 = [μ/ − ln(φ)]C(S0), where C(S0) is the cost
of the given solution generated by the previous run of I-ICP, and both the μ and the
φ factors take value 0.3. Each ICP + SA two-step iteration involves subsequently
applying the I-ICP algorithm, optimizing the previous solution generated by the
annealing method (if it achieves a best solution reducing the error function), and
starting again a new iteration. We have only considered one iteration for the ICP
+ SA procedure.

Our SS-based point matching proposal, SSm, deals with an initial set P com-
prised 80 diverse solutions, and a RefSet composed of b = b1 + b2 = 10 solutions,
with b1 = 7 in the Quality subset and b2 = 3 in the Diversity subset. The local search
algorithm putting into effect the Improvement Method is run for a maximum of 80
iterations.

In the Dynamic GA (GAChow), we set the size of the initial population to 100
individuals and maintained the remaining specific parameters with their original
values [12].

The size of the initial population is 100 individuals, also for GAYamany, CHCbin,
CHCreal, and GAHe. As regards the number of bits associated to each gene in both
the GAYamany and the CHCbin algorithms, we have preferred to consider large in-
dividuals as we want precise solutions even if we use a wide range for each trans-
formation parameter. This leads us to define the binary chromosome (solution to
the IR problem) as an 80-bit structure: ten bits for each of the eight registration
transformation parameters. On the other hand, the value of the parameter α in
the BLX-α crossover, employed in both CHCreal and GAHe, is consequently set to
0.5, in order to give them a more suitable balance between the exploitative and
the explorative nature for their search space exploration. Thereafter, crossover and
mutation probabilities are set to Pc = 0.6 and Pm = 0.1 for both GAYamany and
GAHe.

The parameter settings for SSp follows. The diverse set P is initialized with
30 solutions (Psize = 30) and the RefSet is composed of the b = 8 best ones of
them, according to quality criterion. BLX–α is applied with α = 0.3, while the
improvement method is selectively applied during 80 evaluations.

Unlike the I-ICP and the ICP + SA methods, we have established a maximum
CPU time of 20 seconds for each run of the remaining algorithms. Furthermore,
for each one of the EC-based registration methods as well as for the ICP + SA one,
we have performed a total of 15 runs (with different random seeds) for each of the
sixteen problem instances, in order to avoid the usual random bias of probabilistic
algorithms.
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Figure 12.3. Bar graph measuring the robustness degree of the IR methods considered.

12.4.5. Analysis of results

Notice that all statistics in this section are based on a typical error measure in the
IR field, the mean square error (MSE), given by

MSE =
∑N

i=1

∥∥ f (�pi)− �p′j∥∥2

N
, (12.6)

where f is the estimated similarity transformation, �pi are the scene image points,
and �p′j are the model image points matching the scene points (the closest to the
former).

With the aim of showing the robustness of the considered IR methods, the
performance obtained by each of them is graphically depicted in Figure 12.3. Such
bar graph corresponds to the average value of the final 4 · 15 = 60 MSE values
achieved in every run for each of the four IR scenarios tackled, fixing one of the
four test transformations considered.

In Figure 12.3, we can see how the IR methods based on the matching ap-
proach (I-ICP, ICP + SA, and SSm) obtain worse registration estimations for each
of the four transformations than those achieved by the methods based on the
transformation parameters approach, except those estimated by GAChow. Such be-
havior demonstrates the flaws of the matching-based methods and their poor per-
formance when they must deal with not handled initial conditions present in the
images. In spite of this, we want to highlight the success of our SSm method. It
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Table 12.3. MSE corresponding to the four transformations in Table 12.1 applied to the I1 versus
Ti(I2), I1 versus Ti(I3), I1 versus Ti(I4), and I2 versus Ti(I4) IR problems considered. The symbol m
stands for the minimum,M for the maximum, μ for the mean, and σ for the standard deviation values.

T1 m M μ σ

GAHe 33 43 38 3

CHCreal 32 32 32 0

SSp 32 32 32 0

T2 m M μ σ

GAHe 21 50 27 9

CHCreal 21 49 30 13

SSp 21 21 21 0

I1 versus Ti(I2)

T3 m M μ σ

GAHe 32 42 35 2

CHCreal 32 32 32 0

SSp 32 32 32 0

T4 m M μ σ

GAHe 47 115 55 17

CHCreal 47 47 47 0

SSp 47 47 47 0

T1 m M μ σ

GAHe 65 77 71 4

CHCreal 65 66 66 0

SSp 65 66 65 0

T2 m M μ σ

GAHe 42 48 44 2

CHCreal 41 85 44 11

SSp 41 42 41 0

I1 versus Ti(I3)

T3 m M μ σ

GAHe 67 83 71 4

CHCreal 64 64 64 0

SSp 64 65 64 0

T4 m M μ σ

GAHe 94 200 113 34

CHCreal 93 191 100 25

SSp 93 94 93 0

T1 m M μ σ

GAHe 50 68 55 5

CHCreal 48 49 48 0

SSp 48 48 48 0

T2 m M μ σ

GAHe 31 67 36 8

CHCreal 31 65 35 11

SSp 31 31 31 0

I1 versus Ti(I4)

T3 m M μ σ

GAHe 49 67 54 5

CHCreal 48 48 48 0

SSp 48 48 48 0

T4 m M μ σ

GAHe 71 84 75 4

CHCreal 70 70 70 0

SSp 69 70 70 0

T1 m M μ σ

GAHe 29 33 30 1

CHCreal 29 75 32 12

SSp 29 29 29 0

T3 m M μ σ

GAHe 18 49 21 7

CHCreal 18 48 30 0

SSp 18 18 18 0

I2 versus Ti(I4)

T3 m M μ σ

GAHe 29 33 31 1

CHCreal 29 29 29 0

SSp 29 29 29 0

T4 m M μ σ

GAHe 45 49 45 2

CHCreal 45 45 45 0

SSp 45 45 45 0
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offers the best results with respect to I-ICP, ICP + SA, and GAChow in every case,
as well as to GAYamany considering the T3 transformation.

It could be suspicious that, although GAChow makes use of a real-coded repre-
sentation and it is supposed to be a more recent and suitable EA, previous IR meth-
ods as GAYamany, GAHe, and our CHCbin and CHCreal obtain better global results
with respect to the former. The reason is the initial hypothesis of GAChow when the
process converges to local optima, the global optimum is in the restricted region
of the reestablished search space defined after the application of the proposed dy-
namic boundary mechanism. Since we are dealing with large transformations, the
previous hypothesis is not guaranteed.

From Figure 12.3, three best performing algorithms can be addressed, GAHe

our CHCreal, and SSp proposals. Table 12.3 shows the statistics of these three IR
methods, highlighting the best results achieved by the most robust IR method
among those analyzed, SSp.

12.5. Concluding remarks

This chapter addresses the IR problem from the point of view of the applicability of
evolutionary schemes. Firstly, the definition of the IR problem as well as a nonex-
tensive description of each of its components, together with the main drawbacks
present in the traditional IR methods, have been introduced. Next, a review of the
most relevant EC-based IR algorithms has been done to establish the state-of-the-
art in this field, underlining the weak points of current and previous proposals to
encourage researchers to increase the quality of results achieved by the present IR
methods.

Finally, this work ends with a practical benchmarking of the most relevant
IR methods (in our modest opinion) facing the 3D feature-based IR problem by
developing a broad experimentation using several MRIs of human brains. The
results obtained highlight the better performance offered by the evolutionary IR
methods as opposed to the traditional ones.
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hybridizing variable
neighborhood search and
memetic algorithms
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13.1. Introduction

Image segmentation consists of subdividing an image into its constituent regions
or objects [10]. The level of subdivision depends on the specific problem being
solved. The segmentation result is the labeling of the pixels in the image with a
small number of labels. This partition is accomplished in such a way that the pixels
belonging to homogeneous regions regarding to one or more features (i.e., bright-
ness, texture, or color) share the same label, and regions of pixels with significantly
different features have different labels.

According to Ho and Lee [11], four objectives must be considered for de-
veloping an efficient generalized segmentation algorithm: continuous closed con-
tours, nonoversegmentation, independence of threshold setting, and short com-
putation time. Many segmentation approaches have been proposed in the litera-
ture [10, 21, 25]. Roughly speaking, they can be classified as edge-based, threshold-
based, and region-based methods. In this chapter, a method is presented which can
be considered as region-based and it pursuits a high-level extraction of the image
structures. As a result, the method produces a k-region partition of the scene. We
take into account this approach by representing an oversegmented version of an
original image as an undirected weighted graph. In this graph, nodes are the image
regions and the edges together with their associated weights are defined using local
information. A high-quality k-partition that uses a variant of min-cut value (nor-
malized cut [24]) for the image graph is computed. The application of a low-level
[26] hybridization between variable neighborhood search (VNS) [15, 18] and a
memetic algorithm [19] to efficiently solve the image segmentation problem is the
core of the proposed method.

Many optimization problems are too difficult to be solved exactly in a reason-
able amount of time. Due to the complexity of these problems, efficient approx-
imate solutions may be preferable in practical applications. Heuristic algorithms
are proposed in this direction. Examples of heuristics are many local search proce-
dures that are problem specific and do not guarantee the optimality.



266 Image segmentation hybridizing VNS and MA

Metaheuristics are high-level general strategies for designing heuristics proce-
dures [9, 16, 29]. The relevance of metaheuristics is reflected in their application
for acceptably solving many different real-world complex problems, mainly com-
binatorial. Since the initial proposal of Glover about Tabu search in 1986, many
metaheuristics have emerged to design good general heuristics methods for solv-
ing different domain application problems. Genetic programming [17], GRASP
[8], simulated annealing [1], or ant colony optimization [6] are other well-known
examples of metaheuristics. Their relevance is reflected in the publication of many
books and papers on this research area [9, 29].

The application of evolutionary techniques to image processing and com-
puter vision problems has increased mainly due to the robustness of the approach
[21]. Many image analysis tasks like image enhancement, feature selection, and
image segmentation have been effectively solved using genetic programming [22].
Among these tasks, segmentation is one of the most difficult ones. Usually, the
standard linear segmentation methods are insufficient for a reliable object classifi-
cation.

The usage of some nonlinear approaches like neural networks or mathemat-
ical morphology methods has provided better results [25]. However, the inherent
complexity of many scenes (i.e., images with noncontrolled illumination condi-
tions or textured images) makes it very difficult to achieve an optimal pixel classi-
fication into regions, due to the combinatorial nature of the task.

Evolutionary image segmentation [11, 22, 31] has reported a good perfor-
mance in relation to more classical segmentation methods. Our approach of mod-
eling and solving image segmentation as a graph partitioning problem is related to
Shi and Malik’s work [24]. They use a computational technique based on a gener-
alized eigenvalue problem for computing the segmented regions.

This chapter introduces a hybrid evolutionary algorithm as a graph-based ef-
ficient segmentation technique to improve quality results. This new algorithm is
based on a low-level hybridization between a variable neighborhood search (VNS)
and a memetic algorithm (MA). In Section 13.2, several approaches, related to
our work, are revised. Section 13.3 resumes a brief introduction to memetic al-
gorithms. The optimization strategy is introduced in Section 13.4. VNS meta-
heuristic is presented in Section 13.5. Section 13.6 describes our evolutionary al-
gorithm proposal. Graph construction details and method overview are described
in Section 13.7. In Section 13.8, some experimental results are presented. Finally,
we conclude this chapter in Section 13.9.

13.2. Related work

This section revises two segmentation approaches related to our work: metaheuris-
tics-based and graph-cut-based. The first approach consists of considering the seg-
mentation task as an optimization problem in which an objective function is im-
proved by means of a metaheuristic procedure. The second approach consists of
transforming the image into a graph, where some graph cut techniques are ap-
plied.
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13.2.1. Metaheuristics review in image segmentation framework

Metaheuristics are general procedures successfully applied to a large diversity of
very hard combinatorial optimization problems. Surprisingly, compared to the
amount of research undertaken on these optimization problems, relatively little
work has been devoted to the application of metaheuristics to computer vision
and image processing, despite the potential advantages of robustness, quality, and
efficiency [21].

Many image analysis tasks like image enhancement, feature selection, and im-
age segmentation may be effectively solved using metaheuristics [22]. Among these
tasks, segmentation is, in general, one of the most difficult tasks. Usually the stan-
dard linear segmentation methods are insufficient for a reliable object classifica-
tion.

The inherent complexity of many scenes (i.e., images with noncontrolled illu-
mination conditions or textured images) makes very difficult to achieve an optimal
pixel classification into regions, due to the combinatorial nature of the task.

Metaheuristics-based segmentation has been focused on the use of evolution-
ary algorithms [11, 22, 31] that have reported a good performance in relation to
more classical segmentation methods. A reduced number of papers using other
metaheuristics for image segmentation have been reported. In general, unsuper-
vised image segmentation is modeled as a clustering problem, which has been
tackled using fuzzy algorithms [2, 13] and ant colony optimization (ACO) meta-
heuristic [20].

Our approach for modeling and solving image segmentation as a graph parti-
tioning problem is related to Shi and Malik’s proposal [24]. These authors use a
computational technique based on a generalized eigenvalue problem for comput-
ing the segmentation resulting regions.

13.2.2. Image segmentation via graph cuts

The first work in image graph-based segmentation method used fixed neighbor-
hood structures and local measures in computing segmentation [32]. In [4] a
method is presented based on the computing of the minimum spanning tree of
the image graph, and it has also been successfully used in clustering applications.
In general, a high-quality segmentation is obtained for simple images (i.e., syn-
thetic) but, for complex images, the results are not acceptable. In [27] an edge
weight normalization stage is proposed, which is not suitable to provide a reason-
able adaptive segmentation results.

Recent literature has witnessed two popular graph cut segmentation methods:
the minimum cut (and their variants) using graph cuts analysis [24, 28, 30] and
energy minimization, using the max flow algorithm [14, 23]. More recently, a third
major approach has been proposed based on a generalization of Swendsen-Wang
method [3]. In this chapter, we focus on a variant of min-cut (normalized cut
[24]) approach because this formulation has achieved successful results in image
segmentation frameworks [24].
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The min-cut optimization problem, defined for a weighted undirected graph
S = {V ,E,W}, consists of finding a bipartition G of the set of vertices or nodes
of the graph: V = (C,C′), where V = C ∪ C′, such that the sum of the weights
of edges with endpoints in different subset is minimized. Every bipartition of the
set of vertices V into C and C′ is usually called a cut or cutset and the sum of the
weights of the edges, with a vertex in C and the other vertex in C′, is called cut
weight or similarity (s) between C and C′. For the considered min-cut optimiza-
tion problem, the cut weight or similarity between C and C′, given by

s(C,C′) =
∑

v∈C,u∈C′
wvu, (13.1)

is minimized, where wvu is the edge weight between nodes v,u ∈ V . In [12] it is
demonstrated that the decision version (reformulation of the problem with binary
variables) of max-cut (dual version of min-cut problem) is NP-complete. This way,
we need to use approximate algorithms for finding a high-quality solution in a
reasonable time. The min-cut approach has been used by Wu and Leahy [30] as
a clustering method and applied to image segmentation. These authors search a
partition of the image graph into k subgraphs such that the similarity (min-cut)
among subgraphs is minimized. They pointed out that although for some images
the segmentation result is acceptable, in general, this method produces an over-
segmentation because small regions are favored. To avoid this fact other functions
that try to minimize the effect of this problem are proposed [4]. The function that
must be optimized (minimized) called min-max cut is

cut(G) =
∑

v∈C,u∈C′ wvu∑
v∈C,u∈C wvu

+

∑
v∈C,u∈C′ wvu∑
v∈C′,u∈C′ wvu

= s(C, C′)
s(C,C)

+
s(C,C′)
s(C′,C′)

, (13.2)

where the numerators of this expression are the same s(C,C′) and the denom-
inators are the sum of the edge weights belonging to C or C′, respectively. It is
important to remark that in an image segmentation framework, it is necessary to
minimize the similarity between C and C′ (numerators) and maximize the sim-
ilarity inside C, and inside C′ (denominators). In this case, the sum of edges be-
tween C and C′ is minimized, and simultaneously the sums of weights inside of
each subset are maximized. In [24] an alternative cut value called normalized cut
is proposed which, in general, gives better results in practical image segmentation
problems:

Ncut(G) =
∑

v∈C,u∈C′ wvu∑
v∈C,u∈V wvu

+

∑
v∈C,u∈C′ wvu∑
v∈C′,u∈V wvu

= s(C,C′)
s(C,V)

+
s(C,C′)
s(C′,V)

. (13.3)

13.3. Memetic algorithms

Unlike traditional genetic algorithms (GA), memetic algorithms (MA) [19] are in-
trinsically concerned with exploiting available knowledge about the problem un-
der study. This approach is not an optimal mechanism but, in general, yields to a
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solution improvement. Optimization is accomplished in MA framework by incor-
porating problem dependent heuristics: approximation algorithms, local search
techniques, specialized recombination operators, and so forth. Moreover, MAs can
be additionally improved by means of a low-level or high-level hybridization [26]
with other metaheuristics.

MAs are a search strategy in which a population of optimizing individuals
(called optimizing agents in MA context) cooperate and compete in order to get
high-quality solutions. Cooperative-competitive strategy of optimizing agents get
a synergy among the different search approach incorporated. The most distinctive
characteristic of MAs is the inclusion of problem knowledge which is supported
by no-free-lunch theorem which establishes that the quality and robustness of one
algorithm is in accordance with the amount of information that they incorporate
in its own design.

In order to design an MA, the main template is inherited from GAs and only
the problem specific details have to be rewritten, such as the definition of problem-
dependent recombination and mutation operators, the population initialization
function and the local search. Notice that any kind of the problem knowledge can
be incorporated creating new memetic operators. In summary, the following steps
are thus necessary for designing an MA.

(1) Find a suitable representation for the solutions (individuals) and an
evaluation function for calculating the fitness of a given solution based
on the referred representation.

(2) Find a local search strategy.
(3) Find a suitable initialization method for the initial population.
(4) Define a problem-dependent mutation and recombination operators.

13.4. Optimization strategy

There are some metaheuristics which are mainly concerned with diversification
purposes. For instance, evolutionary algorithms (EA) belong to this kind of pro-
cedures. On the other hand, another metaheuristic such as variable neighborhood
search (VNS) and their variants [15, 18] focuses almost entirely on the search in-
tensification. Regarding this fact, EA and VNS can be considered as complemen-
tary algorithms. In addition, the hybridization of these techniques can yield to
very effective and robust methods. This chapter proposes a new evolutionary al-
gorithm based on a low-level hybridization [26] between a specific memetic algo-
rithm and variable neighborhood search procedure. The developed algorithm is a
good tradeoff between intensification and diversification strategies.

The intensification phase is mainly carried out by the VNS procedure. This
metaheuristic intensively looks for quality solutions in a predefined set of neigh-
borhood structures. If the search procedure is got stuck, VNS changes the neigh-
borhood structure in order to get away from local optimum. Notice that although
the main task of VNS is the search intensification, this metaheuristic also diversi-
fies the search procedure by means of neighborhood changing. On the other hand,
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A

B
C

D

Figure 13.1. VNS search process.

EA objective is mainly related with the diversification stage. This task is accom-
plished with traditional operators (selection, mutation, and crossover) enriched
with some knowledge about the problem. Notice that although the main task of
MA is the search diversification, this metaheuristic also intensifies the search pro-
cedure by means of population evolution and the inclusion of problem-dependent
operators. In the following two sections, we, respectively, describe the VNS and the
hybrid MA implementations, developed for the segmentation problem.

13.5. Variable neighborhood search

This section resumes the main features of variable neighborhood search (VNS)
metaheuristic. This metaheuristic, which was originally proposed by Hansen and
Mladenovı́c [15, 18], is based on the exploration of a dynamic neighborhood
model. Each step has three major phases: neighbor generation, local search, and
jump.

Unlike other metaheuristics based on local search methods, VNS allows
changes of the neighborhood structure during the search. The basic idea of VNS
is to change the neighborhood structure when the local search is trapped on a lo-
cal optimum. In Figure 13.1 a landscape example of a given objective function is
presented. The search process starts from A and, after applying successively the
search procedure, it was trapped in the local optimum B. The metaheuristic VNS
by means of a systematic change of the neighborhood structure (augmenting the
considered neighborhood) could scape from B, following with the search proce-
dure and reaching C. Then, the neighborhood structure returns to its original size
and VNS goes on with the search, reaching the following local optimum D. This
process is maintained until a determined finish condition is met.

Let Nk, k = 1, . . . , kmax, be a set of predefined neighborhood structures and
let Nk(x) be the set of solutions in the k-order neighborhood of a solution x. In
the first phase, a neighbor x′ ∈ Nk(x) of the current solution is applied. Next, a
solution x′′ is obtained by applying local search to x′. Finally, the current solution
jumps from x to x′′ if x′′ is a better solution than x. Otherwise, the neighbor-
hood order k is increased by one and the above steps are repeated until some stop-
ping condition is met. The pseudocode of a typical VNS procedure is illustrated in
Algorithm 13.1.
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Procedure VNS (x)
var
x: Initial solution
x′, x′′: Intermediate solutions
k: Neighbourhood order

begin
/∗First Neighbourhood Structure∗/
k = 1;
while k < kmax do

/∗Select an random solution in k-
neighbourhood structure∗/
x′ = Random (x,Nk(x))
/∗ Use the local search procedure shown
in Figure 7.3∗/
x′′ = LocalSearch (x′);
/∗ Replace the actual solution by the new
one when an improvement is obtained ∗/
if w(x′′) > w(x) then
x = x′′;
k = 1;

else
k = k + 1;

end if
end while
end

end VNS

Algorithm 13.1. VNS high-level pseudocode.

In the segmentation framework described in this chapter, the k-order neigh-
borhood is defined by all solutions that can be derived from the current one by
selecting k vertices from one subset of the vertex bipartition and transferring them
to the other subset.

The local search phase is based on the following neighborhood structure. Let
(Ca,C′a) be the current cutset solution. For each vertex v ∈ V we associate a new
neighbor cutset (Cb,C′b):

(
Cb,C′b

) = N1
(
Ca,C′a

) =
⎧⎪⎨⎪⎩
Cb = Ca − {v};C′b = C′a + {v} if v ∈ Ca,

Cb = Ca + {v};C′b = C′a − {v} if v ∈ C′a.
(13.4)

We define for each node v ∈ V the functions C to C′ and C′ to C as

C to C′(v) = s(C,C′) + σ ′(v)− σ(v)
s(C,V) + σ(v)

+
s(C,C′) + σ ′(v)− σ(v)

s(C′,V)− σ ′(v)
,

C′ to C(v) = s(C,C′)− σ ′(v) + σ(v)
s(C,V)− σ ′(v)

+
s(C,C′)− σ ′(v) + σ(v)

s(C′,V) + σ(v)
,

(13.5)
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Procedure LocaL Search (g)
var
g = (C,C′): Cutset structure

begin
for v = 1 to Nodes in considered graph do

if v ∈ C and C to C′(v) > 0 then
/∗ v : C → C′ ∗/
C = C\{v};
C′ = C′ ∪ {v};

end if
if v ∈ C′ and C′ to C(v) > 0 then
/∗ v : C′ → C ∗/
C′ = C′\{v};
C = C ∪ {v};

end if
end for
end

end Local Search

Algorithm 13.2. Local search high-level pseudocode.

where σ(v) and σ ′(v) are

σ(v) =
∑
u∈C

wvu, σ ′(v) =
∑
u∈C′

wvu. (13.6)

These two functions (C to C′ and C′ to C) are characterized by the change
in the objective function value (fitness) associated with moving vertex v from one
subset of the cut to the other. These two functions are highly related with Ncut
function, defined in Section 13.2.

In order to improve the objective function value, a vertex makes a movement
in the two following situations:

if v ∈ C ∧ C to C′(v) > 0, then C �→ C′,

if v ∈ C′ ∧ C′ to C(v) > 0, then C′ �→ C,
(13.7)

where C → C′ (equivalently C′ → C) represents the movement of vertex v from
subset C to C′ (C ∪ C′ = V).

All possible moves are examined. The current solution is replaced by its best
improving neighbor solution. The search stops after all possible moves have been
evaluated and no improving neighbor is found. The used local search strategy is
summarized by the pseudocode of Algorithm 13.2.

This local search procedure tests all possible movements for each node be-
tween C and C′ and vice versa. Therefore, the current solution is replaced by the
best solution found in the neighborhood structure defined above. The procedure
ends when no possible neighbor movement improves the current solution.
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Figure 13.2. Cutsets representation.

13.6. Hybrid metaheuristic

This section describes a new evolutionary low-level hybridization for the image
segmentation problem. In order to use a memetic algorithm for solving this
problem, we need to code each feasible solution. Let V = {1, . . . ,n} be the nodes
set of a given graph. The possible cuts on this graph can be coded by a Boolean
n-vector I = (i1, . . . , in) such that the value of each component iu ∈ {0, 1} with
1 ≤ u ≤ n is given by the characteristic function

iu =
⎧⎨⎩1 if u ∈ C,

0 if u ∈ C′.
(13.8)

Figures 13.2(a) and 13.2(b) show two examples of cuts and their respective
encodings.

For selecting high-quality individuals, we used a fitness-proportionate selec-
tion [16, 17], which favors individuals with high-fitness value without suppressing
the chance of selection of individuals with low fitness, thus avoiding premature
convergence of the population.

The proposed algorithm starts with a random initial population of individuals
which represent cuts, generated by InitialPopulation procedure. Then, these cuts
are improved (with probability Pi) by means of a local search procedure described
in Algorithm 13.2.

A subset of individuals are selected using a fitness-proportionate selection.
Some selected individuals are crossed over, with a probability Pr . In the proposed
implementation, we have not used standard crossover (breaking individuals (par-
ents) in several parts and generating the offspring merging parts of different par-
ents) because this method can destroy the high-quality structures obtained by
means of evolution. We have considered a fixed crossover method [5, 19], which
takes into account the structural information of each individual and provides,
in general, better offspring [19]. Specifically, fixed crossover is implemented as
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Figure 13.3. Fixed crossover procedure.

follows: given a father F = { f1, . . . , fn} and a mother M = {m1, . . . ,mn}, their
corresponding child X = {x1, . . . , xn} is determined by the considered fixed
crossover function g : {1, 0} × {1, 0} → {1, 0}. With this crossover function, each
bit xu of new offspring is given by the following random Boolean function:

xu = g
(
fu,mu

) =
⎧⎪⎪⎨⎪⎪⎩

0 if
(
fu = 0

)∧ (mu = 0
)
,

1 if
(
fu = 1

)∧ (mu = 1
)
,

rand(0, 1) if fu �= mu,

(13.9)

where rand(0, 1) is a random Boolean value ({0, 1}). In this way, if both parents
are in the same subset, the offspring node lies in this subset. Otherwise, the node
is randomly assigned to one of the subsets. Graphically, the crossover strategy is
presented in Figure 13.3.

To end up the evolution cycle, new individuals are subject to mutation (a ran-
dom change of a node from C to C′ or vice versa) with probability Pm = 1/|V |. By
this way, the allele mutation probability (Pm) is problem independent.

Algorithm 13.3 shows the high-level pseudocode of the corresponding hybrid
evolutionary algorithm.

13.7. Method overview

Pixel-based and region-based evolutionary segmentation approaches share the
same basic structure. The only difference between the two methods is that region-
based methods produce an oversegmented image, as a preprocessing stage, for ex-
ample, applying standard watershed segmentation to the initial brightness image.
So, pixel-based methods use as input image the original image and region-based
methods use as input image the oversegmented image.

In region-based approach a method constructs the corresponding weighted
graph for the input image (the previously oversegmented image). This graph is
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Procedure Hybrid Evolutionary Algorithm (g)
var

g = (C,C′): individual cutset structure
pop: population of cutsets
MaxGen: Number of Generations
PopSize: Number of individuals
pc, pm: Cross. and mut. probabilities
pi: Improvement probability
i: Generation Counter
j: individual Counter

begin
/∗Generate random cuts individuals∗/
pop = Initial Population (g);
/∗Optimize initial population∗/
pop = Apply (Local Search (), pi); /∗Figure 7.3∗/
Best Solution = Evaluate Population (pop); /∗Ncut∗/
for i = 1 to MaxGen do

j = 0;
while ( j < PopulationSize) do

/∗Criteria: Random Wheel∗/
father = Selection (pop); /∗Ncut∗/
r = rand 01 (); /∗Random function∗/
if (r < pc) then
/∗Criteria: Random Wheel∗/
mother = Selection (pop); /∗Ncut∗/
child = FixCross (father, mother);
Apply (VNS (child), pi); /∗Figure 7.2∗/
pop = InsertInPopulation (pop, child);
j = j + 1;

end if
end while
pop = Apply (Mutation (pop), pm);
Best Solution = Evaluate Population (pop); /∗Ncut∗/
end for

return Best Solution
end Hybrid Evolutionary Algorithm ()

Algorithm 13.3. Hybrid algorithm high-level pseudocode.

defined by representing each resulting region by a unique node and defining the
edges and corresponding edge weights as a measure of spatial location, grey level
average difference, and cardinality between the corresponding regions.

The oversegmented image may be modeled by means of the region adjacency
graph (RAG), a usual data structure for representing region neighborhood rela-
tions in a segmented image [25]. In this graph, adjacent regions are merged in
order to reduce the number of regions until a semantically meaningful segmenta-
tion is obtained.

Our approach shares this perspective and provides as segmentation result an
adaptable tree-based image bipartition where the first levels of decomposition cor-
respond to major areas or objects in the segmented image. With this aim, we pro-
pose a new data structure, called modified region adjacency graph [7] (MRAG)
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that takes advantages of both RAG and pixel-based representations in which non-
adjacent pixels can be joined. The MRAG structure is an undirected weighted
graph G = {V ,E,W}, where the set of nodes (V) represents the set of centers
of gravity of each oversegmented region, and the set of weighted edges can corre-
spond to nonadjacent regions.

The edge weights wij ∈W are computed by the following function:

wij =
⎧⎨⎩e−Cij (Ii−I j )

2/σ2
I · e−Cij (xi−xj )2/σ2

x ,
∣∣xi − xj∣∣ < rx,

0, elsewhere,
(13.10)

where rx is an experimental threshold value, Ii is the grey level mean intensity of
region i, and xi is its center of gravity. The values of σI , σx, and rx are adjusted
experimentally and, in general, they depend on the image features. Nonsignificant
weighted edges, according to defined similarity criteria, are removed from the im-
age graph. Finally, Cij takes into account the cardinality of the regions i and j. This
value is given by

Cij =
∥∥Ei∥∥∥∥Ej∥∥∥∥Ei∥∥ +

∥∥Ej∥∥ , (13.11)

where ‖Ei‖, ‖Ej‖ are, respectively, the number of pixels in regions i and j.
The final stage of the process consists of iteratively applying the considered

algorithm in a hierarchical fashion to the corresponding subgraph, resulting from
the previous graph bipartition, until a termination condition is met. This condi-
tion is a tradeoff between a required segmentation precision and efficiency. This
stage itself constitutes an effective region merging method for oversegmented im-
ages.

13.8. Experimental results

This section describes the experimental results obtained using the proposed hy-
brid metaheuristic. Experiments were performed in an Intel Pentium 4 processor
at 1.7 GHz, with 256 MB of RAM. All algorithms were coded in C++, without opti-
mization, and by the same programmer in order to have more comparable results.

The main parameters and corresponding used values of the designed hybrid
evolutionary metaheuristic are as follows.

(i) Memetic algorithm
(a) Initial random population of 50 individuals, called PopSize.
(b) PopSize is initially improved by means of the aforementioned search

strategy (in Algorithm 13.2) with a probability Pi = 0.25.
(c) The probability of crossover Pc is 0.6 and it is performed by fixed-

crossover method.
(d) The maximum number of generations MaxGen is 50.
(e) After the crossover, the new individuals are also improved by the

described VNS strategy with a probability Pi = 0.25.
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(a) (b)

Figure 13.4. (a) Original peppers image (256× 256) and (b) its corresponding oversegmented water-
shed transformation.

(f) In each generation, a mutation process is applied with a probability
Pm = 1/|V |.

(g) The procedure ends when no individual improves its fitness or it is
reached the MaxGen value.

(ii) Variable neighborhood search
(a) Each child obtained after a fixed-crossover application is the initial

solution for VNS procedure.
(b) The maximum neighborhood order kmax is set to 1% of the number

of nodes in the graph.
Figure 13.4(a) shows the original peppers image while Figure 13.4(b) its cor-

responding watershed transformation. As explained in the previous section, the
method needs the image graph representation in order to apply the bipartition
scheme. This graph is constructed via a standard watershed transformed image.
Figure 13.5 shows the segmentation sequence for the peppers image. Note that the
left image of every row carries more semantical information and is bipartitioned
in a hierarchical fashion.

Figures 13.6 and 13.7 show the first iteration of the bipartition process for
their respective original images. Note that in the case of the elephants the sky area
is very homogeneous and the watershed transformation returns large regions com-
pared to the others images. This fact is not very useful since it tends to contaminate
weighting values in the formula.

Last example of a first stage bipartition is shown in Figure 13.8. The original
image of this figure has been corrupted with salt and pepper noise in those very ho-
mogeneous areas where the watershed transformation gives very large fragments
compared to the ones of the important object.

13.9. Conclusions

This chapter introduces a hybrid evolutionary algorithm as a graph-based efficient
segmentation technique to improve quality results. This new algorithm is based
on a low-level hybridization between a variable neighborhood search (VNS) and
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Figure 13.5. Application of the proposed method to the peppers image shown in Figure 13.4. The
oversegmented image is bipartitioned in a hierarchical fashion. From top to bottom rows: First, second
and third cut images. Left image in each row is hierarchically subdivided.

a memetic algorithm (MA). On the one hand, we have used VNS as an additional
intensification procedure to improve the corresponding optimization process. On
the other hand, an MA is mainly used to diversify the corresponding search pro-
cess. Notice that this MA includes several problem-dependent data and methods.

For the image segmentation problem, a hierarchical region-based segmenta-
tion approach has been considered. An important advantage of this graph design
is that some partially occluded objects, resulting in more than one nonadjacent
region in the image could be wrong merged. The image segmentation problem is
now equivalent to minimize the normalize cut value in the corresponding graph.
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(a) (b)

(c) (d)

Figure 13.6. (a) Original image (480× 320). (b) Watershed image. (c) and (d) First bipartition results.

(a) (b)

(c) (d)

Figure 13.7. (a) Original image (480× 320). (b) Watershed image. (c) and (d) First bipartition results.

For a region-based approach the input image is firstly oversegmented using a stan-
dard watershed algorithm. Next, the associated MRAG structure has been built to
model the segmentation problem as a weighted graph.

The region representation allows processing of larger spatial resolution im-
ages than the pixel-based approach or any other typical graph-based segmentation
method. Also, the hybrid algorithm provides an effective region merging method
for oversegmentation problems, achieving high-quality segmentation in an effi-
cient way. An important advantage of the approach is that MRAG structure does
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(a) (b)

(c) (d)

Figure 13.8. (a) Original image (320× 480) corrupted with noise artifacts in the homogeneous areas.
(b) Watershed image. (c) and (d) First bipartition results.

not need to be updated when merging regions. Moreover, the resulting hierar-
chical top-down segmentation degree is adaptable to the complexity of the con-
sidered image and to the application requirements. The experimental results also
show that this algorithm has a robust behavior and gives high-quality solutions,
independently of the graph characteristics.
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14
Model-based image
analysis using evolutionary
computation

Jean Louchet

Artificial evolution provides powerful techniques in model-based image analysis
and model identification. In this chapter, we show how evolution strategies can
actually widen the scope of Hough transform generalisations and how some of
their variants and extensions, in particular the Parisian approach, can efficiently
solve real-time computer vision, sensor fusion, and robotics problems with little
reference to more traditional methods.

14.1. Introduction

14.1.1. Image synthesis: a source of models and
heuristics for image analysis

From the seventies, image synthesis has been undergoing a huge development with
its own subdomains, and obtained results with high visual quality as needed by the
image and film industry. In parallel, efforts were made to make these techniques
more affordable, using specialised architectures, simulators, and algorithmic re-
search.

On the other hand, while the image synthesis community showed limited in-
terest in analysis, the machine vision community was increasingly using synthe-
sis as a reference in its own work. Synthesis was first used as a tool to assess the
performance of image analysis algorithms and systems, but the influence of the
“knowledge-based systems” philosophy soon encouraged the image analysis com-
munity to use it as a technique to express and manipulate a priori knowledge on
the scene to be analysed, rather than merely a tool to build a posteriori evaluation
systems. The status of the vision algorithm has been evolving since, to become an
engine to instantiate the parameters of a scene model, using pixel calculation: as
computational tools have been developing, synthesis evolved from being a con-
ceptual, indirect reference in vision to an operative reference now using common
models and algorithms.

In its early hours, image analysis was widely inspired by signal analysis and
its success story can be partly explained now through the relevance of contours
as probable projections of 3D edges. Other authors introduced region algorithms
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whose philosophy is more oriented towards the detection of probable projections
of homogeneous facets from the 3D scene, leading to quite different pixel com-
putation methods. While contour algorithms rely on discontinuities (which may
have a psychophysic flavour), “region” algorithms rely more explicitly on physics,
as a region may be described in its essence as a set of geometric (connectivity) and
photometric (material homogeneity) properties of the objects in the scene.

Here, modelling is used to formalise a priori knowledge about the scenes. This
knowledge can be divided into two components. The first one is specific to the
scene studied: it consists essentially in a geometric description, completed if neces-
sary with parameters linked to rendering texture and photometric attributes (such
as albedo, diffusion diagrams, light sources). The second one is general knowledge
about physics: general optics, rules about objects collisions (if applicable), and so
forth.

14.1.2. Heuristics and segmentation

Among all other segmentation approaches (contours, interest points, etc.), image
segmentation into regions is probably the most natural (if not always the easiest to
implement). Let us examine why.

In a 3D scene, an elementary facet (or, more generally, a portion of a sur-
face) is the only simple entity which actually supports a physical process (here,
the reflection and diffusion of light) involved in the formation of a natural im-
age.1 Attempts to accurately model what is happening when light interacts with an
object will naturally lead to introduce colour (wavelength dependent) and bright-
ness values, complex reflection and diffusion models (the optician’s point of view),
and texture models (the probabilistic point of view) as parameters attached to the
physical surfaces of objects. The same would obviously be untrue with other prim-
itives as edges or corners. Thus, all the radiometric properties of usual objects are
in fact properties of their surfaces. These 3D real-world properties of objects in
the scene may hopefully be translated into properties of the corresponding zones
in the images.

This is why region segmentation is the most natural approach to segmenta-
tion. Most a priori knowledge about the scene—at least the general laws of
optics—can be expressed as physical properties. In spite of all the instrumental
artefacts that can appear when the digital image has been created (geometrical dis-
tortion, optical aberrations, sampling errors, noise, etc.), these physical properties
will have to be translated into physical properties at the image level.

If, as it often happens, we have no specific knowledge on the scene, it is then
reasonable to suppose that two points in the scene, if they belong to the same
object, will be more likely made from the same material than if they belong to
two different objects. Now, if we project this assertion onto the image plane, the

1This may not be the case, for example, in radar images where diffraction is the dominant physical
process involved.
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two corresponding pixels will probably look more closely like each other than if
they belonged to two different objects. This pixel similarity may be evaluated on a
photometric level (having the same colour), on a geometrical/statistical level (hav-
ing the same texture), or even sometimes on more elaborate levels like having the
same apparent velocity, having the same type of behaviour or, for greater numbers
of points, having apparent velocities that can be translated into a consistent model
of a solid object in motion.

This is where the “homogeneity predicate” has been introduced. A portion
of an image will be said to satisfy the homogeneity predicate if all (or most) of
its pixels present a sufficient level of similarity as defined above. The choice of a
homogeneity predicate is essential, because it is the formal expression of all the
knowledge we have on the image in order to understand it as containing 2D pro-
jections of significant 3D real-world objects.

The problem now is to find which is the best way to divide the image into
regions so that a homogeneity predicate is fulfilled as nicely as possible by each
region. As always, there will be a very large number of resolution techniques: some
of them will normally give an excellent solution but will be expensive to program
and/or to run, other ones will never give as good solutions as above but will be
cheap and fast to run, other ones will give rough results in a very short time and
then progressively refine them (this is the kind of things roboticians love), and so
on.

To summarise, writing a region segmentation algorithm should ideally consist
of two parts. The first part consists of listing the properties one would expect from
the result of segmentation, this is done by translating into the image plane the gen-
eral physical properties we already know about the scene: this is “problem-specific
knowledge.” The second part consists of writing or readapting an algorithm able
to solve the problem, this part of the task involves “general knowledge on prob-
lems resolution.” This is but the very basic ideas underlying the theory of artificial
intelligence and knowledge-based systems.

For example, with a given homogeneity predicate, we know that it is possible
to segment the same image using very different techniques: split, merge, split and
merge, region growing, and so forth. These techniques will have different cost and
performance, but will not give essentially different results. Conversely, if with one
application involving one style of images (say, detecting elks in a forest using a
colour camera) we have found a very good combination of a homogeneity pred-
icate and a resolution engine, then when facing a different vision problem (say,
detecting an aircraft in the sky using an infrared camera), we will probably have
to write a new homogeneity predicate, but may probably reuse the same resolu-
tion engine. In an ideal world, any predicate may be combined with any resolution
engine.

Of course, practice is not quite as clean, and many resolution engines are very
much specific to one homogeneity criterion. Whatsoever, it is still advisable to
separate as much as possible the image-specific or scene-specific knowledge from
the general (possibly mathematical) knowledge on resolution techniques. This will
become truly obvious when using classical optimisation methods to solve image
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Figure 14.1. 3D model and segmentation.

processing problems that have first been translated into a cost function to be opti-
mised (e.g., contour tracking, snakes, or the apparent motion constraint equation
for motion analysis, etc.).

The role of image analysis is to use image data in order to build a “cogni-
tive” model of the scene, similar to the scene description models used as input
data by image synthesis algorithms. Image analysis may thus be considered as the
inverse process of image synthesis and scene models (viewed as image synthesis in-
put or as image analysis output) should ideally use the same description language
(Figure 14.1).

One of the first questions arising is the choice of a scene modelling language.
A majority of modelling languages use facets and polyhedra, which is well adapted
to the usual environments containing opaque objects with geometrical regularity,
but other primitives and representations may be more suitable in other instances.
In general, image segmentation will produce polyhedral structures: corners, edges,
facets, and their photometric attributes, grouped into objects. This may be com-
pleted with a description of light sources, velocities and deformation, object inter-
action, and individual or collective behaviour.

The first task of an image segmentation algorithm will then be to build such
a polyhedral object database. A most naive way to solve this problem would be
to exhaustively explore the space of all possible scene models, or just of all “rea-
sonable” (i.e., polyhedral) scene models. To this end, one should find a fast and
efficient image synthesis algorithm, feed it with all these models, and compare the
output image with the reference image to be analysed in order to decide which
model predicts it the best.

The principle above is not quite as unrealistic as it would appear at first glance.
It has been successfully used in the early seventies to determine aircraft 3D atti-
tude from trajectography image sequences. As the object is centred and its shape
is known, there are only 3 parameters to identify, making the search space small
enough to explore it fast without using lots of refinement. In more complex cases,
the same principles may remain valid, though requiring smarter parameter space
exploration techniques as we will see through the examples given further.
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Whatever exploration method has been chosen, one has to optimise the simi-
larity of a synthesized image with a real-world image. How is it possible to measure
the degree of similarity between two images? Mean square error methods are easily
implemented but seldom satisfactory as too sensitive, for example, to small trans-
lations. This is why similarity functions should be based on image attributes as
little sensitive as possible to the image transforms to which we want the algorithm
to be tolerant. In practice, the image analysis problem is expressed as the minimi-
sation of a cost function which will be chosen according both to semantic and to
computational criteria.

However, in a vast majority of applications, while this approach of image anal-
ysis (as the inverse problem of image synthesis) may help to specify the problem,
it will not necessarily give a resolution method for free. This is precisely where the
history of image processing can be reconsidered (or rewritten) under a new angle
of view.

Pioneering work in image processing may be viewed as implicit, unexpressed
attempts to dramatically reduce the huge combinatorics found when trying to
solve image analysis problems as inverse problems of image synthesis. To make
this problem tractable, one had to exploit as much as possible general knowledge
about the scene (or the class of scenes to be analysed) and create heuristics to re-
duce exploration time. This will be made clearer through an example.

General knowledge about scenes containing man-made objects tells that many
objects have polyhedral shapes and are made from homogeneous materials.
Knowledge about geometry and optics tells that 3D facets will be projected on
the image as polygons, or at least regions which are probably connex. Knowledge
on optics (and common sense) tells that a facet from an object made from a sin-
gle material will keep some homogeneity properties in its image projection (under
usual lighting conditions). Similarly, 3D edges will project as straight lines, and
as the two facets adjacent to the 3D edge will (if visible) be illuminated under
different angles, there will be some sort of contrast between the two sides of the
line. To exploit these properties and explore the search space more efficiently, it
was then obvious that it is advantageous to explore first the scene models contain-
ing facets that project onto homogeneous regions, or containing edges that project
onto highly contrasted lines. This is at least one interpretation of how region-based
and contour-based segmentations have come to life. More generally, to each 3D
model entity (corner, edge, facet, etc.), it is possible to associate a (hopefully lo-
cal) property in the image: modelling these properties and detecting image entities
which fulfil them are the heart of image processing.

The way the geometrical primitives in a polyhedral model are hierarchised
can be translated into a hierarchy of image processing entities [5]:

(i) an interest point, as a pixel likely to be the image projection of a corner
of a (at least locally) polyhedral object;

(ii) a contour, as a curve or an image line likely to be the projection of a side
or a boundary of an object;

(iii) a region, as a connex subset of the image likely to be the projection of a
fragment of an object or facet surface;
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Table 14.1. Correspondence between image analysis and synthesis primitives.

Dimension Segmentation type Synthesis equivalent Technique Property

0 Interest point Corner Local extremum Concentration

1 Contour Side Gradient Disparity

2 Region Facet Colour, texture Uniformity

3 Dynamics Motion, stereo Correspondence
Similarity, disparity

length

(iv) analysing motion in an image sequence, as an attempt to interpret it as
a three-dimensional kinematic or, if possible, dynamical or behavioural
model.

It is therefore possible to build a correspondence table between the prim-
itives used in image synthesis and the main image segmentation methods (see
Table 14.1).

It follows that for a given class of scenes, any segmentation technique is just as
relevant as the corresponding description language. Detecting regions, contours,
and interest points would be meaningless if these primitives did not appear as
primitives in the scene modelling technique chosen.

14.2. Artificial evolution seen as a heuristic for
parameter space exploration

14.2.1. Introduction

As discussed earlier, many segmentation techniques have been motivated by the
difficulty to optimise a geometrical model of the scene using conventional tech-
niques. However, the best-known attempt to bypass segmentation is Hough’s
transform [7], which can be viewed as a simple technique to explore a parame-
ter space. It consists of using a vote technique to map the parameter space into the
set of positive integers. To this end, each feature locally detected in the image votes
for all the points in the parameter space able to give birth to the given feature.
Once each feature has voted, the parameter set getting the highest number of votes
is elected: it is considered as the best possible model parameterisation, as it is able
to explain a greater number of image features than any other model.

Unfortunately, the Hough transform and its extensions [15] suffer from a
computational complexity which increases with the complexity of patterns in the
parameter space and the number of unknowns. In spite of many clever heuristics,
the Hough transform becomes hardly usable if the dimension of the search space
is over 3 or 4.

14.2.2. Direct application: the Hough transform revisited by
artificial evolution

Hough’s technique leads to calculate vote values over the whole parameter space
then explore it exhaustively in order to detect the best solutions. An appealing
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Figure 14.2. Result of the classical Hough transform (image 288 × 352).

Figure 14.3. Parameter space (θ, ρ) containing the Hough accumulator of the preceding image (image
256 × 300).

alternative is to directly explore the search space [14, 17, 19]. Evolution strategies
[1, 16] give an interesting opportunity to only calculate values in the part of the pa-
rameter space where population individuals actually are, rather than on the whole
parameter space.

It is thus possible to build an “evolutionary version” of the Hough transform:
(i) the population is a set of points in the parameter space,

(ii) the fitness function measures the match quality of the individual to be
evaluated, with the features of the given image,

(iii) selection: tournament,
(iv) mutation: Gaussian noise.

In the classical context of the Hough transform, detecting straight lines in
images, there is no significant advantage towards using the original or the evolu-
tionary version. The classical method, where each point (x, y) in the image votes
for the set of the (θ, ρ) in the parameter space such that ρ = x cos θ + y sin θ, is
reasonably fast and memory consuming (Figures 14.2 and 14.3); the evolutionary
version which—thanks to a sharing operator—enables to detect several solutions
(Figure 14.4), does not have an easy-to-define execution time, which makes their
performance difficult to compare.

More interestingly, when dealing with greater numbers of parameters, explor-
ing and saving the parameter space become prohibitive, while the evolutionary
version remains reasonable in terms of memory and computing effort.
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Figure 14.4. Result of the evolutionary Hough transform.

Figure 14.5. Four original images from the “tennis ball” sequence (top) and the results of circle track-
ing using an evolutionary Hough transform (bottom).

The next two examples are taken from a student project of A. Eckman in
KTH.2 The first one (Figure 14.5) consists of detecting circles with unknown di-
ameters (a moving ball) in an image sequence. The individuals are triplets (a, b, r)
containing the parameters of the circles

(x − a)2 + (y − b)2 = r2. (14.1)

An individual’s fitness is defined as the average gradient norm taken on 40 points
randomly chosen on the circle. The algorithm parameters are summarized in Table
14.2.

It is interesting to point out a property of the evolutionary Hough transform.
If the object’s motion is small enough between two consecutive frames, the algo-
rithm will track the object’s movement, unlike the deterministic version which has
to begin calculations from scratch at every new frame whatever the degree of con-
sistency between consecutive images. In other terms, while the Hough transform
has never been seen since fast and evolutionary algorithms are generally regarded
as slow, the evolutionary Hough transform gets true real-time properties.

This simple version of the algorithm has been written in C without any spe-
cialised library.

2The Royal Institute of Technology, Stockholm, Sweden.
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Table 14.2. Parameters of the circles detection algorithm.

Population size 100

Selection 2 - tournament

Mutation rate (%) 15

Mutation amplitude r 10

Mutation amplitude a, b 40

Crossover rate (barycentric) (%) 5

Generations per frame 800 to initialise, then 240 per frame

Figure 14.6. Image of galaxy AM 0644-741 taken by the Hubble telescope (left) and result of the
evolutionary Hough ellipse detector (right).

The second example (Figure 14.6) deals with recognising an ellipse in an im-
age, using the same algorithm and parameters but with a larger genome (a, b, rx,
ry ,α) corresponding to the ellipse equation

x = a + rx cosα cos θ + ry sinα sin θ,

y = b− rx cosα sin θ + ry sinα cos θ.
(14.2)

14.2.3. Camera calibration and attitude determination

Another application of the generalised evolutionary Hough transform is detecting
the 3D position of a flying helicopter in order to assist its landing on a ship. A
camera pair (video or infrared) is used in order to determine the 6 position and
angle parameters of the helicopter, whose shape is known. The fitness function is
based on a comparison between the silhouette A extracted from the stereo images
and the silhouette B predicted by image synthesis:

fitness = area(A∩ B)√
area(A)area(B)

. (14.3)

We tested the algorithm first on realistic scenes (obtained using a Revell scale
model), then in simulation (using noisy synthetic images) to be able to compare
with reliable ground truth data. While limiting the algorithm to 30 generations
with a population of 60 individuals, which ensures video rate processing with
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a cheap laptop computer, the average errors taken on 29 trials are
(i) average position error (using the distance between cameras as a unit):

(a) x and y, 0.01,
(b) z (depth), 0.04;

(ii) average error on angles (in degrees):
(a) α (rotation of the helicopter around the vertical axis) 0.86,
(b) β (pitch) 1.74,
(c) γ (roll) 2.14.

The low precision on γ is certainly due to the low variations of the silhouette
when the helicopter rotates around its main axis.

14.3. Collective representation: the Parisian evolution and
the fly algorithm

In most classical approaches of artificial evolution, as illustrated above, each indi-
vidual represents a potential solution of the problem to be solved. The best indi-
vidual is retained as the solution. This philosophy is well adapted, for example, to
detect predetermined patterns in images, provided that each object to be detected
correspond to a unique point in the parameter space.

However, in many applications, it is not possible to interpret the image or the
image sequence just as the sum of separable image entities, each one corresponding
to a particular point to be discovered in the parameter space of a suitable model. It
is often more convenient to describe the image as the combination of the outputs
of a model which has been applied to a large subset of a certain parameter space. In
the following sections, we will examine how it is possible to exploit the “Parisian”
(or “individual”) approach [3] which considers that the solution will not be rep-
resented by a single individual in the population but by the whole population (or
at least by an important fraction of it).

14.3.1. The principles

Many applications of stereovision to robotics do not require an exhaustive geo-
metrical description of the scene, as it would be given by costly classical stereovi-
sion methods based on image segmentation. Vote-based (Hough-inspired) meth-
ods are generally unpractical because of the high dimensionality of the parameter
space. The method presented here is an example of the third alternative, evolving
a population of 3D points so that they will concentrate onto the visible surfaces of
the objects in the scene. This bias towards simplicity3 will be exploited even into
the way the fitness function is written—which is a major contribution to the to-
tal calculation load. We will then show that extending this “fly algorithm” to time
sequences opens the way to real-time processing even with low-cost hardware.

In the fly algorithm, the population of flies evolves in order to tend to spread
onto the visible surfaces in the scene. The fitness function is designed in order to

3As such, this is in a way similar to the work of Eberhart and Kennedy [4] on particle swarms,
another optimisation tool inspired by artificial life concepts.
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Figure 14.7. Pixels b1 and b2, projections of fly B, have identical grey levels, while pixels a1 and a2,
projections of fly A, which receive their illumination from two different physical points on the object’s
surface, have different grey levels.

give higher fitness values to flies whose projections into the different cameras are
consistent. In other terms, if a fly is not on an object’s surface, then its calculated
projection in one image will be in reality the projection of the first real object
on the line from the lens to the fly: there is no reason why the fly’s projections
would be similar or correlated in any way (Figure 14.7).4 Conversely, if the fly is
on an object’s surface, then its projections into any camera will actually be the
projection of the corresponding point of the real object, and will usually be similar
(same colour, same texture, high correlation, etc.). The fitness function translates
the degree of similarity of the fly’s projections onto the different cameras used
(usually two).

An individual (a fly) is defined as a point in space, whose chromosome is its
set of coordinates (x, y, z). The coordinates of the fly’s projections are (xL, yL) in
the image given by the left camera and (xR, yR) in the right camera. The calibration
parameters of the cameras are known, and therefore xL, yL, xR, yR may be readily
calculated from x, y, z using projective geometry [6]:

⎛⎜⎜⎝
xL
yL
1

⎞⎟⎟⎠ ≡ FL

⎛⎜⎜⎜⎜⎜⎝
x

y

z

1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝
xR
yR
1

⎞⎟⎟⎠ ≡ FR

⎛⎜⎜⎜⎜⎜⎝
x

y

z

1

⎞⎟⎟⎟⎟⎟⎠ , (14.4)

where FL and FR are the projective matrices (3, 4) of the left and right cameras.
The fitness function exploits this property and evaluates the degree of simi-

larity of the pixel neighbourhoods of the projections of the fly onto each image,
giving highest fitness values for the flies lying on objects surfaces:

fitness = G∑
colours

∑
(i, j)∈N

(
L
(
xL + i, yL + j

)− R(xR + i, yR + j
))2 . (14.5)

4This may not be true if the surfaces do not follow Lambert’s law, which assumes that for a given
illumination, the object’s radiance does not depend on the observer’s position. Most surface-based
stereovision methods are also sensitive to this property.
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Figure 14.8. The fly population is initialised inside the intersection of the cameras 3D fields of view.

(i) (xL, yL) and (xR, yR) are the coordinates of the left and right projections
of the current individual (see Figure 14.7).

(ii) L(xL + i, yL + j) is the grey value of the left image at pixel (xL + i, yL + j),
similarly with R for the right image.

(iii) N is a neighbourhood introduced to obtain a more discriminant com-
parison of the fly’s projections.

In colour images, square differences are calculated on each colour channel.
The numerator G is a normalizing factor designed to reduce the fitness of

the flies which project onto uniform regions. It is based on an image gradient
norm calculation. The best experimental results are obtained when G is defined
as the square root of Sobel’s gradient norm: highest fitness values are obtained for
flies whose projections have similar and significant pixel surroundings.G has been
empirically defined as

G =
√√√√ ∑

(i, j)∈N

(
L
(
xL + i, yL + j

)− L(xL, yL
))2

. (14.6)

The fitness function is corrected, using a local averaging of grey levels, in
order to eliminate the constant component of the images and reduce the fitness
function’s sensitivity to unbalanced brightness or sensitivity adjustments in the
cameras.

Now, the fitness function contains all pixel calculations. Let us examine the
evolution operators.

The population is initialised randomly inside the intersection of the cameras’
fields of view (Figure 14.8). The statistical distribution is chosen in order to ob-
tain uniformly distributed projections in the left image. The values of z−1 are uni-
formly distributed between zero (or 1/dmax) and 1/dmin. Thus, the density of flies
decreases gently with depth.

Selection uses the tournament technique.
2D sharing is based on the densities of the 2D projections of flies on the im-

ages. It reduces the fitness values of flies projecting into crowded areas to prevent
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them from getting concentrated into a small number of maxima [2]. It reduces
each fly’s fitness by K ×N , where K is a “sharing coefficient” and N the number of
flies which project into the left image within a distance R (“sharing radius”) from
the current fly, given by

R ≈ 1
2

(√
Npixels

Nflies
− 1

)
. (14.7)

Mutation allows extensive exploration of the search space. It uses an approx-
imation of a Gaussian random noise added to the flies’ chromosome parameters
(x, y, z). We chose standard deviations σx, σy , σz equal to R, so that they are of the
same order of magnitude as the mean distance between neighbouring flies.

Two barycentric crossover operators have been introduced, in order to take
into account the frequent straight lines and planar surfaces existing in real-world
scenes. The first one builds an offspring randomly located on the line segment
between its parents: the offspring of the two flies F1(x1, y1, z1) and F2(x2, y2, z2)

is the fly F(x, y, z) defined by
��������������������������������������������������������������������������→
OF = λ

�������������������������������������������������������������→
OF1 + (1 − λ)

�������������������������������������������������������������→
OF2. The weight λ is chosen

using a uniform random law in the interval [0, 1] or [−0.5, 1.5].5 Similarly, the
second crossover operator uses three parents and determines the offspring F such

that
������������������������������������������������������������→
OF = λ

�������������������������������������������������������������→
OF1 + μ

�������������������������������������������������������������→
OF2 + (1− λ− μ)

�������������������������������������������������������������→
OF3 in the parents plane, using two random

weights λ and μ.

14.3.2. Real-world images: processing stereo sequences

Results of the algorithm on static indoor scenes have been published in [12]. There
are several possible approaches to extend the static fly algorithm to stereo image se-
quences. The simplest is the random approach, which consists of keeping the same
population evolving through frame changes. Thus, only the images (and therefore
the parameters used by the fitness function) are modified while the fly popula-
tion evolves. When motion is slow enough, using the results of the last step speeds
up convergence significantly compared to using a totally new random population.
Here, the population of flies is used as a memory of space, allowing the algorithm
to exploit the similarity between consecutive scenes rather than forgetting the in-
formation collected during the previous steps. This does not require significant
algorithm changes. To improve detection of new objects appearing in the field of
view, we introduced an extra mutation operator, immigration, which permanently
creates random new flies in a way similar to the procedure already used to first
initialise the population: used with a low probability (1% to 5%), this favours a
convenient exploration of the whole search space.

The dynamic approaches introduce explicit velocity components into each
fly’s genome. The advantage is a better precision for a given number of generations

5It is generally accepted that a barycentric crossover operator with positive coefficients has con-
tractive properties which may be avoided by extracting weights from a larger interval. Here, the choice
depends on whether it is desirable or not, to fill in surfaces whose contours have already been detected,
rather than to extend them.
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Figure 14.9. Real-time processing on a highway. The flies (black dots) concentrate on contrasted road
edges and other cars.

Figure 14.10. Alarm values (car on the highway).

or evaluations, but this goes with a significantly higher calculation cost at each
generation, and therefore a smaller number of generations in a given time interval.
The best trade-off will depend on the scene style and complexity of motion.

In what follows, as we consider a vision system embedded into a mobile ro-
bot, we will use the simple random approach described above, but update the flies’
positions at each generation, using the information available about the robot’s mo-
tion in order to give better initial conditions and allow faster convergence of the
fly population. This will be the basis of the proprioceptive fusion described in
Section 14.3.4.2.

To process faster motion, it is possible to extend the chromosome by en-
riching it with velocity components: each fly is now represented by the 6-uple
(x, y, z, ẋ, ẏ, ż) to keep its own velocity information, in a way reminiscent of a
Markov process. These extensions are described in more detail in [12]. The fol-
lowing examples (Figures 14.9–14.12) show the results of the fly algorithm in real
time in a car equipped with two cameras.6 An “alarm value” is given to each fly,
depending on its fitness and proximity to the anticipated car trajectory. An emer-
gency braking system uses the sum of alarm values as an input.

14.3.3. Application to robotics: fly-based robot control

Scene and obstacle representation by a population of flies is the most unusual way
to represent the physical environment of a mobile robot. Classical robot controllers

6Data captured and processed by O. Pauplin in the framework of a cooperative project between
the IMARA and COMPLEX teams at INRIA, Rocquencourt, France.
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Figure 14.11. Pedestrian.

Figure 14.12. Alarm values (pedestrian).

are not designed to use flies as an input. Of course, one could think the natu-
ral way to integrate the fly algorithm into a mobile robot would be to interface it
with existing controllers by building a translator, able to transform the fly-based
scene representation into a more classical representation, for example, a polyhe-
dral model, which a classical controller would be able to use.

Our position is that such a translator would almost certainly remove most of
the advantages of the fly algorithm, in particular in terms of speed and simplicity,
and that it is wiser to develop new navigation methods—or adapt existing ones to
the fly input. The results shown in this section (Figures 14.13–14.19) have been
obtained by A. Boumaza using his simulator which simulates all the perception-
action loop:

(i) a stereo camera pair simulator (image synthesis),
(ii) the fly algorithm,

(iii) the trajectory planning algorithm,
(iv) a kinematic simulator of the robot’s motion.

A. Boumaza first developed a trajectory planner based on classical potential-
based methods. A force derived from the addition of an attractive (target) and a
repulsive (flies) potential was acting as a steering command: the blockage situa-
tions were resolved using two heuristics creating a new force attracting the robot
out of the potential minimum (random walk- and wall-following methods).
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(a) (b)

Figure 14.13. The robot facing an obstacle (a) and the corresponding harmonic function (b).

(a) (b)

Figure 14.14. A synthetic image of the scene as seen by one of the robot’s cameras. (b) shows the flies
along the door, as previously detected by the robot.

Not surprisingly, the robot encounters blocking situations, where the control
force oscillates around zero (potential local minima). To resolve this, we imple-
mented two heuristics [9, 21] to create a new attraction force out of the local min-
imum.

With the random walk method, the algorithm creates random secondary tar-
gets and uses in priority those having the smaller number of obstacles between
themselves and the robot, and between themselves and the target. This secondary
target replaces the main target as long as necessary [2].

The wall-following method just modulates the direction of the attraction vec-
tor, so that the new resulting force becomes roughly parallel to the obstacle’s ori-
entation.

The next more efficient potential field-based path planner that we developed
is based on harmonic functions [9]. A harmonic function is a function which
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Figure 14.15. A direct trajectory without blockage situations.

satisfies Laplace’s equation

ΔU = ∂2U

∂x2
+
∂2U

∂y2
= 0. (14.8)

The robot’s vision system uses the population of flies to build its own repre-
sentation of the environment as the samples of a harmonic function. Values of the
function at the target and obstacle positions are modelled as Dirichlet boundaries:
1 for obstacles, 0 for the target position. The harmonic function is built itera-
tively using a finite difference operator, such as the Gauss-Seidel operator which
replaces the value of a point with the average value of its four neighbours. After
convergence, we end up with a smooth function having a single minimum at the
target position.

One of the interesting properties of harmonic functions is the absence of local
minima, which in our case eliminates the blockage situations found in the first
simulator.

The steering command of the robot is the gradient of the harmonic function.
Linear interpolation is used when the robot position falls between grid points.
During the movement towards the target, new obstacles detected by the fly algo-
rithm are introduced into the harmonic function according to the local fly density,
as high potential Dirichlet boundaries. Since the harmonic function is constantly
iterated, there will be a constantly updated obstacle avoiding path for the robot to
follow (Figure 14.17). The Dirichlet boundaries are built using high-fitness flies in
the robot’s field of view.

14.3.4. Sensor fusion

Sensor fusion plays a central role in a robot’s perception system. Many classical
approaches are based on Bayes’ theorem. This is not possible here as Bayes is only
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(a) (b)

Figure 14.16. Two examples of obstacle avoidance using secondary targets. The circle represents the
main target.

applicable in probabilistic approaches, and the results of the fly algorithm cannot
be formally considered as probabilities. However, it is possible to introduce an
efficient exteroceptive and proprioceptive sensor fusion, by tickering into the heart
of the fly algorithm.

14.3.4.1. Exteroceptive sensor fusion: a multisensor fitness function

The new fitness function should integrate information issued by all the exterocep-
tive sensors. As stated above, it is difficult to give a formal mathematical justifi-
cation of how to extend the expression of the fitness function to integrate several
sensors. In qualitative terms, if a fly’s position is in accordance with several inde-
pendent sensors, its fitness must be increased accordingly. Conversely, a fly con-
firmed by the visual sensor should still be considered seriously as a real obstacle
even if unnoticed by another sensor (e.g., a visible obstacle covered with sound
damping material). We defined each sensor’s contribution to the fitness function
as follows: if a fly is located inside the vision angle of a triggered detector, and its
distance to the detector matches the obstacle distance given by the detector accu-
rately enough, then the fly’s fitness is increased by a given percentage B.

If the fly’s position does not match any rangefinder information, then the fit-
ness remains unchanged. We chose a multiplicative rather than an additive contri-
bution to the fitness because of the low angular resolution of the ultrasonic sen-
sors: this prevents other flies at the correct distance inside the field of an ultrasonic
sensor from getting high-fitness values even if they are inconsistent with image
data.

In addition to the integration of additional sensors into the fitness function,
we introduced an additional immigration operator: new flies are introduced into
the population with a bias in favour of 3D positions given by the sonars. This
helps detecting close obstacles which might otherwise have been overlooked by
the system.
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(a) (b)

Figure 14.17. A harmonic function used for obstacle avoidance and the resulting robot trajectory.

This allows the fusion of an arbitrary number of sonars (or any similar exte-
roceptive sensors) at the fitness level, but it is not appropriate to the integration of
proprioceptive sensor information, which we examine in the following sections.

14.3.4.2. Proprioceptive sensor fusion: the proprioception
genetic operator

Proprioceptive sensors provide information about the robot’s own state, in par-
ticular its position. Inertial sensors and odometric sensors (using wheel rotation
coders) are among the most commonly used sensors to estimate the robot’s posi-
tion. Without such sensors, the fly algorithm is able to optimise in a quasicontin-
uous way the population of flies, which will follow the scene’s motion while the
robot is moving slowly. However, information about the robot’s motion helps to
update the positions of flies and speeds up convergence, especially in case of fast
robot movements.

In most applications, wheel rotation is under control of the trajectory plan-
ner. The actual robot trajectory does not exactly match the target trajectory due
to “trajectory noise” caused by factors such as wheel slipping, tyre wear, or rough
ground surface. In our simulator, the robot’s actual position is simulated by adding
a Gaussian noise to the planner’s command, but the sensor fusion algorithm only
gets what it would get in the real world, for example, the odometric estimation
which is strictly identical to raw trajectory planner data. Integration of odometric
information is performed through updating the flies’ 3D coordinates in accor-
dance with the motion of the robot’s coordinate system. Experiments show that
flies’ convergence, which otherwise needed around 10 generations, is now satis-
factory after less than 3 generations in spite of the low precision of odometric
information.

In this example (Figures 14.18 and 14.19), the robot is rotating (1 degree per
frame and one generation per frame). In Figure 14.18, obtained without propri-
oceptive fusion, there is some delay in detecting the short range obstacle as the
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(a) (b)

Figure 14.18. Frames N and N + 5 without proprioception.

flies tend to remain on the further wall, already detected on the preceding images.
Figure 14.19 shows the results on the same sequence, with proprioceptive fusion.
Updating the flies’ positions allows for faster convergence and better detection of
the short range obstacle.

14.3.5. Real-time and artificial evolution

Artificial evolution does not have a good reputation in terms of speed. The general
reasons for this reputation could be discussed interestingly, but let us examine
what happens with the fly algorithm in this respect.

The speed of an evolution strategy strongly depends on the complexity of
fitness calculation—which is in the lightweight side with the flies. Anyway, speed
in itself is not the ultimate criterion of real time. Real time refers to the ability to
exploit the flow of input data so that the system is able to react fast enough for the
end user.

Adaptation is probably an important feature here. Generally speaking, evo-
lution strategies are able to cope with a fitness function changing with time dur-
ing the program’s execution [18], which most other optimisation methods cannot
do. An autonomous robot must continuously optimise its strategy while the en-
vironment is changing. This makes evolutionary methods specially interesting in
autonomous robotics applications.

Unlike in image segmentation-based algorithms, image pixels only need to be
read when the fitness of a fly has to be evaluated; therefore, the random pixel access
allowed by CMOS imagers can be fully exploited and new events in the scene can
be processed without the usual frame refreshing delays. With the fly algorithm,
each individual evaluation only needs pixel values on a small neighbourhood.7

7Most commercial CMOS imagers directly deliver small (e.g., 8 × 8) pixel neighbourhoods on
request.
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(a) (b)

Figure 14.19. The same images with proprioception, better detection of obstacles.
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Figure 14.20. A classical (synchronous) robot vision-planning system. Defining T as the frame rate
period, a classical vision system will use input data which may react to real-world events with a delay
up to 2T , and a synchronous planner must wait until complete update of the vision’s output to begin
its own work. This leads to a minimal delay of 3T in addition to processing time.

CMOS camera technology is well adapted to this requirement as it is able to deliver
these values at any time, while conventional image processing techniques do not
exploit this feature. This shows that the fly algorithm annihilates the usual delay in
input data found in classical image processing algorithms (Figure 14.20).

Similarly, on the output side, the fly algorithm delivers quasicontinuously up-
dated information at any time (Table 14.3). This gives a second similar speed ad-
vantage.

Third, if the planner is able to use immediately the quasicontinuous fly al-
gorithm’s output, this gives the planner truly faster reaction to scene events. The
harmonic function-based planner continuously updates its grid and always uses
the freshest information provided by the flies. This conforms to the “anytime al-
gorithms” concept.

To summarise, using artificial evolution in real-time image processing allows
one to get free from the usual delays of synchronous processing. Here, the im-
age processing module does not require any image filtering or segmentation. The
navigation and control system is not based on an evolutionary algorithm but it
keeps the same “anytime” properties which allow it to fully exploit the speed of
evolutionary image processing. We can try to list the main advantages:

(i) fast execution, free from the classical delays of frame delivery found in
synchronous vision systems;
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Table 14.3. Comparison of the fly algorithm with conventional methods.

CCD sensor + standard approach CMOS + flies

Image sensor
Delay between capture

and restitution

Asynchronous

data reading

Image processing (input)
Image segmentation must wait

end of capture cycle

Random access to pixels
needed by current fitness
calculation

Image processing (output)
Not available until segmentation

process has ended

Current state of representation

always available

Trajectory planner
Must wait for image

processing output
Saves 2 acquisition cycles

(ii) easy programming (essentially editing the fitness function) inside a sta-
ble algorithmic architecture;

(iii) the process will self-adapt to the apparent velocities of objects in the
images;

(iv) ability to exploit and fuse data from other proprioceptive (odometry,
inertial) and exteroceptive (radqar, acoustic) sensors;

(v) optimal exploitation of the asynchronous and local properties of state-
of-the-art CMOS imagers.

Moreover, most image processing systems are designed through assembling
standard operators into an application-specific functional structure. Here, the al-
gorithm’s architecture is application-independent, as most of the specific knowl-
edge is coded into the fitness function. Little has to be modified if the program has
to be reused into another image processing application.

14.4. Conclusion

In the first part of this chapter, we gave a few examples of how it is possible
to extend the Hough transform to an evolutionary version able to solve multi-
ple model-based image analysis problems. The parameter space is explored by an
evolving population where each individual is testing a pixel-level predicate. In the
second part, we demonstrated through the example of the fly algorithm in stere-
ovision how it is possible to use the Parisian approach of evolutionary computing
to build efficient real-time image processing algorithms with interesting asynchro-
nous properties. Unlike classical approaches to stereovision, no image segmenta-
tion is required and the results get more complete and accurate with time, which
is a valuable property in robotic applications as the balance between speed and
accuracy can be adjusted in real time.

The main benefits of evolutionary approaches in model-based image analysis
are

(i) fast processing: processing time depends on population size rather than
image size;
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(ii) progressive accumulation of knowledge about the scene: this enables us
to use the results at any phase of the algorithm and to choose the right
balance between speed and precision without modifying the algorithm;

(iii) real-time compliance, as the fitness function may be continuously up-
dated in function of external parameters during execution.

Artificial evolution opens several interesting approaches to image processing,
either by extending the scope of parametric methods (e.g., Hough) or through the
introduction of its alternative programming philosophy—a way to easily and effi-
ciently implement the very principles of artificial intelligence. Evolutionary meth-
ods in image processing use explicit references to models. This often allows to get
free from the classical image processing toolbox (segmentation operators) to solve
new problems with general-purpose, often more efficient tools. Additionally, the
intrinsic asynchronous properties of artificial evolution offers new opportunities
with real-time applications like the robot vision example described above.

This conclusion would not be complete if we did not briefly mention the fact
that using evolutionary methods in model-based vision helps to extend the scope
of machine vision itself. As image analysis can be defined as the task of rebuilding
a model of reality from images taken by cameras, it may be interesting to quote
work on the identification of mechanical models from image sequences. This very
complex problem, connected to reverse engineering, has been solved in some par-
ticular applications thanks to multiobjective evolutionary computation. In one of
them, mobile 3D objects could be reconstructed as passive mechanical structures
whose internal parameters were identified using image sequence data [10, 11]. A
similar evolutionary approach was used to identify the internal parameters of tur-
bulent fluid flows [8] and mechanical structures with internal actuators (“muscu-
lar models”) [20] from image sequences. This time, the question is not merely the
improvement of vision algorithms performance, but the very semantics of what
has to be called “image analysis” or “machine vision.”

Acknowledgments

The author owes special thanks to Dr. Amine Boumaza, Dr. Pierre Collet, Baudoin
Coppieters De Gibson, Anders Ekman, Dr. Jean-Loup Florens, Dr. Philippe Guer-
meur, Dr. Marie-Jeanne Lesot, Dr. Annie Luciani, Dr. Evelyne Lutton, Olivier Pau-
plin, Dr. Bogdan Stanciulescu, Dr. Michel Parent, and the COMPLEX team, who
contributed to the methods, examples, and results given in this chapter. Special
acknowledgments are due to Dr. Amine Boumaza who designed, implemented,
and tested the simulator and the robot controllers described in Sections 14.3.3 and
14.3.4.

Bibliography
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15
Evolutionary feature synthesis
for image databases

Anlei Dong, Bir Bhanu, and Yingqiang Lin

The high dimensionality of visual features is one of the major challenges for
content-based image retrieval (CBIR) systems, and a variety of dimensionality
reduction approaches have been proposed to find the discriminant features. In
this chapter, we investigate the effectiveness of coevolutionary genetic program-
ming (CGP) in synthesizing feature vectors for image databases from traditional
features that are commonly used. The transformation for feature dimensionality
reduction by CGP has two unique characteristics for image retrieval: (1) nonlin-
earity: CGP does not assume any class distribution in the original visual feature
space; (2) explicitness: unlike kernel trick, CGP yields explicit transformation for
dimensionality reduction so that the images can be searched in a low-dimensional
feature space. The experimental results on multiple databases show that (a) CGP
approach has distinct advantage over the linear transformation approach of mul-
tiple discriminant analysis (MDA) in the sense of the discrimination ability of the
low-dimensional features, and (b) the classification performance using the fea-
tures synthesized by our CGP approach is comparable to or even superior to that
of support vector machine (SVM) approach using the original visual features.

15.1. Introduction

In recent years, the rapid advances in digital imaging technology and the low costs
of cameras, scanners, and storage devices make large-size image databases possible.
With explosive expanding of the Internet, efficient management of such image
databases becomes necessary for many multimedia applications in the fields of
business, education, and entertainment.

Traditional text-based image retrieval systems have some vital disadvantages.
First, manually describing and tagging image contents in terms of a selected set of
captions and keywords are too time-consuming, especially for large image data-
bases. Second, textual description method is inadequate to describe image since
an image is subjective to different users.

For the above reasons, content-based image retrieval (CBIR) is receiving wide-
spread research interest [2, 5, 26, 29, 37]. Recent years have witnessed a variety of
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content-based image retrieval systems: QBIC [9], Photobook [23], Virage [11],
NeTra [20], MARS [24], VisualSEEk [30], PicHunter [6], and SIMPLIcity [38].
The images in these systems are represented by numeric values, such as texture,
color, shape, and structure, which are called low-level visual features. The desired
objects in people’s mind are called human high-level concepts. The big gap be-
tween low-level features and high-level concepts necessitates learning method in
the image retrieval system.

Content-based image retrieval systems are designed to automatically extract
various visual features from images, such as color, texture, shape, structure, and
use them to represent images in the computer. The collection of such visual fea-
tures usually yields the high dimensionality of the feature space, which deteriorates
retrieval performances due to the well-known “curse of dimensionality.” Thus, a
key task in CBIR is to find the most discriminant features from the original feature
collection, so that both retrieval precision and search speed are improved.

Fisher discriminant analysis (also called multiple discriminant analysis
(MDA) for multiple-class case) [8] is a widely used approach to find discrimi-
nating features due to its straight-forward idea of making linear data projection by
maximizing the ratio of the between scatter matrix and the within scatter matrix.
The kernel trick [28] can be combined with Fisher discriminant analysis (e.g., [3]),
so that the nonlinear generalization of MDA is achieved with the improvement of
classification.

Swets and Weng [33] propose a self-organizing hierarchical optimal subspace
learning and inference framework (SHOSLIF) for image retrieval. The main idea is
to recursively implement linear discriminant analysis on the data subsets obtained
from the recursive subdivision of the data, so that the limitation of the global lin-
ear transformation is overcome. Such hierarchical linear analysis is a nonlinear
approach in nature.

Hastie and Tibshirani [12] present the approach of discriminant adaptive near-
est neighbor (DANN) for classification. Based on the analysis of local dimension
information, they also propose a global dimensionality method by pooling local
discriminant information.

Tieu and Viola [35] propose the AdaBoost algorithm to learn a strong classi-
fier for image retrieval. The strong classifier consists of some weak classifiers cor-
responding to some original visual features, and it gives out retrieval results fast
and efficiently.

Wu et al. [39] reduce the feature dimensionality for image databases using the
approach of weighted multidimensional scaling (WMDS), whose main character-
istic is preserving the local topology of the high-dimensional space. Su et al. [32]
exploit principal component analysis (PCA) for dimensionality reduction by using
relevance feedback.

He et al. [13] regard the data space as a manifold, and use locality preserving
projection (LPP) to preserve the local structure of the image space [13]. It has been
proved that LPP has more discriminating power than PCA.

In this chapter, we investigate the effectiveness of coevolutionary genetic pro-
gramming (CGP) [16] in generating composite operator vectors for image
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databases, so that feature dimensionality is reduced to improve retrieval perfor-
mances. Genetic programming (GP) is an evolutionary computational paradigm,
that is, an extension of genetic algorithm and works with a population of individ-
uals. An individual in a population can be any complicated data structure such as
linked lists, trees, and graphs, CGP is an extension of GP in which several popula-
tions are maintained and employed to evolve solutions cooperatively. A population
maintained by CGP is called a subpopulation and it is responsible for evolving a
part of a solution. A complete solution is obtained by combining the partial so-
lutions from all the subpopulations. For the task of object recognition in [19],
individuals in subpopulations are composite operators, which are the elements of
a composite operator vector. A composite operator is represented by a binary tree
whose internal nodes are the prespecified domain-independent primitive opera-
tors and leaf nodes are original features. It is a way of combining original features.
The CGP approach in this chapter follows the algorithm proposed in [19].

The advantage of using a tree structure is that it is powerful enough in ex-
pressing the ways of combining original features. Unlike a graph, it has no loops
and this guarantees that the execution of individuals represented by trees will ter-
minate and not be trapped in an infinite loop. The original features are visual fea-
tures (e.g., color, texture, structure) extracted from the images. With each element
evolved by a subpopulation of CGP, a composite operator vector is cooperatively
evolved by all the subpopulations. By applying composite operators (correspond-
ing to each subpopulation) to the original features extracted from images, com-
posite feature vectors are obtained. These composite feature vectors are fed into a
classifier for recognition.

The transformation for feature dimensionality reduction by CGP has two
unique characteristics that are suitable for image retrieval: (1) nonlinearity: CGP
does not assume any class distribution in the original visual feature space; (2) ex-
plicitness: unlike kernel trick, CGP yields explicit transformation for dimension-
ality reduction. Thus, during online image search, the system only needs to com-
pute the features in this reduced-dimensional feature space, instead of the original
higher-dimensional feature space, and this significantly reduce search time.

The contributions of this chapter are (1) the coevolutionary genetic program-
ming (CGP) approach in generating composite operator vectors for image data-
bases, so that the feature dimensionality is reduced and the retrieval performance
is improved (Section 15.3); (2) the comparisons of the experimental results by
CGP, MDA, and SVM on multiple image databases, so that the advantage of the
CGP approach is demonstrated (Section 15.4).

15.2. Related research on GP and CGP

In general, feature selection and feature synthesis are two kinds of feature transfor-
mations. In feature selection, original features are not changed and some original
features are selected to form a subset of features to be used by classifiers. Genetic
algorithm is widely used in feature selection [4]. In feature synthesis, a transfor-
mation, linear or nonlinear, is applied to the original features to generate new
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features. Weighted summation is a kind of linear transformation on the original
features, and the weights of features can be determined by a genetic algorithm.
In multilayer neural networks, each node of a neural network takes the weighted
sum of the outputs of its child nodes as input [34]. The weights are determined by
backpropagation algorithm during training. The output of a node is determined
by the input and the activation function of the node. It can be viewed as a non-
linear transformation on the original features. The CGP-based feature synthesis is
another kind of nonlinear transformation on the original features, which are the
primitive features in this paper.

The primitive operators in this paper are not logical operators, but operators
on real numbers and the composite operators are binary trees of primitive oper-
ators on real numbers not binary trees of logical operators. In [31], GP is used
to evolve logical expressions and the final outcome of the logical expression deter-
mines the type of the object under consideration (e.g., 1 means target and 0 means
clutter). In this paper, CGP is used to evolve composite feature vectors to be used
by a Bayesian classifier [34] and each subpopulation is responsible for evolving a
specific composite feature in the composite feature vector. The classifier evolved
by GP in [31] is a logical expression represented by the binary tree with the best
classification rate in the population, but the classifier evolved by CGP in this pa-
per is a Bayesian classifier determined by the composite feature vectors obtained
from the training images. Unlike the work of Krawiec and Bhanu [17], composite
operators in this paper are binary trees of primitive operators and primitive fea-
tures, whereas the recognition procedures in [17] are linked lists of simple image
processing operations.

15.3. Technical approach

15.3.1. Labeling scenario

Due to the high feature dimensionality, content-based image retrieval systems usu-
ally cannot achieve satisfactory retrieval performance purely with image visual fea-
tures which are automatically extracted from images. The CBIR systems have to
interact with humans to obtain some labeling information, which is then used for
learning or adaptation. There are three possible ways for a retrieval system to ob-
tain labeling information: (1) labeled images for training are provided in advance
(supervised learning); (2) allow a user to execute relevance feedback for his/her
retrieval [25] (short-term semisupervised learning) [24, 22, 27]; (3) accumulate
multiple users’ retrieval experiences to learn concepts in long term (long-term
semisupervised learning) [7, 10, 14, 15, 18, 40–42]. Since the second method, rel-
evance feedback for a single user, is only a short-term adaptation to the specific
requirement of this user, it cannot help to find the global discriminant features.

In this chapter, with the purpose of demonstrating the effectiveness of coevo-
lutionary genetic programming approach for image databases, we simply adopt
the first scenario, that is, training the system by directly providing labeled images



Anlei Dong et al. 313

Class 1 Class 2

Class 3 Class 1
Class 2

2D
Dimensionality

reduction
By composite

operator vector

1D
Class 1 Class 2 Class 3

Figure 15.1. An illustrative example for feature reduction (from 2D to 1D) using composite operation.
The original 2D feature space: three classes have different distributions, and Class 1 and Class 2 consist
of multiple clusters. The transformed 1D feature space: each of the three classes corresponds to a single
Gaussian distribution.

in advance. In future, we can also extend the proposed method to the scenario of
processing the multiple users’ retrieval experiences.

15.3.2. Image distribution

By intuition, the images belonging to the same class should be close in some sense
in the feature space of the image database, that is, these images form a cluster with
a specific shape, which reflects the relevances of the various visual features for the
corresponding class. However, we cannot ignore the possibility that the images in
the same class (as perceived by the user) may form multiple clusters, that is, the
images with different visual features may belong to the same class.

Based on the above observations, some researchers have proposed the Gauss-
ian mixture model for the image distribution in the feature space of the image
databases [36], with each class corresponding to a single mixture component or
a variety of mixture components. Sometimes, mixture model assumption for the
image distribution of a database may be too strict due to the existence of outliers
(the images are very far away from the components they belong to) and clutter
(the images that do not belong to any component). In this chapter, the proposed
CGP approach does not make any model assumption for the image distribution,
so that the negative effects such as overfitting by the model-based approaches can
be avoided or alleviated.

Figure 15.1 provides an example which illustrates the characteristics of our
CGP approach for reducing the feature dimensionality of image databases. The
original 2D data belong to three classes, two of which (Class 1 and Class 2) form
multiple clusters. Different clusters have different distributions (represented by
different shapes). The transformation by the CGP approach yields 1D feature
space, in which each of the three classes corresponds to a single Gaussian distribu-
tion.
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Figure 15.2. System diagram for object recognition using coevolutionary genetic programming.

15.3.3. Coevolutionary genetic programming

In CGP approach, each synthesized feature is derived by implementing a series of
operators on the original visual features. Such operators are called composite op-
erators, which are represented by binary trees with primitive operators as internal
nodes and original features as leaf nodes. The goal of these composite operators is
to map the original visual feature space to the low-dimensional synthesized feature
space, in which the images belonging to the same class form a Gaussian compo-
nent no matter how these images are distributed in the original visual space.

The search space of all possible composite operators is so huge that it is ex-
tremely difficult to find good composite operators from this vast space unless one
has a smart search strategy. How to design such a smart search strategy is the task
for CGP algorithm. We follow the CGP algorithm proposed in [19], which at-
tempts to improve the performance of object recognition. Figure 15.2 shows the
training and testing modules of the system. During training, CGP runs on train-
ing images and evolves composite operators to obtain composite features. Since a
Bayesian classifier is derived from the feature vectors obtained from training im-
ages, both the composite operator vector and the classifier are learned by CGP.

The set of primitive operators. A primitive operator takes one or two real numbers,
performs a simple operation on them and outputs the result. Table 15.1 shows the
12 primitive operators being used, where a and b are real numbers and input to an
operator and c is a constant real number stored in an operator.
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Table 15.1. Twelve primitive operators.

Primitive operator Description

ADD (a, b) Add a and b.

ADDC (a, c) Add constant value c to a.

SUB (a, b) Subtract b from a.

SUBC (a, c) Subtract constant value c from a.

MUL (a, b) Multiply a and b.

MULC (a, c) Multiply a with constant value c.

DIV (a, b) Divide a by b.

DIVC (a, c) Divide a by constant value c.

MAX2 (a, b) Get the larger of a and b.

MIN2 (a, b) Get the smaller of a and b.

SQRT (a)
Return

√
a if a≥0;

otherwise, return
−√−a.

LOG (a)
Return log(a) if a≥0;
otherwise, return
− log(−a).

Fitness measure. The fitness of a composite operator vector is computed in the
following way: apply each composite operator of the composite operator vector
on the original features of training images to obtain composite feature vectors of
training images and feed them to a Bayesian classifier. Note that not all the origi-
nal features are necessarily used in feature synthesis. Only the original features that
appear in the leaf nodes of the composite operator are used to generate composite
features. The recognition rate of the classifier is the fitness of the composite opera-
tor vector. To evaluate a composite operator evolved in a subpopulation, the com-
posite operator is combined with the current best composite operators in other
subpopulations to form a complete composite operator vector where composite
operator from the ith subpopulation occupies the ith position in the vector and
the fitness of the vector is defined as the fitness of the composite operator under
evaluation. The fitness values of other composite operators in the vector are not
affected. When subpopulations are initially generated, the composite operators in
each subpopulation are evaluated individually without being combined with com-
posite operators from other subpopulations. In each generation, the composite op-
erators in the first subpopulation are evaluated first, then the composite operators
in the second subpopulation, and so on.

Parameters and termination. The key parameters are the number of subpopula-
tions N , the population size M, the number of generations G, the crossover and
mutation rates, and the fitness threshold. GP stops whenever it finishes the speci-
fied number of generations or the performance of the Bayesian classifier is above
the fitness threshold. After termination, CGP selects the best composite operator
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of each subpopulation to form the learned composite operator vector to be used
in testing.

Selection, crossover, and mutation. The CGP searches through the space of com-
posite operator vectors to generate new composite operator vectors. The search
is performed by selection, crossover, and mutation operations. The initial sub-
populations are randomly generated. Although subpopulations are cooperatively
evolved (the fitness of a composite operator in a subpopulation is not solely de-
termined by itself, but affected by the composite operators from other subpopula-
tions), selection is performed only on composite operators within a subpopulation
and crossover is not allowed between two composite operators from different sub-
populations.

Selection. The selection operation involves selecting composite operators from the
current subpopulation. In this chapter, tournament selection is used and the tour-
nament size is empirically selected as 5. The higher the fitness value is, the more
likely the composite operator is selected to survive.

Crossover. Two composite operators, called parents, are selected on the basis of
their fitness values. The higher the fitness value is, the more likely the composite
operator is selected for crossover. One internal node in each of these two parents is
randomly selected, and the two subtrees rooted at these two nodes are exchanged
between the parents to generate two new composite operators called offspring. It
is easy to see that the size of one offspring (i.e., the number of nodes in the binary
tree representing the offspring) may be greater than both parents if crossover is
implemented in such a simple way. To prevent code bloat, we specify a maximum
size of a composite operator (called max-operator-size). If the size of one offspring
exceeds the max-operator-size, the crossover is performed again. If the size of an
offspring still exceeds the max-operator-size after the crossover is performed 10
times, GP selects two subtrees of the same size (i.e., the same number nodes) from
two parents and swaps the subtrees between the parents. These two subtrees can
always be found, since a leaf node can be viewed as a subtree of size 1.

Mutation. To avoid premature convergence, mutation is introduced to randomly
change the structure of some composite operators to maintain the diversity of
subpopulations. Candidates for mutation are randomly selected and the mutated
composite operators replace the old ones in the subpopulations. There are three
mutations invoked with equal probability.

(1) Randomly select a node of the composite operator and replace the sub-
tree rooted at this node by another randomly generated binary tree.

(2) Randomly select a node of the composite operator and replace the prim-
itive operator stored in the node with another primitive operator ran-
domly selected from the primitive operators of the same number of in-
put as the replaced one.

(3) Randomly select two subtrees of the composite operator and swap them.
Of course, neither of the two subtrees can be a subtree of the other.
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15.3.4. Generational coevolutionary genetic programming

Generational coevolutionary genetic programming is used to evolve composite
operators. The generational coevolutionary genetic programming algorithm [19]
is shown in Algorithm 15.1. The GP operations are applied in the order of
crossover, mutation, and selection. The composite operators in the initial subpop-
ulations are randomly generated. A composite operator is generated in two steps.
In the first step, the number of internal nodes of the tree representing the com-
posite operator is randomly determined as long as this number is smaller than half
of max-operator-size. Suppose the tree has n internal nodes. The tree is generated
from top to bottom by a tree generation algorithm. The root node is generated
first and the primitive operator stored in the root node is randomly selected. The
selected primitive operator determines the number of children the root node has.
If it has only one child, the algorithm is recursively invoked to generate a tree of
n− 1 internal nodes; if it has two children, the algorithm is recursively invoked to
generate two trees of (n − 1)/2 and (n − 1)/2 internal nodes, respectively. In the
second step, after all the internal nodes are generated, the leaf nodes containing
original features are attached to those internal nodes that are temporarily the leaf
nodes before the real leaf nodes are attached. The number of leaf nodes attached
to an internal node is determined by the primitive operator stored in the inter-
nal node. In addition, an elitism replacement method is adopted to keep the best
composite operator from generation to generation.

To evaluate Cj for Step (6) in Algorithm 15.1, select the current best compos-
ite operator in each of the other subpopulations, combine Cj with those N − 1
best composite operators to form a composite operator vector where compos-
ite operator from the kth subpopulation occupies the kth position in the vector
(k = 1, . . . ,N). Run the composite operator vector on the original features of the
training images to get composite feature vectors and use them to build a Bayesian
classifier. Feed the composite feature vectors into the Bayesian classifier and let the
recognition rate be the fitness of the composite operator vector and the fitness of
Cj .

15.3.5. Indexing structure

For each class Ci, a Bayesian classifier is generated based on GP-learned compos-
ite features. In the low-dimensional feature space, each class is corresponding to a
single Gaussian component, which is represented by the mean feature vector and
the covariance matrix of feature vectors of this class. Note that the synthesized fea-
tures in the low-dimensional space are independent; thus, the covariance matrices
for all the classes are diagonal.

We construct the indexing structure based on the Gaussian components ob-
tained by CGP approach. When a query image comes, the system computes the
probabilities that it belongs to those components using the components’ parame-
ters (means and covariances), and executes the search within the component with
the highest probability.
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(1) Randomly generate N subpopulations of size M and evaluate each composite
operator in each subpopulation individually.

for gen = 1 to generation num do
for i = 1 to N do

(1) Implement standard unsupervised EM algorithm on training data X.
(2) Keep the best composite operator in subpopulation Pi.
(3) Perform crossover on the composite operators in Pi until the

crossover rate is satisfied and keep all the offspring from crossover.
(4) Perform mutation on the composite operators in Pi and the offspring

from crossover with the probability of mutation rate.
(5) Perform selection on Pi to select some composite operators and com-

bine them with the composite operators from crossover to get a new
subpopulation P′i of the same size as Pi.

(6) Evaluate each composite operator Cj in P′i .
(7) Perform elitism replacement.
(8) Form the current best composite operator vector consisting of the

best composite operators from corresponding subpopulations and
evaluate it. If its fitness is above the fitness threshold, go to 2.

end for
end for

(2) Select the best composite operator from each subpopulation to form the learned
composite operator vector and output it.

Algorithm 15.1. Generational coevolutionary genetic programming.

The indexing structure implies two advantages for image retrieval: (1) the
search is carried on only in the subset of the whole image database; (2) the search
is carried on in the low-dimensional feature space. Both of these make the search
faster; furthermore, our CGP approach guarantees that the retrieval precision is
high since the Bayesian classification is good in the low-dimensional feature space.
Thus, the retrieval performance is improved by our CGP approach.

15.4. Experiments

To evaluate the effectiveness of the CGP approach for reducing the feature dimen-
sionality of image databases, we implement the CGP algorithm on three different
image databases with the purpose to evaluate its effectiveness for different kinds of
class distribution. All the images in these three databases are selected from Corel
stock photo library [1], which contains 200 CDs and each CD has 100 images. We
also compare the results of the CGP approach with other approaches including
MDA and SVM.

15.4.1. Image databases

(1) DB1200: We construct an image database with 1200 images, which are se-
lected from Corel stock photo library and divided into 12 classes. These classes are
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Figure 15.3. Sample images of the 12 classes in the database obtained from Corel stock photo library.

corresponding to the CDs (series number) in the library including Mayan & Aztec
Ruins (33), Horses (113), Owls (75), Sunrises & Sunsets (1), North American Wild
flowers (127), Ski Scenes (61, 62), Coasts (5), Auto Racing (21), Firework Photogra-
phy (73), Divers & Diving (156), Land of the Pyramids (161), and Lions (105). We
remove some images from these CDs since they do not have good visual features
to represent the corresponding concepts, and we add some images from other CDs
to some of the 12 classes. Figure 15.3 shows sample images for all of the 12 con-
cepts. We use texture and color features to represent images. The texture features
are derived from 16 Gabor filters [22]. We extract means and standard deviations
from the three channels in HSV color space. Thus, each image is represented by 22
features.

(2) DB1500: We add other 300 images (from other three CDs in the Library)
into DB1200 to obtain DB1500. The three new CDs (series number) are hawks
and falcons (70 000), tigers (108 000), and tulips (258 000). Each of these three CDs
is merged to one existing CDs in DB1200 to form a class, so that DB1500 still
has 12 classes. In these 12 classes, there are three classes each of which consists
of two clusters in visual feature space: the CD of Hawks and Falcons and the CD
of owls form the class of bird, the class of tulips and the class of North American
wild flowers form the class of flowers, and the class of tigersand the class of lions
form the concept of wild beasts. Figure 15.4 shows the sample images of these three
classes containing multiple CDs. Obviously, DB1500 is challenging for the linear
transformation approach such as MDA, as we will show later in the experiments.

(3) DB6600: The 6 600 images are obtained from 66 CDs, which are assigned
to 50 classes,1 that is, each class may consist of a single CD or multiple CDs, for

1The 50 classes in DB6600 are corresponding to the CDs (series number) in Corel stock photo
library including (1) action sailing (172 000) + sailboats (7000), (2) African antelope (77 000) +
African specialty animals (130 000), (3) air shows (10 000) + aviation photography (34 000) +
WWII planes (3000), (4) annuals for American gardens (132 000) + flowering potted plants (124 000) +
perennials in bloom (133 000) + roses (84 000) + flowers (13 000) (5) apes (49 000), (6) Arabian horses
(113 000) + horses (197 000), (7) auto racing (21 000) + exotic cars (29 000), (8) autumn (150 000),
(9) bald eagles (135 000) + hawks &falcons (70 000), (10) bears (100 000), (11) beneath the Caribbean
(141 000), (12) bridges (22 000), (13) butterflies (52 000), (14) cactus flowers (51 000), (15) candy
backgrounds (96 000), (16) Caribbean (68 000), (17) caves (194 000), (18) churches (24 000), (19) cities
of Italy (111 000), (20) coasts (5000), (21) coins & currency (125 000), (22) Death Valley (39 000), (23)
divers & diving (156 000), (24) dogs (247 000), (25) doors of San Francisco (59 000), (26) elephants
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(a) CD owls (class bird) (b) CD hawks and falcons (class bird)

(c) CD tulips (class flower) (d) CD wild flowers (class flower)

(e) CD tigers (class beast) (f) CD lions (class beast)

Figure 15.4. DB1500: sample images from the three classes containing multiple CDs.

instance, the CDs Arabian horses. And horses are assigned to the same class since
they are both for the same concept of horse. On the other hand, even the images
within the same CD may form multiple clusters in the sense of visual features.
For example, the CD of cities of Italy consists of images for different objects such
as building, road, people. For most of the classes, there are many outlier images,
each of whose visual features is far away from the cluster(s) its corresponding class
contains.

Original visual features: Images are represented by texture features, color fea-
tures, and structure features. The texture features are derived from 16 Gabor filters
[21]. We also extract means and standard deviations from the three channels in
HSV color space. For structure features, we use the water-filling approach [43] to
extract 18 features from each image. Thus, each image is represented by 40 visual
features.

15.4.2. Experiments results

Experimental parameters. For each of the three image databases, we randomly se-
lect half of the images as training data and another half as testing data. We im-
plement CGP algorithm on the training images, and the parameters values are:
(a) subpopulation size: 50; (b) crossover rate: 0.6; (c) number of generation: 50;

(107 000), (27) English country gardens (131 000), (28) fields (28 000), (29) firework photography
(73 000) + fireworks (40 000), (30) glaciers & mountains (114 000) + mountains of America (2000),
(31) ice & icebergs (184 000), (32) indigenous people (189 000), (33) insects (35 000), (34) landscapes
(176 000), (35) lions (105 000), (36) Mayan & Aztec ruins (33 000), (37) mushrooms (158 000),
(38) North American wildflowers (127 000), (39) ocean life (164 000), (40) oil paintings (211 000),
(41) owls (75 000), (42) polar bears (183 000), (43) residential interiors (31 000), (44) rhinos &
hippos (112 000), (45) Rome (149 000), (46) ski scenes (61 000) + skiing in Switzerland (60 000), (47)
reptiles and amphibians (87 000) + snakes, lizards & salamanders (175 000), (48) sunsets and sunrises
(1000), (49) water falls (27 000). (50) religious stained glass (99 000).
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Table 15.2. Classification errors: the comparison of the three different approaches on different
databases.

Database CGP (10D) MDA (10D) SVM (40D)

DB1200 14.8% 25.5% 12.6%

DB1500 16.5% 31.7% 29.6%

DB6600 51.8% 73.3% 52.6%

ADD
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(a)

ADD

ADD SQRT

SQRT SQRT ADDC

F12 F1 SQRT

F12

(b)

Figure 15.5. Sample composite operator vectors in DB6600 (the leaf nodes are original visual fea-
tures): (a) a simple composite operator vector, (b) a complex composite operator vector.

(d) mutation rate: 0.05; (e) fitness threshold: 1.0; (f) tournament size: 5. For both
CGP approach and MDA approach, we reduce the feature dimensionality from 40
to 10, so that it is fair to compare these two approaches.

Figure 15.5 gives two sample composite operator vectors in DB6600. The com-
plex case in (b) illustrates that the unconventional combination of the operators
exist in CGP, which may help to achieve good classification performance.

Classification performance. Table 15.2 shows the classification performances of the
approaches of CGP, MDA, and SVM. The first two approaches attempt to reduce
the feature dimensionality in explicit ways, so that data in the same class form a sin-
gle Gaussian component in the lower-dimensional feature space. Thus, we present
their Bayesian classification errors in the lower-dimensional (10D) feature space.
Since SVM exploits kernel trick instead of providing explicit transformation, we
present its classification error in the original visual feature space (40D).

From Table 15.2, we observe that the classification performance of CGP is
better than that of MDA on all of the three databases. It is easy to understand the
significant advantage of CGP over MDA on DB1500 and DB6600, both of which
contain some classes which consist of multiple clusters in the original visual fea-
ture space. Therefore, the linear approach of MDA cannot deal with them well.
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Figure 15.6. DB6600: precision-recall curves: CGP versus MDA.

Although each class in DB1200 only corresponds to a single cluster in the orig-
inal visual feature space, CGP still outperforms MDA (14.8% vs. 12.6%) due to
the reason that the distribution of these clusters may not be Gaussian while MDA
assumes the cluster distribution as Gaussian and CGP does not make such an as-
sumption.

We now compare CGP and SVM, which have similar classification errors on
DB1200 and DB6600. However, the error (16.5%) by CGP is significantly lower
to that (29.6%) by SVM on DB1500, which implies that CGP is more suitable to
deal with the class which consists of multiple clusters in the original feature space.
With many outliers in DB6600, such an advantage of CGP is not so obvious as in
the case of DB1500 (CGP: 51.8% versus MDA: 52.6%), and neither CGP nor MDA
can yield classification performance which is as good as those on DB1500.

Retrieval performance. After reducing the feature space, we construct the indexing
structure based on the Gaussian components obtained by CGP approach or MDA
approach.

We use each image in the database as query, and obtain average retrieval pre-
cisions. Figure 15.6 shows the retrieval-precision curves on DB6600 by CGP and
MDA. We observe that CGP yields better retrieval results than MDA.

From the experiments reported above, we conclude that (a) feature synthesiz-
ing by CGP has obvious advantage over MDA in the sense of both classification
and retrieval. (b) The classification performance in the synthesized feature space
by CGP is comparable to or even superior to that in the original feature space by
SVM. (c) Furthermore, the retrieval performance in the low-dimensional feature
space is improved since the retrieval precision is higher and the search is faster.
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(a) MDA: precision = 12/20

(b) CGP: precision = 19/20

Figure 15.7. DB6600: retrieval examples by CGP and MDA with the same query image (the first image
in each group). The user seeks planes. (a) MDA: the nonplane images are row 1: image 3, 4; row 2 : 1;
row 3 : 5; row 4: image 1, 2, 3, 5. (b) CGP: The only nonplane image is the last one in row 4.

Figure 15.7 presents a retrieval example, which illustrates that CGP approach
improves the retrieval performance in the sense of higher precision and faster
search.
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15.5. Conclusions

This chapter presents a coevolutionary genetic programming (CGP) for feature
dimensionality reduction. The two characteristics of the transformation by CGP,
that is, nonlinearity and explicitness, make it suitable for image retrieval: (a) the
nonlinearity yields good classification performance without any class distribution
model assumption, and (b) explicitness achieves the image search in the low-
dimensional feature space. Experimental results on multiple image databases with
different types of distributions have demonstrated the effectiveness of improving
image retrieval performance by the CGP approach.
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16
Discovering of classification
rules from hyperspectral
images

Arnaud Quirin and Jerzy Korczak

16.1. Introduction

The emergence and the improvement of remote sensing, aircraft simulation, air-
borne and spaceborne sensor systems, as well as other kinds of such survey tech-
nologies have considerably enhanced our means to explore and to collect data.
However, this rapid increase in data results in more time and cost for storage as
well as for the data analysis. At the same time, a lot of useless information can hide
valuable information. These observations force classification systems to focus on
elaborated and sophisticated algorithms to overcome this rapid data growth.

For many years, the design of efficient and robust image classification algo-
rithms has been the most important issue addressed by remote sensing image
users. Strong effort has been devoted to elaborate new classification algorithms
and improve techniques used to classify remote sensing images using traditional
and statistical techniques such as support vector machines [7] or neural networks
[16, 21, 22]. But, to our knowledge, relatively few researchers in the evolution-
ary community have considered how classification rules might be discovered from
raw and expertly classified images. Only some works have been done using ge-
netic programming approach [15, 28], but no papers have been published about
the effectiveness of learning classifier systems in this field (this review concerns
the main conference on learning classifier systems, IWLCS (International Work-
shop on Learning Classifier Systems) from 1992 to 2005). To discover classifica-
tion rules, the unique source of information is a remote sensing image and its
corresponding identification is furnished by an expert. Generally the images, reg-
istered by various satellites (e.g., SPOT, CASI, Quick Bird), contain voluminous
data. Sometimes they are very noisy due to the presence of various details in a high
spatial resolution or unfavorable atmospheric conditions at the time the images
were acquired. These data can embrace different cameras having various spectral
and spatial resolutions [18, 24, 32]. This chapter presents the potential contri-
bution of evolutionary-based techniques to discover the rules. Learning classifier
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systems can produce accurate, robust, and maximally specific classification rules
able to deal with the noisy artifacts contained in remote sensing images.

The aim of this chapter is to describe a process of design and validation of evo-
lutionary classifiers applied to remote sensing images. This system is data driven
because it generates classification rules able to adapt themselves according to the
available data and expertises, and it distributes the quantity of rules in an opti-
mal way to describe each class according to the complexity of the data. In general,
classification rules are discovered from the established classifier system [12, 35]. In
remote sensing, the initial population of classifiers is randomly created from im-
ages and given classes, and then evolved by a genetic algorithm until the acceptable
solution is found.

In remote sensing literature, several classification approaches are presented,
namely, the following.

(i) Pixel-by-pixel: each image pixel is analyzed independently of the others
according to its spectral characteristic [14].

(ii) Zone-by-zone: before classification, the pixels are aggregated into zones,
the algorithms detect the borders of the zones, delimit them by their
texture, their repetitive motives [19].

(iii) By object: this is the highest level of recognition, the algorithms classify
semantic objects, the algorithms detect their forms, geometrical proper-
ties, spatio-temporal relations using the background domain knowledge
[17].

Our approach is based on spectral data of pixels; therefore, discovered clas-
sification rules are only able to find spectral classes rather than semantic ones.
This spectral component of class description is essential to well-recognized the-
matic classes. It should be noted that the proposed classifier system may be easily
adapted to more sophisticated object representations.

To validate our approach, a system called I see you (ICU) has been used. In
the ICU, we have adapted and extended ideas developed in the well-known clas-
sifier systems such as XCS [35], the S-classifiers, and “fuzzy-to-classify system”
[25]. We have also been inspired by the works of Riolo [27] on gratification and
penalization, and of Richards [26] on the exploration of the space of classifiers.
To demonstrate the performance of our classifier system, the ICU has been com-
pared with XCS-R and two popular methods, one based on neural networks and
the other based on support vector machines [7, 16]. XCS-R is a system based on
XCS, integrating the concept of continuous values [36]. XCS is a learning classifier
system, developed by [33, 34], that evolves a rule set online based on prediction
accuracy and a niched genetic reproduction [20]. The classification systems have
been tested in the framework of the European TIDE project [3] on hyperspectral
remote sensing images covering the region on Venice.

The chapter is structured as follows. The basic terms and properties of hy-
perspectral images are introduced in Section 16.2. Section 16.3 gives general ideas
about what is a “good” classifier system in remote sensing. Section 16.4 describes
our algorithm ICU. In this section, the main components and the quality measures
of the method are explained. Section 16.5 draws the main principles of XCS-R and
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the adjustments which were made to make it able to deal with these data. The al-
gorithms are evaluated on remote sensing images covering the region on Venice in
the framework of the European TIDE project [3]. The results of the comparison
between ICU, XCS-R, and two statistical methods (SVM and NN) are presented
in Section 16.6. And finally, Section 16.7 concludes the experimentations and in-
dicates the perspectives of the future research.

16.2. Hyperspectral remote sensing images

A hyperspectral image is a set of two dimensional arrays IX ,Y ,S where (X ,Y) is, re-
spectively, the width and the height of the image and S is the number of spectral
channels (or spectral bands). The term hyperspectral refers to an image which in-
cludes more than 20 spectral bands (similar to those produced by ROSIS and DAIS
[2]). Conversely, the term multispectral is used in the case of a low number of spec-
tral bands such as CASI and Quick Bird remote sensors [30]. A value I(x, y, s) in
this array is the reflectance observed on the pixel location (x, y) at the wavelength
corresponding to the spectral channel s. A reflectance value corresponds to the
intensity of the response obtained from the ground. The input space of a classi-
fication problem can be viewed as an ordered vector of real numbers. For each
pixel, the spectral signature of this pixel was used. Figure 16.1 shows the spectrum
of reflectance of a pixel from a hyperspectral sensor (type MIVIS). Each spectral
channel has roughly 10 nanometers in width.

The image data is very voluminous; typically 20 to 200 spectral channels in
an image and their size can reach 8000× 12000 pixels. Sometimes, half of bands is
noisy because of sensor defects or atmospheric absorption of reflectance value in
low wavelengths (see Figure 16.2).

To illustrate our approach, two kinds of hyperspectral images have been used.
CASI data. Generated by the airborne spectrometer CASI (compact airborne spec-
trographic imager), with a size of 1175 × 673 pixels, 288 spectral channels (412–
957 nm), and a high resolution (1.3 m). This image has been pre-processed by geo-
metric correction and warping (specifically, first order polynomial warping and
nearest neighbor resampling).

MIVIS data. Generated by the MIVIS sensor (multispectral infrared and visible
imaging spectrometer) embarked on a satellite, with a size of 397 × 171 pixels,
92 to 102 spectral channels (433–2478 nm), and a high resolution (2.6 m). Same
preprocessing has been applied as before.

Learning and testing were applied on subsets of these images. Subsets con-
tained 142 × 99 points, and only 1540 points were validated by human ground
truthing (expertise ratio: 11%). Then, according to the validation strategies used
(hold-one-out, cross-validation), testing sets represent 20% to 50% of the origi-
nal validated image points. Figure 16.3 shows Quick Bird data for the Lagoon of
Venice and the corresponding set of validated points. The rectangle is the area in
which all validated points are situated. It should be noticed that the proportion of
these points to the whole image is very small—about 0.01%.



330 Discovering of classification rules from images

200

400

600

800

1000

1200

1400

1600

1800

R
efl

ec
ti

vi
ty

400 450 500 550 600 650 700 750 800 850 900

Wavelength (nm)

Figure 16.1. Spectrum of reflectance observed for a pixel from the hyperspectral sensor MIVIS.

(a) (b) (c)

Figure 16.2. Typical noisy channels: Strasbourg (band number 42 and number 59 from DAIS) and
Lagoon of Venice (band 45 from DAIS), respectively.

16.3. Definition of a system of classifiers in remote sensing

Generally speaking, a system of classifiers integrates symbolic learning and evolu-
tion-based computing. Classification rules are symbolic expressions and describe
conditions to be held and actions to be taken if the conditions are satisfied. Quality
of the rules is evaluated according to their classification performance. Here, we
must underscore the fact that the rules are not introduced by a programmer or by
an expert.

A system of classifiers is called evolutionary if it is able to adapt itself to the
environment. This means that it can modify its knowledge and its behavior ac-
cording to the situation. For example, in remote sensing, the size of the classes
may evolve in one of two ways: (1) if, after an initial classification, there remain
nonclassified pixels, or (2) if there are pixels belonging to several classes (mixed
pixels). When a classifier integrates one of these pixels to one or another class, it
is necessary to dynamically adapt classification rules. In this way, certain rules that
treat only the simple cases (not mixed pixels) will become useless, and new rules
are necessarily created for other cases.
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(a)

(b)

Figure 16.3. Quick Bird data of the Lagoon of Venice and the corresponding set of validated points
(ground truthing).

From a functional point of view, a classifier can be defined as a rule repre-
senting a piece of knowledge about a class, and may be a conditional expression,
such as if “conditions” then “action”. In the early classifier systems [35], each part
of a rule was a binary message, encoding elementary information such as a value,
colour, form, shape, and so forth. The “conditions” part described an entry mes-
sage in the system, corresponding to conditions that must be fulfilled in order
to activate this rule. The “action” part defined the action to be carried out when
the appropriate conditions were satisfied. This binary encoding scheme is not well
adapted to image classification rules.

One of the reasons for this is based on the domain of spectral values that may
be assigned to a pixel (from 0 to 255 for 8-bit pixels, or from 0 to 65000 for 16-
bit pixels). Of course, binary encoding of rule conditions is possible but the rules
would be difficult to understand. Instead, we assert that the evolved rules must be
rapidly evaluated and easy to interpret by any user. As a result, condition represen-
tation using the concept of an interval could be fully adequate for remote sensing
image classification. In terms of machine learning, the rules have to be maximally
specific generalizations, meaning that they have to cover the maximum pixels be-
longing to a given class and the minimum pixels belonging to other classes.

Before rule specification is explained, recall that a pixel is encoded as a spectral
vector, defining a value of reflectance for the n bands of the remote sensing image:

< pixel >:= [b1, b2, . . . , bn
]
. (16.1)
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In our system, the condition for any rule is built on the concept of spectral
intervals defining a given band, corresponding to a given class. Such intervals are
a pair of integer numbers, between 0 and the maximum possible value for a pixel
of a given band (i.e., 65536 for the pixels defined on 16 bits). This solution allows
to partition the space of the spectral values in two ranges: the first containing the
pixel values which corresponds to a given class, and the second containing the
remainder.

To precisely specify the class definition, a set of intervals is defined for each
band of the remote sensing image. Taking into consideration all bands, the condi-
tion part is defined as a set of hyper-rectangles in an Rn space:

< condition >:=
n∧
i=1

k∨
j=1

m
j
i ≤ bi ≤M

j
i , (16.2)

wherem
j
i andM

j
i denote, respectively, the minimal and maximum reflectance val-

ues allowed for a pixel belonging to a class C for band i. k is a fixed parameter
which defines the maximum number of disjunctions allowed.

The intervals [m
j
i ;M

j
i ] are not necessarily disjunctive. By experiments, we

have found that if we allow the genetic algorithm to create nondisjunctive in-
tervals, instead of merging them, the results of genetic operators are more inter-
esting. We have noticed that merging intervals significantly diminishes the num-
ber of intervals, and at the same time reduces the possibilities to create more ef-
ficient rules. The example below illustrates a concept of interval merging: E =
[11; 105] or [138; 209] or [93; 208] corresponds after merge operation to E =
[11; 209].

To satisfy a rule, a pixel has to match at least one spectral interval for each
band. Logically speaking, to associate a pixel to a class, its values have to satisfy the
conjunction of disjunctions of intervals that define a condition part of the classi-
fication rule. Figure 16.4 illustrates an example of matching of two pixels against
the spectral class. The left figure graphically shows the spectral intervals of the
class defined by a given rule. The next two diagrams show spectral signatures of
two pixels: the first matches the rule, but the second does not. Hence, only the first
pixel of this example may be considered to be an instance of the class.

This representation of the rule has been chosen mainly because of its simplic-
ity, compactness, and uniform encoding of spectral constraints. During experi-
mentation, this representation has demonstrated rapid execution of genetic opera-
tors and efficient computing. Of course, one may specify more complex structures
using spatial properties of the pixel, with respect to the pixel neighborhood. Also,
one may include features resulting from thematic indices or mathematical opera-
tors applied to pixel environment. We may also apply a genetic programming to
identify new characteristics. These semantically extended formalisms are interest-
ing, however, they not only require more sophisticated genetic operators, but also
more powerful computers to perform the calculation in an acceptable amount of
time.
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Figure 16.4. Matching spectral bands and spectral signature of pixels. For instance, a real-image sam-
ple for the rule could be (see the figure): “if 40 < R < 80 AND (20 < G < 30 OR 55 < G < 85) AND
25 < B < 50 then class X,” where R, G, and B are the channels of a three-band captor.

16.4. From the rule creation to the evolution with ICU

16.4.1. Genetic algorithm

To discover a classification rule, ICU uses a Michigan-like learning classifier sys-
tem representation, in which each rule is encoded by one individual [24]. In order
to efficiently develop the classification rules, a genetic algorithm initializes interval
values according to spectral limits of the classes designated by an expert, for valid
zones of the remote sensing image. Initial classification rules are created based on
the extreme maximum and minimum values for defined spectral intervals, taking
into account every class. It should be noted that by this initialization, rule search-
ing is considerably reduced, and initial intervals are very close to the final solution.
During this process, the initial spectral limits are slightly perturbed by adding a
random value to lower and upper spectral limits. Hence, the initial population of
classification rules is quite diversified.

This initial pool of classifiers is evolved from a genetic algorithm. Our sys-
tem searches for a best classifier for each class, independently. A major reason for
choosing this procedure is the efficiency of computations; that is, the process of
rule discovery is not perturbed by other rules.

The quality of classification rules is based on a comparison of these results
with the image classified by an expert. If pixels covered by the classifier perfectly
overlap those indicated by an expert, then the system assigns the highest quality
value to the classifier; otherwise, in the case of some mismatching, the quality fac-
tor is reduced (between 0 and 1). An associated fitness function will be detailed
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{R is a classification rule and P0, P1 and P2 populations of
classification rules}
R := INITIAL RULE(images) // Creation of a rule
according to spectral extremes
P0 := INITIALIZATION(R) // Random perturbation of rules
EVALUATION(P0) // Calculation of the fitness function
for each rule
while TERMINATION CRITERION(P0) = false do
P1 := SELECTION X(P0) // Selection for crossover
P1 := CROSSOVER(P1) ∪ COPY(P0)
P2 := SELECTION MUT(P1) // Selection for mutation
P2 :=MUTATION(P2) ∪ COPY(P1)
EVALUATION(P2)
P0 := REPLACEMENT(P0,P2) // New generation of rules

end while
Result: R, the classification rule for a given class

Algorithm 16.1. Process of rule discovery.

Table 16.1. Characteristics of the evaluation function.

Image classified by the classifier R (Irule)

No. of pixels activating R . . . nonactivating R

Pixel classified by the expert E (Iexpert)
True Prul

exp Prul
exp

False Prul
exp Prul

exp

in the next section. During the evolution process, the rules are selected for the
crossover according to the quality for a given class. The process of rule evolution,
that we have used, is defined in Algorithm 16.1.

As mentioned before, this algorithm must be designed to run independently
for each class. This allows for obtaining classifiers according to user requirements
without the necessity of carrying out computations for all classes with the same
level of quality. This also allows for the maintenance of previously generated clas-
sifiers, as well as for the introduction of new ones. Further, the user may define a
hierarchy of classes and specialize some classifiers while respecting newly created
subclasses with different levels of classification quality.

16.4.2. The evaluation function

The evaluation function serves to differentiate the quality of generated rules and
guide genetic evolution. Usually, this function depends strongly on application
domain. In our work, evaluation is based on the classification obtained by the
classifier (Irule) and the expertly given classification (Iexpert). Table 16.1 defines the
values necessary to compute the evaluation function.
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In a given system, the evaluation function is computed as a balanced score be-
tween sensitivity and specificity, two popular quality measures in remote sensing:

Nfinal = αNclass + (1− α)Nclass, (16.3)

where Nclass = Prul
exp/(P

rul
exp + Prul

exp) is the sensitivity and Nclass = Prul
exp/(P

rul
exp + Prul

exp) is
the specificity. α is called the adjusting coefficient, which is used for certain classes
that are under or over represented. By default, the value of this coefficient is equal
to 0.5.

The proposed function has a number of advantages; it is independent of the
pixel processing sequence, invariant of the size of classes, and efficient for class
discovery with a highly variable number of pixels.

The evolution process converges according to some statistical criteria indicat-
ing if the current classifier is near to a global optimum or if the population of rules
will not evolve anymore. The termination criterion of the algorithm leans on the
statistics of classifier quality evolution. In our system, we take into consideration
not only the evolution of quality of the best and the average classifiers, but also the
minimum acceptable quality defined by a user and a maximal number of genera-
tions to run. If one of these criteria is satisfied, then the process is stopped.

The most difficult determination to make is whether the quality of a classifier
is not continuing to evolve. To detect stabilization of the quality measure, we have
based our heuristics on statistics regarding quality evolution of the best classifier.
For example, let Qk be the quality of the best classifier obtained during the last k
generations, and Qo be the quality of the best classifier of the current generation.
The algorithm is interrupted if the following equation is satisfied:

∣∣∣∣∣
∑P

k=1 Qk

P
−Qo

∣∣∣∣∣ ≤ E, (16.4)

where P represents the maximum period of quality stabilization, and E is a maxi-
mal variation of this stabilization compared with the current quality.

It is important to have an initial population of classifiers within the vicinity
of the solution to be found. Two algorithms have been proposed allowing for the
generation of a diversified pool of classifiers close to the expert hidden classifica-
tion rule. The first, called GenMinMax, creates maximum intervals covering the
expert rule, and the second algorithm, called GenSpectro, integrates the spectral
distribution density and interval partitioning [24].

16.4.3. Genetic operators

One of the most important tasks while designing a genetic algorithm is to invent
operators that will create new potential solutions. All of our operators have been
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[81; 93]

[10; 13]∨[48; 53]∨[55; 67]

[7; 36]∨[81; 93]

After crossover After merging

Figure 16.5. Interval merging after crossover operation. With a real image, the crossover consists to
exchange the tests corresponding to given parts of the spectrum of a sample. Interval merging does not
change the mathematical interpretation of the test.

specialized on classifier representation, and they have been validated on remote
sensing images. With respect to software engineering, the genetic algorithm has
been structured into layers corresponding to genetic operations (e.g., selection,
mutation, crossover, and replacement). The system is viewed as a collection of
layers with data passed from layer to layer. Layer execution follows from one to
another, and genetic operations are invoked in the same sequence. This modular
approach makes program maintenance and future extensions much easier.

Selection of classifiers. In general, selection is the operation of allocating repro-
ductive opportunities to each classifier. The reproductive force of a classifier is
expressed by a fitness function that measures the relative quality of a classifier by
comparing it to other classifiers in the population. There are many methods for
selecting a classifier [6]. In our system, the selection operator is applied in the fol-
lowing cases: (1) choice of the classifier to be reproduced for the crossover or the
mutation; (2) choice of the classifier to be copied during the reproduction (see the
first chapter); and (3) choice of the classifiers to be kept or eliminated during the
replacement.

Selection strategies are well known: the roulette wheel, ranking, elitism, ran-
dom selection, the so-called tournament, and eugenic selection. Our experiments
have shown that roulette wheel selection is most advantageous for the reproduc-
tive phase, but the tournament strategy with elitism is best for the generational
replacement scheme.

Crossover of classifiers. In our case, the crossover operator needs two parents, and
cuts their chromosome at some randomly chosen positions to produce two off-
spring. The two new classifiers inherit some rule conditions from each parent-
classifier. Then, each result of the crossover process has to be validated. Validation
of the various rule attributes (border limits violation, overpasses, etc.) is carried
out by a process of interval merging, as shown in Figure 16.5.

However, merging not only decreases the number of intervals in the rules, but
also generates some information loss. In fact, in order to avoid a premature con-
vergence of rules, it is generally important to preserve for the following generation
two distinct intervals instead of a single aggregated one. On the other hand, it is
interesting to note that the positive or negative effects of an interval on the quality
of the rule can be related to other intervals encoded in the classification rule. By
checking the quality of the obtained rules, we finally discovered that not merging
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is a better solution if the user is not concerned by the computing time because it
requires more iterations.

Mutation of classifiers. The mutation processes a single classification rule and it
creates another rule with altered condition structure or variables. In our system,
the mutation operator may be applied on three levels: band level, interval level,
and border level.

Band mutation consists of a deletion of spectral bandwidth in a chosen clas-
sification rule. Its interest is twofold; firstly, the band mutation type allows for
simplification and generalization of a rule; secondly, it allows for the elimination
of noisy bands that frequently appear in hyper spectral images. The existence of
noisy bands significantly perturbs the learning process, as well as the process of
evolution convergence.

Interval mutation allows for a chosen band to add, eliminate, or cut an inter-
val into two spectral ranges. In case of addition, the new rule is completed by a new
interval centered randomly with a user-defined width. The cutting of an interval
is done by random selection of a cutting point within the interval (e.g., the cut-
ting of [10;100] can generate two intervals: [10; 15] and [15; 100]). Mutation such
as this allows for breakage of continuous spectral ranges. And, this allows for the
definition of a spectral tube in which spectral values of the pixels can be assigned
to a given class.

Finally, border mutation modifies both boundaries of an interval. This mu-
tation refines the idea of targeting spectral tubes carried out by the other types of
mutation. It is worthwhile to note that the mutated rules are systematically vali-
dated.

In our system, mutation operators are dynamically adapted by tunning (i.e.,
we test different parameters for the same training set and we elect the best choice
by looking at a testing set). Adjustment is related to the probability of each muta-
tion operator according to its current effectiveness.

Generational replacement. In our system, the two strategies presented in the in-
troduction, that are the (μ, λ) and the (μ + λ) strategies can be applied. According
to Algorithm 16.1, the new generation of classifiers is created from a population
of parents (P0 of μ individuals) and their children after the crossover and the mu-
tation operators (P2 of λ individuals). Depending on a parameter set by the user,
the REPLACEMENT() operator can apply the (μ, λ) or the (μ + λ) strategy. Best
results were obtained with the (μ, λ) strategy.

There exist other replacement strategies integrating for instance heuristics
where the best individual of the previous population replaces the worst one of
the current population or heuristics where the new individuals having a perfor-
mance higher than a certain threshold are inserted. However, both of these strate-
gies present the risk of having the same individuals remain in the population.
This is not necessarily a problem except in the case of a weak genetic pool in
which some individuals of average performances that would profit from immu-
nity.
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16.5. From the rule creation to the evolution with XCS-R

XCS and XCS-R are learning classifier systems (LCS). LCSs are algorithms for sym-
bolic learning. The main difference between LCSs and other learning techniques
like neural networks and genetic programming is the aptitude for collaborative
learning. The objective is to create a chain containing a given number of classi-
fiers, so that the whole chain will be the complete solution of the problem. The
information will be transmitted from a link to another, using messages to inter-
pret.

XCS evolves a set of rules, the so-called population of classifiers. This method
is presented for comparison with ICU. Rules are evolved by the means of a ge-
netic algorithm. A classifier usually consists of a condition and an action part. The
condition part specifies when the classifier is applicable and the action part spec-
ifies which action, or classification, to execute. In contrast to the original LCSs,
the fitness in the XCS classifier system, introduced by Wilson [33], is based on the
accuracy of reward predictions rather than on the reward predictions themselves.
Thus, XCS is meant to evolve not only a representation of an optimal behavioral
strategy, or classification, but rather to evolve a representation of a complete pay-
off map of the problem, that is, XCS is designed to evolve a representation of the
expected payoff in each possible situation-action combination.

Since our system is confronted with real-valued data in this study, we apply the
real-valued extension of XCS (XCS-R) introduced in [36]. Recently, several studies
have been reported that show that XCS performs comparably well to several other
typical classification algorithms in many standard data mining problems [4, 5, 13].

This section provides a short introduction to the XCS classifier system. For
a more detailed introduction to XCS and XCS-R, the interested reader is referred
to the original paper [33], the real-valued extension [36], and the algorithmic de-
scription [9].

16.5.1. Overview of the algorithm

As mentioned, XCS evolves a population [P] of rules, or classifiers. Each classifier
in XCS consists of five main components.

(1) The condition part specifies the subspace of the input space in which the
classifier is applicable, or matches. In our real-valued problem, a condi-
tion specifies a conjunction of intervals, one for each attribute. If the
current problem instance lies within all specified intervals, the classifier
matches.

(2) The action part specifies the advocated action, or classification.
(3) The payoff prediction estimates the average payoff encountered after ex-

ecuting action A in the situations in which the condition part matches.
(4) The prediction error estimates the average deviation, or error, of the pay-

off prediction.
(5) The fitness reflects the scaled average relative accuracy of the classifier

with respect to other overlapping classifiers.
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Learning usually starts with an empty population. Given current input, the
set of all classifiers in [P] whose conditions match the input is called the match
set [M]. If some action is not represented in [M], a covering mechanism is ap-
plied. Covering creates classifiers that match the current input and specify the
not-covered actions.1 Given a match set, XCS can estimate the payoff for each pos-
sible action forming a prediction array P(A). Essentially, P(A) reflects the fitness-
weighted average of all reward prediction estimates of the classifiers in [M] that
advocate classification A. The payoff predictions determine the appropriate clas-
sification. During learning, XCS chooses actions randomly. During testing, the
action amax with the highest value P(amax) is chosen.

16.5.2. Reinforcement and discovery components

XCS iteratively updates its population of classifiers with respect to the successive
problem instances. After the classification is selected by the means of the predic-
tion array and applied to the problem, scalar feedback is received. In a classification
problem, classifier parameters are updated with respect to the immediate feedback
in the current action set [A], which comprises all classifiers in [M] that advocate
the chosen classification A. After rule evaluation and possible genetic algorithm
(GA) invocation, the next iteration starts.

The aforementioned covering mechanism ensures that all actions in a partic-
ular problem instance are represented by at least one classifier. Each attribute of
the new classifier condition is initialized using parameter cover-rand that specifies
the maximal interval the condition comprises in an attribute. XCS applies a GA
for rule evolution. A GA is invoked if the average time since the last GA applica-
tion upon the classifiers in [A] exceeds a threshold. The GA selects two parental
classifiers using set-size relative tournament selection [8]. Two offspring are gen-
erated reproducing the parents and applying crossover (uniform crossover) and
mutation. Parents stay in the population competing with their offspring. In the
insertion process, subsumption deletion may be applied [34] to stress generaliza-
tion. Due to the possible strong effects of action-set subsumption, we only apply
GA subsumption, which searches for an accurate, more general classifier that may
subsume the offspring. If such a more general classifier is found, the offspring is
discarded and the numerosity [34] of the subsumer is increased. The population
of classifiers [P] is of fixed size N. Excess classifiers are deleted from [P] with prob-
ability proportional to an estimate of the size of the action sets that the classifiers
occur in. If the classifier is sufficiently experienced and its fitness F is significantly
lower than the average fitness of classifiers in [P], its deletion probability is further
increased.

1ICU benefits from an initialization creating directly good initial individuals by looking at the
whole training set. However, XCS has this covering mechanism that could create good individual but
by looking only at one sample of data. It is difficult to state which technique is better, because this
strongly depends on the implicit patterns contained in the data. The difference of the accuracies of the
two algorithms observed in the case study is caused by the preprocessing of the data (if applied) and the
initialization phase. More theoretical studies are required to predict, in the general case, which method
is more suitable.
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16.5.3. Rules selection

As in ICU, the same pixel may activate several rules coding for different classes.
This behavior can be constrained for solving problems as one-to-one classification
(one pixel always corresponds to one class, contrary to the one-to-N classification,
in which one pixel may correspond to several classes). Two methods (MaxConfi-
dent and ScoredConfident) were tested, asking the pool to give a unique class for
each pixel.

(1) In the first one, only the rules which have a correct self-confidence are
considered, in other terms, payoff prediction should be greater than a
given threshold (fixed in our experiments to the half of the maximum
value of payoff prediction for the current problem). Then the most fre-
quent class obtained from rules which had matched the pixel is returned.

(2) In the second one, all the rules which have matched the pixel are consid-
ered. For a class c, a score is computed as follows for each rule r:

Sr =
∑
Pr ∗ Fr∑
Fr

, (16.5)

where Pr is the prediction payoff of the rule r and Fr is its fitness. The
action of the rule with the best Sr is returned.

These two methods have been experimented for different subsets of CASI data
and for a pretreated expertise set as follows: if more than one class was affected to
the same pixel, only the dominant class was retained according to the percentage of
its concentration given by the expert. Here, contextual classification (i.e., looking
at the neighbor pixels) can help to overcome this kind of ambiguity. Many cases of
ambiguities occur when two classes have the same spectra whereas they can be dis-
criminated by the context (e.g., water and shadows have relatively low reflectance
and they can be distinguished by looking at the classes located around).

16.6. Case studies

16.6.1. Consideration with the data

The data available for this study was acquired during a field campaign at the end
of September 2002, for the European project TIDE (Tidal Inlets Dynamics and
Environment, [3]). During this project, data was obtained from satellite or aircraft,
at different scales and resolutions, providing a multilevel view of the ground [29].
A multilevel remote sensing is a useful technique to monitor large areas: a global
view of the area can be identified by the satellite image, while the checking of a
particular area or a classification needs aerial imagery. The expertise used in the
following supervised classification are based on a costly mean, ground truthing
(the characterization of all points are made by hand by a human expert), and on
expert validation provided by the examination of different levels of the data. Due
to the existence of such different sources, the expert validation of points is not
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(a) (b)

Figure 16.6. Reference and expert data (CASI, San Felice).

the easiest way but it is relatively safe and relevant. Some assumptions were made
about the data [31].

(i) The reference data in the learning base are truly representative of the
sought classes.

(ii) The reference data and the expert data are perfectly synchronized by
geo-referencing.

(iii) There is no error in the reference data (incorrect or missing class assign-
ments, change in the vegetation boundaries between the time of imaging
and the time of field verification, positional errors, etc.).

Considering the expertise, two issues have to be addressed. The first, the com-
plexity of the analyzed environment, particularly the effect of partial volume (data
includes pixels of nonpure classes), requires that the expert selects several classes
for one point (multilabeling). A typical supervised method handles only one class
attribute. Thus, in the case of multilabeling, the dominant class is kept or the point
is dropped. The second mainly for cost reasons, the human expert can only label
very few points. The identification of the boundary of each class and the con-
struction of convex hulls are mandatory to include more and interior pixels in the
expertise. The points can represent exactly the class, a part of the class, or some-
times a corner of a different kind of vegetation cross a hull supposed to be a whole
class. Extra knowledge may be needed to select the correct points.

In this chapter, a remote sensing image of San Felice (Lagoon of Venice) has
been chosen (Figure 16.6). This image contains multispectral data (CASI 15
bands), with 142 × 99 pixels, 16 bits per pixel, and 1.3 m terrain resolution [24].
The case study considers a typical problem of classification for rural zones, with
only five requested classes but including a high percentage of mixed pixels. Learn-
ing was carried out on 50% of the 1540 points, and then validation was performed
on the whole data.

16.6.2. ICU classification

The image and statistics presented in Figure 16.7 summarize our experiments.
The parameters (described in Section 16.4.3) for ICU are as follows:

Pcross = 0.7, Pmut = 0.15, Pmut,band = 0.3, Pmut,interval = 0.2, Pmut,border = 0.4,
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Figure 16.7. Classified image and confusion matrix for ICU.

300 individuals, 2000 to 5000 generations and selection by rank for the crossover
and the mutation operators.

It should be mentioned that validation points do not concern any water. Wa-
ter can be classified quickly using standard statistical tools, even with unsupervised
ones, and are beyond the interest of the experts. ICU classifies these pixels in the
most approximate class (SPA1), but quality of these areas are not relevant (at the
south and the right border). SPA2 is a pure class of Spartima Maritima and SPA1
contains Spartima in a nondominant way. The only point where ICU disagrees
with the expertise is the small spot at the right lower corner (SPA1 instead of SPA2,
see Figure 16.7). The very narrow resemblance of the spectra of these two classes
explains that. Classification is quite globally correct (κ-index of 0.81, average accu-
racy of 81.1%). Figure 16.8 shows the map of overlaps, designed to test overlapping
rules. The whiter is a pixel, the more rules are activated. If no rule can be used, the
pixel is shown in red (in fact in the color “0,” depending on your printout). The
map of overlaps is automatically generated, it shows pixel classes and the degree
of mixing, without any external knowledge. The image below demonstrates, for
instance, that no knowledge about water evolved.

16.6.3. XCS classification

The classification with XCS shows quite good results. The image and statistics pre-
sented in Figure 16.9 illustrate our experiments.

The same remark should be made about the color of what one believes being
a water class, which actually is not relevant. ICU and XCS find the same classes
for the same points, including the border of the salt marsh, which contains a lot of
mixels (a composition of several species on the same pixel). XCS has spent many
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Figure 16.8. Map of the overlapping zones, produced only by ICU.
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Figure 16.9. Classified image and confusion matrix for XCS.

classifiers to separate SPA1 and SPA2 correctly. Nearly one classifier was used to
describe each pixel. Nevertheless, a better global accuracy was obtained (κ-index
of 0.88, average accuracy of 87.7%). XCS is then better than ICU with a less ac-
curate initialization procedure, because the pattern of this data could be better
learned with local initializations (covering operator) than using a global initial-
ization (GenMinMax or GenSpectro of ICU). But global initialization is more fast.
The typical learning time with ICU on this dataset is about 2-3 minutes, against
4–7 minutes on a 3 GHz CPU.

16.6.4. Comparison between ICU and statistical classifiers

To attest that performance of ICU is comparable to other algorithms known to
be really efficient in this domain [7, 16, 21, 22], this algorithm was tested on two
data sets. These data correspond to two images of San Felice (Lagoon of Venice),
with different spectral and spatial resolutions, namely, CASI sensor (date: 2002, 15
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Table 16.2. Results obtained for the two images.

Accuracy for CASI (κ-index) Accuracy for MIVIS (κ-index)

ICU 0.990 (0.99) 0.884 (0.88)

SVM 0.974 (0.97) 0.978 (0.98)

Neural network 0.893 (0.89) 0.878 (0.88)

bands, 754× 293 pixels, resolution 1.3 m2, 6 classes) and the hyperspectral MIVIS
sensor (date: 2003, 20 bands, 396× 170 pixels, resolution 2.6 m2, 7 classes).

The results for the testing set (50% of all of the data) are presented in Table
16.2. Accuracy is the mean of the diagonal of the confusion matrix and the κ-
index characterizes a correctly distributed confusion matrix (1 on the diagonal, 0
everywhere else).

For ICU, the parameters were the same as those described in Section 16.6.2.
For the algorithm based on neural networks, a learning rate of 0.1, 100000 itera-
tions, 1 hidden layer of 7 to 15 neurons, an incremental method for the learning,
and a symmetrical sigmoid activation function were chosen. The exit layers repre-
sent the expert continuous values and there are as many exit neurons as there are
classes to be learned. The free library in C, named the fast artificial neural network
library (FANN, [1]), was used. The chosen neural network topology was simple
but efficient. For the algorithm based on support vector machine (SVM), the RBF
kernel was used; and the parameters C and γ were discovered for each data set us-
ing free software and a step-by-step optimization algorithm in Python presented
on the site of the LIBSVM [10].

ICU has shown better performance than SVM and NN for the CASI image
and better than NN for the MIVIS image. The image of the MIVIS sensor was
most difficult to analyze for several reasons: some additional bands; less pixels in
the image, thus less samples in the training set (each time the whole training set
consisted of less than 2% of the image); the first bands of MIVIS are slightly more
disturbed than for CASI; and finally some classes of vegetation were no longer
present on the saltmarsh in 2004, which caused a drop in the quality of the training
data. When the values in the data set are a kind of composition of several pure
classes (mixels), a system based on disjunctions like ICU proves to be more useful.
Moreover, this kind of classifiers would make it possible to expose the contents
of the rules to a human expert contrary, for example, to a neural network (often
treated as a black box).

To illustrate the simplicity of the formalism of the rules discovered by our
algorithm, an example of a rule which classifies the instances of one of the class
follows:

(
435 ≤ B0 ≤ 1647

)∧ · · · ∧ ((365 ≤ B74 ≤ 4023
)∨ (15643 ≤ B74 ≤ 48409

))
∧ · · · ∧ (668 ≤ B79 ≤ 4413

)
�⇒ [CLASS 4],

(16.6)
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where Bi is the reflectance value for the band i of the considered pixel. The typical
learning time with NN on this dataset is about 1 minute, against 10–15 minutes
for the step-by-step optimization of SVM on a 3 GHz CPU.

16.6.5. Summary of experiments

The three case studies have demonstrated the high capacity of the evolution-based
classifiers to interpret and classify heterogeneous and complex images (e.g., high
dimension in (X ,Y , S), large number of bands and noisy data that generate a com-
putational complexity of O(n3)). The quality of classification has been shown very
high even in cases of high number of noisy bands and mixed pixels. It must be
noted that the quality of learning is highly related to the quality of the classified im-
age used for rule discovery. The discovered classification rules have been in general
simple and easy to interpret by remote sensing experts. They are also mutually ex-
clusive and maximally specific. Nevertheless, the learning time was relatively long
due to the large image size and the chosen parameters. Classified images by the
discovered rules have shown that the evolution-based classifier is able to faithfully
reproduce the human expertise and algorithms already in use in this domain.

16.7. Conclusion and perspectives

This chapter has detailed the evolution-based classifier systems applied to remote
sensing images. The systems have been able to discover a set of “if . . . then . . .
class” classification rules using the fitness function based on image classification
quality. These rules have been proven to be robust and simple to understand by
the user. The accuracy of the expert has been improved and the rules have been
demonstrated sufficiently generic for reusing them on other parts of satellite im-
ages. Hence, the classifier systems can be considered of great interest when com-
pared to traditional methods of classification.

Taking into consideration image complexity and noisy data, the results of our
experiments are very encouraging. Case studies have demonstrated that the ob-
tained classifiers are able to reproduce faithfully the terrain reality. The rules are
well adapted to recognize large objects on the image (e.g., sport lands), as well as
the smaller ones (e.g., trees, shadows, edges of the buildings). The redundant or
noisy bands have been successfully identified by the classifiers. The formalism of
rule representation has allowed the modelling of a spectral tube adapted to the
granularity of spectral reflectance.

The potential of evolution-based classifiers in remote sensing image classi-
fication begins to be explored. Further investigation of the classifiers efficiency
are necessary. Currently, we are starting to work on a more powerful represen-
tation of rules including spatial knowledge, temporal relations, and hierarchical
representation of objects. Contextual classification can help to overcome some
ambiguities, as stated in the last section before the case studies, but this tech-
nique requires to know in which order the algorithm will classify the neighbor
pixels. Future research would be followed in this direction. We are also trying
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to optimize system performance, in particular the implementation of the genetic
process on a parallel machine and the tuning of its initial parameters. The clas-
sifier system developed by this research work, called ICU, and other classifica-
tion software related to remote sensing are currently available on our web site
http://lsiit.u-strasbg.fr/afd/. The XCS algorithm can be downloaded from the Il-
liGAL web site, http://www-illigal.ge.uiuc.edu.
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17
Genetic programming
techniques for multiclass
object recognition

Mengjie Zhang

17.1. Introduction

Classification tasks arise in a very wide range of applications, such as detecting
faces from video images, recognising words in streams of speech, diagnosing med-
ical conditions from the output of medical tests, and detecting fraudulent credit
card fraud transactions [11, 15, 50]. In many cases, people (possibly highly trained
experts) are able to perform the classification task well, but there is either a short-
age of such experts, or the cost of people is too high. Given the amount of data
that needs to be classified, automatic computer-based classification programmes/
systems are of immense social and economic value.

A classification programme must correctly map an input vector describing an
instance (such as an object image) to one of a small set of class labels. Writing clas-
sification programmes that have sufficient accuracy and reliability are usually very
difficult and often infeasible: human programmers often cannot identify all the
subtle conditions needed to distinguish between all instances of different classes.

Genetic programming (GP) is a relatively recent and fast developing approach
to automatic programming [4, 23, 25]. In GP, solutions to a problem can be rep-
resented in different forms but are usually interpreted as computer programmes.
Darwinian principles of natural selection and recombination are used to evolve a
population of programmes towards an effective solution to specific problems. The
flexibility and expressiveness of computer programme representation, combined
with the powerful capabilities of evolutionary search, make GP an exciting new
method to solve a great variety of problems. A strength of this approach is that
evolved programmes can be much more flexible than the highly constrained, pa-
rameterised models used in other techniques such as neural networks and support
vector machines. GP has been applied to a range of object recognition tasks such as
shape classification, face identification, and medical diagnosis with some success.

GP research has considered a variety of kinds of classifier programmes, using
different programme representations, including tree or tree-like classifiers, deci-
sion tree classifiers, classification rule sets [25], and linear and graph classifiers



350 GP techniques for multiclass object recognition

[4]. Recently, tree-like numeric expression representation classifiers have been de-
veloped using GP [30, 42, 46, 58]. In these years, this form has been successfully
applied to some real-world classification problems such as detecting and recog-
nising particular classes of objects in images [42, 46, 57, 59], demonstrating the
potential of GP as a general method for classification problems.

Tree-like numeric expression GP classifiers model a solution to a classification
problem in the form of a mathematical expression, using a set of arithmetic and
mathematical operators, possibly combined with conditional/logic operators such
as the “if-then-else” structures commonly used in computer programmes.

The output of a tree-like numeric expression GP classifier is a numeric value
that is typically translated into a class label. For the simple binary classification
case, this translation can be based on the sign of the numeric value [17, 30, 37,
38, 42, 46, 60]; for multiclass problems, finding the appropriate boundary values
to separate the different classes is more difficult. The simplest approach—fixing
the boundary values at manually chosen points—often results in unnecessarily
complex programmes and could lead to poor performance and very long training
times [30, 58, 59].

17.1.1. Goals

To avoid these problems and to improve the classification accuracy and the effi-
ciency of the GP system, this chapter aims to develop better classification strategies
in GP for multiclass object classification problems. The main focus is on the trans-
lation of the numeric output of a genetic programme classifier into class labels.
Rather than using manually predefined boundary values, we will consider new
methods which allow each genetic programme to use a set of dynamically deter-
mined class boundaries. We will compare the dynamic methods with the current
static (manually defined) method on a sequence of image classification problems
of increasing difficulty.

17.1.2. Organisation

This chapter is organised as follows. Section 17.2 describes the field of object recog-
nition and some essential background of recent GP-related work for object recog-
nition problems. Section 17.3 describes the overall GP approach for object classi-
fication problems. Section 17.4 describes the class translation rules. Section 17.5
presents the five image classification problems examined in this approach. Section
17.6 presents the experimental results and Section 17.7 gives the concluding re-
marks.

17.2. Background

This section briefly describes the field of the object recognition with traditional
approaches, then presents recent GP-related work to object recognition problems.
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17.2.1. Object recognition

Object recognition, also called automatic object recognition or automatic target
recognition, is a specific field and a challenging problem in computer vision and
image understanding [12]. This task often involves object localisation and object
classification. Object localisation refers to the task of identifying the positions of
the objects of interest in a sequence of images either within the visual or infrared
spectral bands. Object classification refers to the task of discriminating between
images of different kinds of objects, where each image contains only one of the
objects of interest.

Traditionally, most research on object recognition involves four stages: pre-
processing, segmentation, feature extraction, and classification [6, 13]. The prepro-
cessing stage aims to remove noise or enhance edges. In the segmentation stage, a
number of coherent regions and “suspicious” regions which might contain objects
are usually located and separated from the entire images. The feature extraction
stage extracts domain specific features from the segmented regions. Finally, the
classification stage uses these features to distinguish the classes of the objects of
interest. The features extracted from the images and objects are generally domain
specific such as high-level relational image features. Data mining and machine
learning algorithms are usually applied to object classification.

Object recognition has been of tremendous importance in many application
domains. These domains include military applications [16, 46, 55], human face
recognition [48, 50], agricultural product classification [54], handwritten char-
acter recognition [1, 26], medical image analysis [51], postal code recognition
[9, 27], and texture classification [43].

Since the 1990s, many methods have been employed for object recognition.
These include different kinds of neural networks [2, 9, 44, 52], genetic algorithms
[3, 20], decision trees [35], statistical methods such as Gaussian models and naive
Bayes [10, 35], support vector machines [10, 35], genetic programming [17, 19,
48, 53], and hybrid methods [8, 22, 56].

17.2.2. GP-related work to object recognition

Since the early 1990s, there has been only a relatively small amount of work on
applying genetic programming techniques to object recognition, including ob-
ject classification and object localisation. This in part reflects the fact that ge-
netic programming is a relatively young discipline compared with, say, neural
networks. This subsection briefly reviews the GP work related to object recog-
nition.

Song [39–43] uses tree-based genetic programming for a series of object im-
age texture classification problems, such as classification of bitmap patterns, Bro-
datz textures, and mashing images. This work mainly focuses on the use of GP
for binary classification problems. There are also some multiclass problems in this
work but he decomposes the multiclass problems into multiple binary classifica-
tion problems then applies GP to these binary problems. Both features and pixel
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values are used as terminals, the four standard arithmetic operators and a condi-
tional operator with some relational operators are used to construct the function
set, and the classification accuracy is used as the fitness function. The results show
that, “with an appropriate methodology, GP can be used as a texture classification
method without computationally expensive feature extraction.”

Loveard [29, 30] uses strongly typed genetic programming for a number of
object recognition problems, including classification of medical images and satel-
lite image objects. This work investigates a number of classification strategies. His
results show that the dynamic range selection strategy outperformed other strate-
gies on those classification problems.

Ciesielski et al. [7] use genetic programming for a real world object detec-
tion problem—finding orthodontic landmarks in cranio-facial X-Rays. The sys-
tem could evolve genetic programmes to implement a linear function of the fea-
tures. Analysis of these linear functions reveals that underlying regularities can be
captured. The analysis also suggests that evolved algorithms are a realistic solution
to the object detection problem, given the features and operators available.

Tackett [46, 47] uses genetic programming to assign detected image features to
a target or nontarget category. Seven primitive image features and twenty statistical
features are extracted and used as the terminal set. The four standard arithmetic
operators and a logic function are used as the function set. The fitness function is
based on the classification result. The approach was tested on US Army NVEOD
terrain board imagery, where vehicles such as tanks need to be classified. The ge-
netic programming method outperformed both a neural network classifier and a
binary tree classifier on the same data, producing lower rates of false positives for
the same detection rates.

Andre [1] uses genetic programming to evolve functions that traverse an im-
age, calling upon coevolved detectors in the form of hit-miss matrices to guide the
search. These hit-miss matrices are evolved with a two-dimensional genetic algo-
rithm. These evolved functions are used to discriminate between two letters or to
recognise single digits.

Koza [25, Chapter 15] uses a “turtle” to walk over a bitmap landscape. This
bitmap is to be classified either as a letter “L,” a letter “I,” or neither of them. The
turtle has access to the values of the pixels in the bitmap by moving over them and
calling a detector primitive. The turtle uses a decision tree process, in conjunc-
tion with negative primitives, to walk over the bitmap and decide which category
a particular landscape falls into. Using automatically defined functions as local de-
tectors and a constrained syntactic structure, some perfect scoring classification
programmes were found. Further experiments showed that detectors can be made
for different sizes and positions of letters, although each detector has to be spe-
cialised to a given combination of these factors.

Teller and Veloso [48] use a genetic programming method based on the PADO
language to perform face recognition tasks on a database of face images in which
the evolved programmes have a local-indexed memory. The approach was tested
on a discrimination task between 5 classes of images [49] and achieved up to 60%
correct classification for images without noise.
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Robinson and McIlroy [34] apply genetic programming techniques to the
problem of eye location in grey-level face images. The input data from the im-
ages is restricted to a 3000-pixel block around the location of the eyes in the face
image. This approach produced promising results over a very small training set,
up to 100% true positive detection with no false positives, on a three-image train-
ing set. Over larger sets, the genetic programming approach performed less well
however, and could not match the performance of neural network techniques.

Winkeler and Manjunath [53] produce genetic programmes to locate faces in
images. Face samples are cut out and scaled, then preprocessed for feature extrac-
tion. The statistics gleaned from these segments are used as terminals in genetic
programming which evolves an expression returning how likely a pixel is to be
part of a face image. Separate experiments process the grey scale image directly,
using low-level image processing primitives and scale-space filters.

Zhang et al. [38, 57–60] uses genetic programming for a number of object
classification and detection problems. Typically, low-level pixel statistics are used
to form the terminal set, the four arithmetic operators are used to construct the
function set, and the fitness functions are based on either classification accuracy or
error rate for object classification problems, and detection rate and false alarm rate
for object localisation and detection problems. Good results have been achieved
on classification and detection of regular objects against a relatively uncluttered
background.

Since the work to be presented in this paper focuses on the use of genetic
programming techniques for object recognition, Table 17.1 lists the recent research
to overview the GP-related work based on the applications and the first authors.

17.3. The GP approach for object classification

In this approach, we used the numeric-expression-based tree structure to repre-
sent genetic programmes. The ramped half-and-half method was used for gener-
ating the programmes in the initial population and for the mutation operator. The
proportional selection mechanism and the reproduction, crossover, and mutation
operators were used in the learning and evolutionary process.

In the remainder of this section, we address the other aspects of the GP learn-
ing/evolutionary system: (1) determination of the terminal set, (2) determination
of the function set, and (3) construction of the fitness measure.

17.3.1. Terminals

For object classification problems, terminals generally correspond to image fea-
tures. Some conventional approaches to image recognition usually use high-level,
domain specific features of images as inputs to a learning/classification system,
which generally involves a time consuming feature selection and a hand crafting
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Table 17.1. Object recognition related work based on genetic programming.

Problems Applications Authors Source

Object

Classification

Tank detection Tackett [46, 47]

Letter recognition
Andre [1]

Koza [25]

Face recognition

Small target classification

Teller and Veloso [48]

Stanhope and Daida [45]

Winkeler and Manjunath [53]

Shape recognition Teller and Veloso [49]

Eye recognition Robinson and McIlroy [34]

Texture classification Song et al. [39–43]

Medical object classification Loveard and Ciesielski [29, 30]

Shape and coin recognition Zhang and Smart [60]

Object

Detection

Orthodontic landmark detection Ciesielski et al. [7]

Ship detection Howard et al. [17]

Mouth detection Isaka [21]

Small target detection Benson [5]

Vehicle detection Howard et al. [19]

Medical object detection Zhang et al. [58, 59]

Other Vision

Problems

Edge detection Lucier et al. [31]

San Mateo trail problem
Koza [23]

Koza [24]

Image analysis
Howard et al. [18]

Poli [33]

Model Interpretation Lindblad et al. [28]

Stereoscopic Vision Graae et al. [14]

Image compression Nordin and Banzhaf [32]

of feature extraction programmes. In this approach, we used pixel level, domain-
independent statistical features (referred to as pixel statistics) as terminals. We ex-
pect that the GP evolutionary process can automatically select features that are
relevant to a particular domain to construct good genetic programmes.

Four pixel statistics are used in this approach: the average intensity of the
whole object image, the variance of intensity of the whole object image, the aver-
age intensity of the central local region, and the variance of intensity of the central
local region, as shown in Figure 17.1.

Since the range of these four features are quite different, we linearly nor-
malised these feature values into the range [−1, 1] based on all object image ex-
amples to be classified.
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Figure 17.1. Region features as terminals.

Notice that these features might not be sufficient for some difficult object clas-
sification problems. However, they have been found reasonable in many problems
and the selection of good features is not the goal of this chapter.

In addition, we also used some constants as terminals. These constants are
randomly generated using a uniform distribution. To be consistent with the fea-
ture terminals, we also set the range of the constants as [−1, 1]. Unlike the fea-
ture terminals where the same feature usually has different values for different ob-
ject images, the constant terminals will remain unchanged for all object images
through the whole evolutionary process.

17.3.2. Functions

In the function set, the four-standard arithmetic and a conditional operation were
used to form the function set

FuncSet = {+,−,×, /, if }. (17.1)

The +, −, and × operators have their usual meanings: addition, subtraction,
and multiplication, while / represents “protected” division which is the usual di-
vision operator except that a divide by zero gives a result of zero. Each of these
functions takes two arguments. The if function takes three arguments. The first
argument, which can be any expression, constitutes the condition. If the first ar-
gument is negative, the if function returns its second argument; otherwise, it re-
turns its third argument. The if function allows a programme to contain a differ-
ent expression in different regions of the feature space, and allows discontinuous
programmes, rather than insisting on smooth functions.

17.3.3. Fitness function

We used classification accuracy on the training set of object images as the fitness
function. The classification accuracy of a genetic programme classifier refers to the
number of object images that are correctly classified by the genetic programme
classifier as a proportion of the total number of object images in the training set.
According to this design, the best fitness is 100%, meaning that all object images
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have been correctly recognised without any missing objects or any false alarms for
any class.

To calculate the classification accuracy of a genetic programme, one needs to
determine how to translate the single programme output to a set of class labels.
This is described in Section 17.4. Image datasets, experiment parameters, and the
termination strategy will be described in Section 17.5.

17.4. Translation rules in classification

As mentioned earlier, each evolved genetic programme has a numeric output value,
which needs to be translated into class labels. The methods which perform this
translation are referred to as class translation rules in this chapter.

This section briefly describes the static class boundary determination (SCBD)
method [58] for multiclass classification commonly used in many approaches [29,
30, 39, 42], then details the two new class translation rules: centred dynamic class
boundary determination (CDCBD) and slotted dynamic class boundary determi-
nation (SDCBD).

17.4.1. Static class boundary determination

Introduced in [58], the static class boundary determination (SCBD) method has
been used in many approaches to classification problems with three or more
classes. In this method, two or more predefined thresholds/boundaries are applied
to the numeric output value of the genetic programme and the ranges/regions be-
tween these boundaries are linearly translated into different classes. This method
is simple because these regions are set by the fixed boundaries at the beginning of
evolution and remain constant during evolution.

If there are n classes in a classification task, these classes are sequentially as-
signed n regions along the numeric output value space from some negative num-
bers to positive numbers by n − 1 thresholds/boundaries. Class 1 is allocated to
the region with all numbers less than the first boundary, class 2 is allocated to all
numbers between the first and the second boundaries and class n to the region
with all numbers greater than the last boundary n− 1, as shown in Figure 17.2.

In this figure, n refers to the number of object classes, v is the output value of
the evolved programme, T1, T2, Tn−1 are static, predefined class boundaries, and
F1, F2, and F3 are input features for a particular object classification task (forming
feature terminals).

Although this class translation rule is easy to set and has achieved some suc-
cess in several problems [39, 59], it has a number of disadvantages. Firstly, the
ordering of classes is fixed. For binary classification problems, we only need one
boundary value (usually zero) to separate the programme output space into two
regions, which is quite reasonable. For multiple class problems, fixing the ordering
of different classes is clearly not good in many cases, since it is very difficult to set
a good ordering of different classes without sufficient prior domain knowledge.
Secondly, the regions along the programme output space are also fixed for these
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Figure 17.2. Static class boundary determination method.

classes. In this way, we need to determine a number of additional parameters for
the evolution. In practice, this is also hard and often needs prior knowledge or
empirical tuning.

17.4.2. Centred dynamic class boundary determination

The first new method is the centred dynamic class boundary determination (CD-
CBD), where the class boundaries are dynamically determined by calculating the
centre of the programme output value for each class. An example of the process in
this method is shown in Figure 17.3.

The algorithm is presented as follows.
Step 1. Initialise the class boundaries as certain predefined values as in the SCBD
method.
Step 2. Evaluate each genetic programme in the population to obtain the pro-
gramme output value for each training example based on the SCBD method.

During the evolutionary process, repeat step 3 and step 4.
Step 3. For each class c, calculate the centre of the class according to (17.2):

Centerc =
∑M

p=1

∑L
μc=1

(
Wp × ProgOutpμc

)
∑M

p=1

∑L
μc=1 Wp

, (17.2)

where M is the number of programmes in the population and p is the index, L is
the number of training examples for class c and μc is the index, ProgOutpμc is the
output value of the pth programme on training example μc for class c, and Wp
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Figure 17.3. An example of the CDCBD method.

is a weighting factor which reflects the relative importance or contribution of the
programme p over all the programmes in the population and is calculated by

Wp =
2× (fitp × (K − 1) + 1

)
K + 1

, (17.3)

where fitp is the raw fitness (classification accuracy) of programme p on all the
examples in the training set, and K is a parameter defined by the user. Clearly, dif-
ferent values of K will result in different relative contribution of the programme. In
this work, we used a value 3 for K , reflecting that a good programme is considered
more important than a bad programme.
Step 4. Calculate the boundary between every two classes by taking the middle
point of the two adjacent class centres.
Step 5. Classify the training examples based on the class boundaries and calculate
the new fitness (classification accuracy) of each genetic programme.

While this method could be applied to every generation of the evolutionary
process, we applied this method to the training examples every five generations to
keep balance between evolution and class boundary determination.

17.4.3. Slotted dynamic class boundary determination

The second new class translation rule is slotted dynamic class boundary determi-
nation (SDCBD). In this method, the output value of a programme is split into
certain slots. When a large number of slots are used, a large amount of compu-
tation would be required. In our experiment, we used 100 slots derived from the
range of [−25, 25] with a step of 0.50. Since the input features (terminals) are
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Program outputs for all programs on all training patterns

Slots

Fixed slot positions

Values
in array2 0 1 1 0 2 0 3 0 0 0 0

Class 1 Class 3 Class 2 Class 2
Classes
of slots

Class 1
Class 2
Class 3

Figure 17.4. An example of the SDCBD method.

FOR each slot and each class

Array[slot][class] = 0

FOR each training example X {
FOR each programme p {

ProgOut = execute programme p with X as input

Round ProgOut to nearest slot

IF ProgOut > 25 THEN ProgOut = 25

IF ProgOut < −25 THEN ProgOut = −25
Array[slot][class] += Wp

}
}

Algorithm 17.1

scaled into [−1, 1], the range [−25, 25] is usually sufficient to represent the pro-
gramme output. Each slot will be assigned to a value for each class. Figure 17.4
shows an example in the SDCBD process in a three-class problem.

In the first step, this method evaluates each genetic programme in the popula-
tion to obtain the programme output value (ProgOut) for each training example
and the fitness value of the programme based on the SCBD method.

In the second step, the method calculates the slot values for each class
(Array[slot][class]) based on the programme output value. The algorithm
for this step is as Algorithm 17.1, where Wp is calculated according to (17.3),
reflecting the relative contribution of the genetic programme over all the pro-
grammes.

In the third step, this method dynamically determines to which class each slot
belongs by simply taking the class with the largest value at the slot. However, in
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FOR slot = 1 to 100 {
FOR all class c {
IF values of all class c in Array[slot][c] are zero {

Class[slot] = ‘‘?’’ }
ELSE {

Search c for which Array[slot][c] is largest

Class[slot] = c }
}

}
FOR slot = 1 to 100 {

IF Class[slot] = ‘‘?’’ {
Class[slot] = nearest value to slot in the Class

vector whose value is not ‘‘?’’ }
}

Algorithm 17.2

case a slot does not hold any positive value, that is, no programmes produce any
output at that slot for any training example, then this slot will be assigned to the
class of the nearest neighbouring slot, as shown in Algorithm 17.2.

Similarly to the CDCBD method, this method is also applied to the evolu-
tionary process every five generations so that at other generations the classification
performance will be only improved based on the evolutionary process.

17.4.4. Characteristics of the dynamic methods

Compared with the SCBD method, these two new methods have the following
characteristics.

(i) The optimal boundaries for every two different classes or the optimal
slot values for each class can be dynamically determined during the evo-
lutionary process.

(ii) Class labels do not have to fit into the predefined sequential regions.
The optimal regions for each class in the programme output space can
be automatically determined in the evolutionary process. For example,
class 3 can be set in between class 1 and class 2 if necessary, as shown in
Figures 17.3 and 17.4.

(iii) When determining the new boundaries or slot values of classes for the
next generation, the fitness values of the programme achieved in the
current generation are explicitly taken into account. In this way, more
heuristics are added to the evolutionary process, making the search
method from the original “genetic beam” search to a kind of hybrid “ge-
netic beam” and “hill-climbing” search.

With these new properties, we expect that these two methods would perform
better on multiclass object classification problems, particularly for relatively diffi-
cult problems.
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(a) (b) (c)

(d)

Figure 17.5. Example images from (a) Shape, (b) Coin1 and (c) Coin2, and (d) face.

17.5. Image datasets and experiment configurations

We used five image datasets in three groups with object classification problems of
increasing difficulty in the experiments. Example images are shown in Figure 17.5.
Experiment configurations will also be described in this section.

17.5.1. Computer-generated shape datasets

The first group of images (Figure 17.5(a)) was generated to give well-defined ob-
jects against a noisy background. The pixels of the objects were produced using a
Gaussian generator with different means and variances for each class. Four classes
of 712 small objects were cut out from those images to form the classification data.
The four classes are black circles, light grey squares, white circles, and the grey
noisy background.

Two different datasets, shape1 and shape2, were constructed from this group
of images. While set shape1 arranges the four classes in an ordinary order based
on the intensities, set shape2 is intended to make these classes out of this order.
Table 17.2 gives the class order and the initial setting of the boundaries between
these classes. In the Shape1 dataset, for example, classes 1, 2, 3, and 4 are arranged
based on the ascending order of the intensities of the four classes. The class bound-
aries were set to−1.0, 0, and 1.0, meaning that if a programme output value is less
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Table 17.2. The class orders in the two shape datasets.

Dataset Class label Description Intensity Boundary

Shape1

1 Black circle 10± 5
−1.0

0
1.0

2 Background 140± 50

3 Grey square 180± 50

4 White circle 220± 50

Shape2

1 Background 140± 50
−1.0

0
1.0

2 Black circle 10± 5

3 White square 220± 50

4 Grey square 180± 50

than −1.0 for a particular object example, then this object example will be classi-
fied as class1 (black circles); if the programme output value is in (−1.0, 0], it will
be classified as class2 (background). Clearly, the classification problem is linearly
separable in Shape1, but nonlinear separable in Shape2. The goal here is to investi-
gate whether these classification methods perform well for the same data with the
two different orders of class setting.

17.5.2. Coin datasets

The second group of images has two coin datasets. The first dataset (coin1, Figure
17.5(b)) consists of scanned 5-cent and 10-cent New Zealand coins. There are five
classes of 576 objects: 5-cent heads, 5-cent tails, 10-cent heads and 10-cent tails,
and a relatively uniform background. Compared with the shape dataset, the objects
in this set (heads versus tails for either 5-cent or 10-cent coins) are more difficult
to distinguish and there are more classes.

The second coin dataset (coin2, Figure 17.5(c)) also consists of five classes of
objects, but the background is quite noisy, which makes the classification problems
much harder. Even human eyes cannot perfectly distinguish these objects.

17.5.3. Face dataset

The fifth dataset consists of 40 human faces (Figure 17.5(d)) taken at different
times, varying lighting slightly, with different expressions (open/closed eyes, smil-
ing/nonsmiling) and facial details (glasses/no-glasses). These images were collected
from the first four directories of the ORL face database [36]. All the images were
taken against a dark homogeneous background with limited orientations. The task
here is to distinguish those faces into the four different people.

17.5.4. Experiment configurations

For the shapes and the coins datasets, the objects were equally split into three sep-
arate datasets: one third for the training set used directly for learning the genetic
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Table 17.3. Parameters used for GP training for the four datasets.

Parameter kinds Parameter names Shape1 Shape2 Coin1 Coin2 Faces

Search

Parameters

Population-size 300 300 300 500 500

Initial-max-depth 3 3 3 3 3

Max-depth 5 5 6 8 8

Max-generations 50 50 50 50 50

Object-size 16×16 16×16 70×70 70×70 92×112

Genetic

Parameters

Reproduction-rate 10% 10% 10% 10% 10%

Cross-rate 60% 60% 60% 60% 60%

Mutation-rate 30% 30% 30% 30% 30%

Cross-term 15% 15% 15% 15% 15%

Cross-func 85% 85% 85% 85% 85%

programme classifiers, one third for the validation set for controlling overfitting,
and one third for the test set for measuring the performance of the learned pro-
gramme classifiers. For the faces dataset, due to the small number of images, ten-
fold cross validation was applied.

The parameter values used in this approach are shown in Table 17.3.
In this approach, the learning/evolutionary process is terminated when one of

the following conditions is met.
(i) The classification problem has been solved on the training set, that is,

all objects of interest in the training set have been correctly classified
without any missing objects or false alarms for any class.

(ii) The accuracy on the validation set starts falling down.
(iii) The number of generations reaches the predefined number, max-gener-

ations.

17.6. Results and discussion

This section presents a series of results of the two new dynamic class boundary
determination methods on the five datasets in the shape, the coin, and the face
image groups. These results are compared with those for the static class boundary
method. For all experiments, we run 50 times and the average results (means and
standard deviations) are presented.

17.6.1. Shape datasets

Table 17.4 shows the results of the three methods on the two shape datasets. The
first line shows that for Shape1 dataset with 4 classes, the SCBD method achieved
an average/mean accuracy of 99.67% over 50 runs on the test set and the average
number of generations of the 50 runs spent on the training process was 12.32.
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Table 17.4. Results on the shape datasets.

Dataset Classes Method Gens Accuracy (%)

SCBD 12.32 99.67± 0.79

Shape1 4 CDCBD 7.50 99.73± 0.41

SDCBD 8.43 99.68± 0.45

SCBD 50.0 96.87± 1.24

Shape2 4 CDCBD 15.50 99.72± 0.48

SDCBD 24.30 99.35± 0.54

Table 17.5. Results on the coin datasets.

Dataset Classes Method Gens Accuracy (%)

SCBD 50.00 85.82± 5.21

Coin1 5 CDCBD 37.70 96.10± 2.34

SDCBD 37.50 93.41± 3.12

SCBD 50.00 74.40± 7.98

Coin2 5 CDCBD 39.32 91.60± 3.79

SDCBD 37.89 90.74± 5.64

SCBD 49.92 82.15± 13.61

Face 4 CDCBD 46.86 92.45± 12.22

SDCBD 41.62 84.60± 16.21

For the Shape1 dataset, all the three classification methods obtained nearly
ideal results, reflecting the fact that this classification problem is relatively easy. In
particular, the CDCBD method achieved the best performance.

For Shape2 data set, the two new dynamic methods gave very good results.
However, the static SCBD method produced a much worse performance in both
classification accuracy and training time1 than the two new dynamic methods be-
cause the classes in this dataset were arranged arbitrary rather than in an ordinary
order. This suggests that while the SCBD method could perform well on relatively
easy, linearly separable classification problems with the classes arranged in an ordi-
nary order, this method is not very appropriate for multiclass object classification
problems with a randomly arranged order of classes. The two new dynamic meth-
ods, however, can be applied in this case. In addition, for these relatively easy clas-
sification problems, the CDCBD method seemed to be more effective and more
efficient than the SDCBD method.

1Note that the dynamic boundary determination process takes a bit longer time. However, since
we apply the dynamic methods once every five generations and the computation cost of the two dy-
namic methods is quite low, the average time spent on each generation can be still considered similar.
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17.6.2. Coin and face datasets

Table 17.5 shows the results of the three methods on the two coin datasets and
the face dataset. These results show a similar pattern to the two shape datasets: the
two dynamic methods achieved better results than the static method on all of these
datasets in terms of both classification accuracy and training generations.

17.6.3. Summary and discussion

In summary, the results suggest that the SCBD method could perform well on
relatively easy object classification problems if the classes were arranged in their
ordinary order (such as Shape1), but would perform badly when the classes were
out of this order (as in Shape2) or when the classification problems became more
difficult (such as Coin1, Coin2, and Face datasets). This is mainly because a high
degree of nonlinearity is required to map the class regions on the programme out-
put to the object features in these situations.

The performances of all the three methods on Coin1, Coin2, and the Face
datasets were worse than the two shape datasets, reflecting the fact that the classifi-
cation problems in these datasets are more difficult than in the two shape datasets.
Because these problems were harder, more features might need to be selected, ex-
tracted and added to the terminal set. Also more powerful functions might also
need to be applied in order to obtain good performance. However, the investiga-
tion of these developments is beyond the goal and the scope of this chapter. We
leave this for the future work.

In terms of the classification performance, the CDCBD method performed
better than the SDCBD method for all of the datasets investigated here. In partic-
ular, the CDCBD method achieved over 90% of accuracy for the difficult prob-
lems in Coin2 and Face datasets, which was significantly better than the other two
methods. Also notice that this method resulted in the least standard deviation over
50 runs among all the three methods investigated here. For training generations,
it seems that the computational cost of the CDCBD method is also lower than
the SDCBD method for the two shape datasets, but slightly higher for the three
difficult problems in the coin and the face datasets. However, if a slightly higher
computational cost can lead to clear improvement in classification performance,
this will be a small price to pay in most situations.

17.7. Conclusions

The goal of this chapter was to investigate and explore dynamic class boundary
determination methods as class translation rules in genetic programming for mul-
ticlass object classification problems, and to determine whether the new dynamic
methods could outperform the static method. Two new classification methods,
CDCBD and SDCBD, were developed and implemented where the class bound-
aries were dynamically determined during the evolutionary process.

The two dynamic methods were examined on five datasets in three object
image groups providing object classification problems of varying difficulty. The
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results showed that the static method, SCBD, performed very well on the rela-
tively easy, linearly separable object classification problems where the classes were
arranged in their ordinary order, but performed less well when the classes were
arranged in an arbitrary order. The two dynamic methods, CDCBD and SDCBD,
always outperformed the static method on all the object classification problems in
the five datasets in terms of both classification performance and the training con-
vergence. The centred dynamic method achieved better classification performance
than the slotted dynamic method for all cases.

Although developed for object image classification problems, these two dy-
namic methods are also expected to be applied to other classification problems.

For future work, we will investigate whether the performance on the relatively
difficult coin and face datasets can be improved if more features are added to the
terminal set. We will also compare the performance with other long-term estab-
lished methods such as decision trees and neural networks.
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18
Classification by evolved
digital hardware

Jim Tørresen

18.1. Introduction

A number of automated procedures suited for design of image and signal classi-
fiers have recently been developed. Some of these are based on evolvable hardware
(EHW) and have been applied to a large range of real-world applications. The ap-
plications considered in this chapter are prosthetic hand control and traffic sign
number recognition.

To enhance the lives of people who have lost a hand, prosthetic hands have
existed for a long time. These are operated by the signals generated by contracting
muscles—named electromyography (EMG) signals—in the remaining part of the
arm [12]. Presently available systems normally provide only two motions: open
and close hand grip. The systems are based on the user adapting himself to a fixed
controller. That is, he must train himself to issue muscular motions trigging the
wanted motion in the prosthetic hand. A long time is often required for rehabili-
tation.

By using EHW, it is possible to make the controller itself adapt to each dis-
abled person. The controller is constructed as a pattern classification hardware
which maps input patterns to the desired motions of the prosthetic hand. Adapt-
able controllers have been proposed based on neural networks [2]. These require a
floating point processor or a neural network chip. EHW-based controllers, on the
other hand, use a few layers of digital logic gates for the processing. Thus, a more
compact implementation can be provided making it more feasible to be installed
inside a prosthetic hand.

Experiments based on the EHW approach have already been undertaken by
Kajitani et al. [7]. The research on adaptable controllers is based on designing a
controller providing six different motions in three different degrees of freedom.
Such a complex controller could probably only be designed by adapting the con-
troller to each dedicated user. It consists of AND gates succeeded by OR gates
(programmable logic array). The latter gates are the outputs of the controller, and
the controller is evolved as one complete circuit. The simulation indicates a similar
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Figure 18.1. The chromosome string length and representation ability.

performance as artificial neural network but since the EHW controller requires a
much smaller hardware, it is to be preferred. The approach proposed in this chap-
ter is distinguished both with a more advanced architecture as well as applying
incremental evolution.

An automatic traffic sign detection system would be important in a driver
assistance system. In the second part of this chapter, an approach for detecting
numbers on speed limit signs is proposed. Such a system would have to provide
a high recognition performance in real time. The same architecure as applied for
prosthetic hand control is used for classification of the numbers extracted from
images. We are not aware of any other work combining evolvable hardware and
road sign classification.

To make the system affordable, expensive hardware is not applicable. A prom-
ising technology which also allows for adaptation and upgrades is reconfigurable
technology. Thus, we believe field programmable gate arrays (FPGA) would be an
appropriate technology for hardware implementation. Other parts of the system
would run as software on a processor.

One of the main problems in evolving hardware systems seems to be the limi-
tation in the chromosome string length [10, 23]. A long string is normally required
for solving a complex problem as seen in Figure 18.1. However, a larger number
of generations is required by the evolutionary algorithm as the string increases.
This often makes the search space becoming too large. Thus, work has been un-
dertaken to try to diminish this limitation. Various experiments on speeding up
the GA computation have been undertaken [1]. The schemes involve fitness com-
putation in parallel or a partitioned population evolved in parallel—by parallel
computation. Other approaches to the problem have been by using variable length
chromosome [6] and reduced genotype representation [4]. Another option, called
function-level evolution, is to evolve at a higher level than gate level [11]. Most
work is based on fixed functions. However, there has been work in genetic pro-
gramming for evolving automatically defined functions (ADF) [9].
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Another improvement to artificial evolution, called coevolution, has been pro-
posed [5]. In co-evolution, a part of the data, which defines the problem, co-
evolves simultaneously with a population of individuals solving the problem. This
could lead to a solution with a better generalization than a solution evolved based
on the initial data. Further overview of related works can be found in [22].

Incremental evolution for EHW was first introduced in [16] for a character
recognition system. The approach is a divide-and-conquer on the evolution of
the EHW system, and thus, named increased complexity evolution. It consists of a
division of the problem domain together with incremental evolution of the hard-
ware system. This can be seen as dividing the problem on the righthand side in
Figure 18.1 into a set of simpler and smaller problems—as given by the one on
the lefthand side of the figure, which can be more easily evolved. Thus, evolution
is first undertaken individually on a set of small systems, based on the asump-
tion that the total evolution effort is less than for evolving a single system. The
evolved small systems are the building blocks used in further evolution of a larger
and more complex system. The benefits of applying this scheme is both a simpler
and smaller search space compared to conducting evolution in one single run [22].
The goal is to develop a scheme that could evolve systems for complex real-world
applications.

In this chapter, it is applied to evolve both a prosthetic hand controller circuit
and for classifying numbers on speed limit signs. This is undertaken by a novel
EHW architecture together with incremental evolution. The goal is to improve the
generalization performance of gate-level EHW and make it a strong alternative to
artificial neural networks.

The next two sections introduce the concepts of the evolvable hardware-based
prosthetic hand controller. Then results are given in Section 18.4. The same EHW
architecture and evolutionary scheme are then reused for speed limit sign number
recognition in Section 18.5 followed by results in Section 18.6. Finally, conclusions
are included in Section 18.7.

18.2. Prosthetic hand control

The research on adaptable controllers presented in this chapter provides control of
six different motions in three different degrees of freedom: open and close hand,
extension and flection of wrist, and pronation and supination of wrist. The data set
consists of the same motions as used in earlier work [7], and it has been collected
by Dr. Kajitani at National Institute of Advanced Industrial Science and Technol-
ogy (AIST) in Japan. The classification of the different motions could be under-
taken by

(a) frequency domain: the EMG input is converted by fast fourier transform
(FFT) into a frequency spectrum,

(b) time domain: the absolute value of the EMG signal is integrated for a
certain time.

The latter scheme is used since the amount of computation and information are
less than in the former.
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Figure 18.2. Illustration of the controller interfaces.

The published results on adaptive controllers are usually based on data for
nondisabled persons. Since you may observe the hand motions, a good training set
can be generated. For the disabled person, this is not possible since there is no hand
observe. The person would have to distinguish the different motions by himself.
Thus, it would be a harder task to get a high performance for such a training set
but it will indicate the expected response to be obtainable by the prosthesis user.
This kind of training set is applied in this chapter. Some of the initial results using
this data set can be found in [18, 22].

18.2.1. Data set

The collection of the EMG signals are undertaken using three sensors for each
channel. The difference in signal amplitude between the two of them, together
with using the third as a reference, gave the resulting EMG signal. The absolute
value of the EMG signal is integrated for 1 second and the resulting value is coded
by four bits. To improve the performance of the controller, it is beneficial to be
using several channels. In these experiments, four channels were used in total, giv-
ing an input vector of 4 × 4 = 16 bits. The controller interfaces are illustrated in
Figure 18.2.

A subset of the training set input, consisting of preprocessed EMG signals, is
given in Figure 18.3. For each motion, 10 samples are included.

The output vector consists of one binary output for each hand motion, and
therefore, the output vector is coded by six bits. For each vector, only one bit is “1.”
Thus, the data set is collected from a disabled person by considering one motion
at a time in the following way:

(1) the person contracts muscles corresponding to one of the six motions.
A personal computer (PC) samples the EMG signals;

(2) the key corresponding to the motion is entered on the keyboard.
For each of the six possible motions, a total of 50 data vectors are collected,

resulting in a total of: 6× 50 = 300 vectors. Further, two such sets were made, one
to be used for evolution (training) and the other to be used as a separate test set
for validating the best circuit after evolution is finished.

Experiments have been undertaken to use a lookup table for solving this prob-
lem [21]. That is, each output vector in the data set is stored in a table addressed
by the corresponding input vector. The data set is also used in various ways to
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Figure 18.3. EMG signals from the training set. 10 samples of data for each motion.

program the rest of the empty locations in the table. In the best case, the test set
performance was 58% (72.3% training set performance). The best training set per-
formance obtained was 90%, but such a table gave a low test set performance.

18.3. An architecture for incremental evolution

In this section, the proposed architecture for the controller is described [18]. This
includes the algorithms for undertaking the incremental evolution. This is all based
on the principle of increased complexity evolution which was introduced in
Section 18.1.

The architecture is illustrated in Figure 18.4. It consists of one subsystem for
each of the six prosthetic motions. In each subsystem, the binary inputs x0, . . . ,
x15 are processed by a number of different units, starting by the AND-OR unit.
This is a layer of AND gates followed by a layer of OR gates. Each gate has the
same number of inputs, and the number can be selected to be two, three, or four.
The outputs of the OR gates are routed through a kind of filter called Selector.
This unit selects which of these outputs that are to be counted by the succeed-
ing Counter. That is, for each new input, the Counter is counting the number of
selected outputs being “1” from the corresponding AND-OR unit. The main mo-
tivation for introducing the Selectors is to be able to select a set of outputs from
each AND-OR unit in a flexible way to possibly improve the performance. Finally,
the Max Detector outputs which counter, corresponding to one specific motion,
is having the largest value. Each output from the Max Detector is connected to
the corresponding motor in the prosthesis. If the Counter having the largest value
corresponds to the correct hand motion, the input has been correctly classified.

A scheme, based on using multi-input AND gates together with Counters,
has been proposed earlier [24]. However, the architecture used in this chapter is
distinguished by including OR-gates, together with the Selector units involving
incremental evolution.
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Figure 18.4. The digital gate-based architecture of the prosthetic hand controller.

The incremental evolution of this system can be described by the following
steps.

(1) Step 1 evolution. Evolve the AND-OR unit for each subsystem separately,
one at a time. Apply all vectors in the training set for the evolution of
each subsystem. There are no interactions among the subsystems at this
step, and the fitness is measured on the outputs of the AND-OR units.
A largest possible number of OR gates should be “1” for the 50 patterns
corresponding to the motion the subsystem is set to respond to. For all
other patterns, the number of gates outputting “1” should be as small
as possible. That is, each subsystem should ideally respond only to the
patterns for one specific prosthesis motion.

(2) Step 2 evolution. Assemble the six AND-OR units into one system as seen
in Figure 18.4. The AND-OR units are now fixed and the Selectors are to
be evolved in the assembled system—in one common run. The fitness is
measured using the same training set as in step 1 but the evaluation is
now on the output of the Max Detector.

(3) The system is now ready to be applied in the prosthesis.
In the first step, subsystems are evolved separately, while in the second step,

these are assembled and evolved together by using the Selectors. The motivation
for evolving separate subsystems, instead of a single system in one operation, is
that earlier work has shown that the evolution time can be substantially reduced
by this approach [16, 17].

The layers of AND and OR gates in one AND-OR unit consist of 32 gates each.
This number has been selected to give a chromosome string of about 1000 bits
which has been shown earlier to be appropriate. A larger number would have been
beneficial for expressing more complex Boolean functions. However, the search
space for evolution could easily become too large. For the step 1 evolution, each
gate’s input is determined by evolution. The encoding of each gate in the binary
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chromosome string is as follows:

Inp.1 (5 bit) Inp.2 (5 bit) (Inp.3 (5 bit)) (Inp.4 (5 bit))

As described in the previous section, the EMG signal input consists of 16 bits.
Inverted versions of these are made available on the inputs as well, making up a
total of 32 input lines to the gate array. The evolution is based on gate-level build-
ing blocks. However, since several output bits are used to represent one motion,
the signal resolution becomes increased from the two binary levels.

For the step 2 evolution, each line in each Selector is represented by one bit in
the chromosome string. This makes a chromosome string of 32×6 bits= 192 bits.
If a bit is “0,” the corresponding line should not be input to the Counter, whereas
if the bit is “1,” the line should be input.

18.3.1. Fitness measure

In step 1 evolution, the fitness is measured on all the 32 outputs of each AND-
OR unit. In an alternative experiment, it was found that the performance could be
substantially improved if the fitness is measured on a limited number (16 is here
used as an example) of the outputs [18]. That is, each AND-OR unit still has 32
outputs but, as seen in Figure 18.5, only 16 are included in the computation of the
fitness function:

fitness =
16∑
i=1

Output OR gate i match target i. (18.1)

The 16 outputs not used are included in the chromosome string and have
random values. That is, their values do not affect the fitness of the circuit. After
evolution, all the 32 outputs are applied for computing the performance:

performance =
32∑
i=1

Output OR gate i match target i. (18.2)

Since 16 OR gates are used for fitness computation, the “fitness measure”
equals 16. In the figure, gates 1 to 16 are used for the fitness function. However,
in principle, any 16 gates out of the 32 can be used. Other numbers than 16 were
tested in experiments but 16 showed to give the best performance results and was
used in the following reported experiments.

There are several possible benefits of this approach. Firstly, it could make the
evolution easier find good circuits since there are less number of outputs to mea-
sure fitness on. Thus, it could lead to a higher training set performance. Secondly,
this could be an interesting approach to improve the generalization of the circuit,
that is, the test set performance. Only the OR gates in the AND-OR unit are “float-
ing” during the evolution since all AND gates may be inputs to the 16 OR gates
used by the fitness function. The 16 “floating” OR-gates (i.e., OR gates 17 to 32 in
Figure 18.5) then provide additional combination of these trained AND gates.



378 Classification by evolved digital hardware

Fitness computation
in step 1 evolution

1
...

17

16

...

32

...

Chromosome

(a)

Performance computation
after step 1 evolution

1
...

17

16

...

32

...

Chromosome

(b)
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Figure 18.6. Illustration of noise added to (a) a plain signal and (b) a preprocessed signal.

Another way to look at this is that the “floating” gates provide “noise,” since
the inputs to the “floating gates” are randomly connected to the AND gates. How-
ever, the noise is not added to the plain input but to a preprocessed and improved
signal (output from the AND gates) as illustrated in Figure 18.6. The inner circle
for each motion indicates the training set domain, with the outer circle indicating
the added generalization obtained by adding “noise.” In (a), the signal is not pre-
processed and adding noise makes the interference among classes worse while in
(b), it improves the generalization rather than introducing interference. The step
2 evolution will be evolving the ratio of noise in the final system by adjusting the
number of Selector bits set for gates 1 to 16 compared to the number set for gates
17 to 32.
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The “floating” OR gates may also provide a neutral fitness landscape [8]. In
such landscapes, the neutrality, movement between solutions with equal fitness
[14], helps escaping local optimal solutions. The “floating” OR gates introduce
dynamics into the population making this possible.

18.3.2. Fitness function

The fitness function is important for the performance when evolving circuits. For
the step 1 evolution, the fitness function, applied for each AND-OR unit sepa-
rately, is as follows for the motion m (m ∈ [0, 5]) unit:

F1(m) = 1
s

50m−1∑
j=0

O∑
i=1

x +
50m+49∑
j=50m

O∑
i=1

x +
1
s

P−1∑
j=50m+50

O∑
i=1

x,

where x =
⎧⎨⎩0 if yi, j �= dm, j ,

1 if yi, j = dm, j ,

(18.3)

where yi, j is the computed output of OR gate i, and dm, j is the corresponding target
value of the training vector j. P is the total number of vectors in the training set
(P = 300). As mentioned earlier, each subsystem is trained for one motion (the
middle expression of F1). This includes outputting “0” for input vectors for other
motions (the first and last expressions of F1).

The s is a scaling factor to implicitly emphasize on the vectors for the motion
the given subsystem is assigned to detect. An appropriate value (s = 4) was found
after some initial experiments. The O is the number of outputs included in the
fitness function and is either 16 or 32 in the following experiments (referred to as
“fitness measure” in the previous section).

The fitness function for the step 2 evolution is applied on the complete system
and is given as follows:

F2 =
P−1∑
j=0

x, where x =
⎧⎨⎩1 if dm, j = 1, m = i for which max5

i=0

(
Counteri

)
,

0 else.

(18.4)

This fitness function counts the number of training vectors for which the tar-
get output being “1” equals the id of the counter having the maximum output (as
mentioned earlier only one output bit is “1” for each training vector).

18.3.3. The evolutionary algorithm

The simple genetic algorithm (GA), given by Goldberg [3], was applied for the
evolution with a population size of 50. For each new generation, an entirely new
population of individuals is generated. Elitism is used, thus the best individual
from each generation is carried over to the next generation. The (single point)
crossover rate is 0.8, thus the cloning rate is 0.2. Roulette wheel selection scheme
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is applied. The mutation rate, the probability of bit inversion for each bit in the
binary chromosome string, is 0.01. For some of the following experiments, other
parameters have been used, but these are then mentioned in the text.

Various experiments were undertaken to find appropriate GA parameters.
The ones that seemed to give the best results were selected and fixed for all the ex-
periments. This was necessary due to the large number of experiments that would
have been required if GA parameters should be able to vary through all the exper-
iments. The preliminary experiments indicated that the parameter setting was not
a major critical issue.

The proposed architecture fits into most FPGAs. The evolution is undertaken
offline using software simulation. However, since no feedback connections are
used and the number of gates between the input and output is limited, the real
performance should equal the simulation. Any spikes could be removed using reg-
isters in the circuit. There are many benefits of being able to implement a system
in hardware like cost, power consumption, and speed of operation.

For each experiment presented, four different runs of GA were performed.
Thus, each of the four resulting circuits from step 1 evolution is taken to step 2
evolution and evolved for four runs.

18.4. Results

This section reports the experiments undertaken to search for an optimal configu-
ration of the prosthetic hand controller. They will be targeted at obtaining the best
possible performance for the test set.

18.4.1. Fitness measure approach

Table 18.1 shows the main results—in percentage of correct classification. Several
different ways of evolving the controller are included. The training set and test set
performances are listed on separate lines in the table. The “# inp/gate” column
includes the number of inputs for each gate in the AND-OR units. The columns
beneath “step 1 evolution” report the performance after only the first step of evo-
lution. That is, each subsystem is evolved separately, and afterwards they become
assembled to compute their total performance. The “Step 1+2 evolution” columns
show the performance when the Selector units have been evolved as well (step 2 of
evolution). In average, there is an improvement in the performance for the latter.
Thus, the proposed increased complexity evolution give rise to improved perfor-
mances.

In total, the best way of evolving the controller is the one listed first in the
table. The circuit evolved with the best test set performance obtained, 67% correct
classification. Figure 18.7 shows the step 2 evolution of this circuit. The training set
performance is monotone increasing which is demanded by the fitness function.
The test set performance is increasing with a couple of valleys. The circuit had
a 60.7% test set performance after step 1 evolution.1 Thus, the step 2 evolution

1Evaluated with all 32 outputs of the subsystems.



Jim Tørresen 381

Table 18.1. The results of evolving the prosthetic hand controller in several different ways.

Type of system # inp/gate
Step 1 evolution Step 1 + 2 evolution

Min Max Avr Min Max Avr

A: Fitness measure 16 (train) 3 63.7 69.7 65.5 71.33 76.33 73.1

A: Fitness measure 16 (test) 3 50.3 60.7 55.7 44 67 55.1

B: Fitness measure 32 (train) 3 51 57.7 53.4 70 76 72.9

B: Fitness measure 32 (test) 3 40 46.7 44.4 45 54.3 50.1

C: Fitness measure 16 (train) 2 51.3 60.7 54.8 64.3 71.3 67.5

C: Fitness measure 16 (test) 2 46 51.7 49 44.3 54.7 50

D: Fitness measure 16 (train) 4 59.3 71.3 65.5 70 76 73.4

D: Fitness measure 16 (test) 4 52.7 59.7 55.3 48.3 56.3 52.7

E: Direct evolution (train) 4 56.7 63.3 59.3 — — —

E: Direct evolution (test) 4 32.7 43.7 36.6 — — —
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Figure 18.7. Plot of the step 2 evolution of the best performing circuit.

provides a substantial increase up to 67%. Other circuits did not perform that well,
but the important issue is that it has been shown that the proposed architecture
provides the potential for achieving high degree of generalization.

A feedforward neural network was trained and tested with the same data sets.
The network consisted of (two weight layers with) 16 inputs, a variable number of
hidden units, and 6 outputs. Table 18.2 shows the main results—in percentage of
correct classification. Training was run for 1000 iterations, which were enough to
find the maximum obtainable training set performance. The corresponding test
set performance, measured after training is finished, is given in the column “Fi-
nal.” However, to have a measure of the maximum possible test set performance,
the test set performance was monitored throughout training and the maximum
value is given in the column called “Maximum.” There is some difference between
these two columns but it is not very large—expecially for the networks with a large
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Table 18.2. The results of neural network training of the prosthetic hand controller.

Number of hidden units Training performance
Test set performance

Final Maximum

20 88 54 60

30 86.7 54.3 59

40 88 58.7 60

50 86.7 57 60.3

number of hidden units. Thus, we see that it is benficial to use a network with a
large number of hidden units to obtain the highest training set performance.

In the best case, a test set performance of 60.3% correct classification was ob-
tained. The best training set performance was 88%. Thus, a higher training set
performance but a lower test set performance than for the best EHW circuit. The
performance of the lookup table approach of 58%, reported in Section 18.2.1, is
again less than that obtained by neural networks. This shows that the EHW archi-
tecture holds good generalization properties.

The experiment B is the same as A except that in B all 32 outputs of each AND-
OR unit are used to compute the fitness function in the step 1 evolution. In A, each
AND-OR unit also has 32 outputs but only 16 are included in the computation of
the fitness function as described in Section 18.3.1. The performance of A in the
table for the step 1 evolution is computed by using all the 32 outputs. Thus, over
10% better training set as well as the test set performance (in average) is obtained
by having 16 outputs “floating” rather than measuring their fitness during the
evolution!

What is also interesting is that if the performance of the circuits in A is mea-
sured (after step 1 evolution) with only 16 outputs, the performance is not very
impressive. Thus, “floating” outputs in the evolution substantially improve the
performance—including the test set performance. This may seem strange but has
a reasonable explanation—given in Section 18.3.1. The reason for B having lower
performance could be explained by a more complex as well as larger search space
for the evolution. In this experiment, a larger number of OR gates should give a
correct output and the chromosome string is longer since in A the bits assigned to
the 16 “floating” OR-gates are not used. Other numbers of “floating” OR gates (8
and 24) were tested but the results were best for 16.

The C and D rows in the table contain the results when the gates in the AND-
OR units each consists of two and four inputs, respectively. The lowest figures are
for two input gates indicating that the architecture is too small to represent the
given problem. Four inputs, on the other hand, could be too complex since having
three input gates gives a slightly better results.

Each subsystem is evolved for 10 000 generations each, whereas the step 2 evo-
lution was applied for 100 generation. These numbers were selected after a number
of experiments. One comparison of the step 1 evolution (each gate having three
inputs) is included in Figure 18.8 and shows that the best average performance is
achieved when evolving for 10 000 generations.
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Figure 18.8. Performance of three different numbers of generations in step 1 evolution (average of
four runs).

The circuits evolved with direct evolution (E) were evolved for 100,000 gen-
erations.2 The training set performance is impressive when thinking of the simple
circuit used. Each motion is controlled by a single four input OR gate. However,
the test set performance is very much lower than what is achieved by the other
approaches. This is explained by having an architecture that is too small to pro-
vide good generalization. A larger one, on the other hand, would make the chro-
mosome string longer with the problems introduced in earlier (larger and more
complex search space). This once again emphasizes the importance of applying
the increased complexity evolution scheme.

18.5. Speed limit sign recognition

For the last years, there has been an increasing focus on enhancing traffic safety
by applying intelligent systems in vehicles to assist drivers. One of the reasons for
this becoming possible is the recent advance in computer hardware providing af-
fordable technology with a high-processing capability. In the work presented in
this chapter, we consider recognizing speed limit signs. Such a system could assist
drivers on signs they did not notice before passing them. It will inform drivers
about the present speed limit as well as possibly giving an alert if a car is driven
faster than the speed limit. More actively, it could be applied to avoid using today’s
physical obstacles in the road. This would require that the system could control
the vehicle so that it becomes impossible to drive faster than the speed limit. This
will mainly be relevant on roads with low-speed limits. In the future, autonomous
vehicles would have to be controlled by automatic road sign recognition. We have
found very little work on speed limit sign classification. There exists a system based
on global position system (GPS) and digital road maps with speed limits included
[15]. However, such a system depends on much external infrastructure. Further,

2This is more than six times 10 000 which were used in the other experiments.
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Figure 18.9. Speed limit signs.

Figure 18.10. An example of an input image.

problems like lack of updated speed limits on road maps question the reliability of
such a system.

The work presented below concerns detection of the numbers on speed limit
signs specifically. This is by classifying numbers extracted from the sign. This will
be undertaken in digital logic gates configured by evolution as for the prosthetic
hand controller.

18.5.1. Speed limit sign recognition system

Speed limit signs have features making them feasible for automatic detection.
First, there is a limited number of signs to distinguish. The following speed

limit signs, see Figure 18.9, are used in the experiments: 30, 40, 50, 60, 70, and
80 km/h (other speed limit signs are not included due to lack of images). The outer
circle of a sign is in red color.

Second, there are rules (named a road grammar) for how signs can be placed
along the road. After an “80” sign, you will never find a “30” sign, but rather an-
other “80” sign or a “60” sign. Third, the numbers on the signs are positioned ver-
tically making the matching simpler. Only in curves the signs may be marginally
tilted. Fourth, each time a new speed limit is given, there are speed limit signs at
both sides of the driving lane. These features make it promising to undertake speed
limit sign detection with a very high rate of correct prediction. A typical input im-
age is shown in Figure 18.10.

The algorithm is divided into three parts: (1) image filtering to emphasize
the red parts of the sign(s), (2) template matching to locate possible sign(s) in an
image, and (3) sign number recognition [13, 19]. These will be presented below.

In the first part, a specialized robust color filter is applied on the image to
emphasize the red circle surrounding the speed limit numbers. Further, this part of
the algorithm effectively limits the number of red pixels in the image to be further
processed.
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Figure 18.11. Examples of extracted arrays from real images to be classified by EHW.

In the second part, possible signs are located in the image by searching for the
red circle surrounding the numbers. The search is based on matching with a set of
circular templates of various size. In addition to locating the sign, the algorithm
tries to reject objects that are not signs and signs that are not speed limit signs. That
is, to improve recognition at the same time as reducing the computation time.

18.5.2. Sign number recognition

The last part of the algorithm is to detect the speed limit number on a sign. This is
conducted as follows.

(1) Clean the space defined by the best template (remove RED and the sur-
rounding colors), but keep the numbers.

(2) Find boundaries of numbers (width and height).
(3) Work only with the first number (the second is always zero).
(4) Create a 7 (rows) × 5 (columns) bit array of the given number (down-

scaling). Set each bit of the array to 1 if there are more BLACK than
WHITE pixels, else set the bit to 0.

(5) Classify the bit array using the evolved classifier circuit (described in the
next section).

Some randomly picked examples of bit arrays with different numbers are in-
cluded in Figure 18.11.

18.5.2.1. Number of classification in EHW

To be able to correctly classify the bit array containing the extracted number, some
kind of classification tool is needed. We would like to show that evolved digital
logic gates are appropriate. The initial reason for this is the format of the array:
it is small and contains binary values. If we applied other approaches like artifi-
cial neural network (ANN), a large number of floating point operations would be
needed. The EHW architecture, on the other hand, could be implemented in com-
binational logic where classification is performed in parallel [20]. The next section
presents the architecture applied for classification.

18.5.3. An evolvable architecture for classification

The classifier architecture is illustrated in Figure 18.12. It consists of one subsystem
for each of the six numbers to be classified. In each subsystem, the binary inputs
x0, . . . , x31 (3 bits from the array are not used) are processed by a number of differ-
ent units which are the same as for prosthetic hand controller. Further, the same
incremental evolutionary algorithm is used.
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Figure 18.12. The digital gate-based architecture of the sign number classifier.

18.5.3.1. Fitness function

The fitness function is constructed in the same way as for the prosthetic hand
controller including a “fitness measure” equal to 16. For the step 1 evolution, the
fitness function, applied for each AND-OR unit separately, is as follows for the
number n (n ∈ {0, . . . , 5}) unit:

F1(n) = 1
s

∑
(n not active)

O∑
i=1

xi +
∑

(n active)

O∑
i=1

xi, where xi =

⎧⎪⎨⎪⎩0 if yi, j �= dn, j ,

1 if yi, j = dn, j ,
(18.5)

where yi, j is the computed output of OR gate i, and dn, j is the corresponding target
value of the training vector j. Each subsystem is trained for one number (the last
expression of F1). This includes outputting “0” for input vectors for other numbers
(the first expressions of F1). The s is a scaling factor to implicitly emphasize on
the vectors for the number the given subsystem is assigned to detect. Since there
is a variable number of training vectors for each number, this constant was set
specifically for each subsystem (as seen in the result section). The O is the number
of outputs included in the fitness function and is 16 in the following experiments
(referred to as “fitness measure” in Section 18.3.1).

The fitness function for the step 2 evolution is applied on the complete system
and is given as follows:

F2 =
P−1∑
j=0

xj , where xj =

⎧⎪⎨⎪⎩1 if dn, j = 1, n = i for which max5
i=0

(
Counteri

)
,

0 else.
(18.6)
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This fitness function counts the number of training vectors for which the tar-
get output being “1” equals the id of the Counter having the maximum output
(only one output bit is “1” for each training vector). P is the total number of vec-
tors in the training set (P = 100 in the following experiments).

18.5.3.2. Effective processing in EHW

In the last part of Section 18.5.2.1, the benefits of the EHW architecture compared
to ANN were introduced. In this section, more details will be given. The EHW
architecture provides classification in parallel for all the different numbers. Each
path consists of two layers of gates in the AND-OR unit. The Selector could be im-
plemented with a one gate layer. The Counter could effectively be implemented as
a tree of gates. The Max Detector would consist of a comparator structure. Thus,
all can be implemented in combinational logic. However, to improve the speed if
necessary, registers could be introduced in the architecture together with pipelined
processing. Thus, the architecture should be able to process one input to the array
for each clock cycle. A neural network would typically have 32 inputs, 32 hidden
units, and 6 outputs. This would result in at least (32 × 32 + 32 × 6 = 1216)
multiply-accumulate operations and (32 + 6) sigmoid function operations. This
would normally have to be executed as serial floating point operations on a pro-
cessor. This seems to be a waste of resources since the input would still be binary
values.

18.6. Results

This section reports the results from the experimental work undertaken on sign
number classification. The evolutionary algorithm and parameters were the same
as for the experiments presented in Section 18.4. A database of 198 images from
traffic situations were used in the experiments. 115 contained a speed limit sign
and 83 contained other signs or no sign at all. Many of the images were in various
ways “difficult” (different brightness on sign, faded color on sign, etc.). The results
were as follows (before number recognition was undertaken).

(i) Is there a speed limit sign? A speed limit sign was found in 100 of the 115
images (87%). In those not found, the system stated that a speed limit
sign was not present in the image.

(ii) 78 of the 83 images without a speed limit were correctly refused (94%).
Thus, only five images were sent to the final sign number recognition.

For all the 100 images (P) that the system correctly detected, a speed limit sign, the
extracted number arrays were applied for evolving the hardware to perform classi-
fication. The number of arrays for the different speed limits is given in Table 18.3.
The values for fitness scaling (see (18.5)) are also included. They are computed
according to the following equation:

s = P

Pn
· k = 100

Pn
· 0.7 = 70

Pn
, (18.7)
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Table 18.3. The number of extracted arrays classified for each speed limit.

Speed limit Number of arrays (Pn) Fitness scaling factor (s)

30 4 18

40 11 7

50 32 2

60 35 2

70 12 7

80 6 12

Table 18.4. The correct number classification performance in %.

Type of system Step of evol. Min Max Average

A: Performance of 16 outputs 1 67.6 75.7 71.44

B: Performance of 32 outputs 1 71.8 90.9 79.2

C: Performance of 32 outputs 2 92.9 96.0 94.5

Table 18.5. Performance of the best classifier architecture evolved.

Speed limit 30 40 50 60 70 80

Performance (in %) 100 100 84.4 91.4 100 100

Pn is the number of arrays for the given class (column two in the table) and k
is a constant determining the ratio between the fitness from Pn training vectors
(active) and (P − Pn) training vectors (not active). The value of k was determined
by experiments.

Table 18.4 summarizes the classification performance. All the experiments are
based on a “fitness measure” equal to 16. In this table, “A” shows the performance
when only the 16 outputs applied in the fitness function are applied in computing
the performance (after step 1 evolution is finished). However, we see that it is better
to apply all 32 outputs (“B”) since the average performance is about 8% higher.
Thus, 16 OR gates with random input connections improve the performance. We
see the importance of the step 2 evolution in “C” in which the performance is
substantially increased. The average performance is more than 15% higher than
for “B.” The best classifier provided a performance of 96%.

The performance for each speed limit for the best classifier is shown in
Table 18.5. Only two speed limits have less than 100% correct classification.

In step 1 evolution, each AND-OR unit was evolved for 25,000 generations.
Step 2 evolution needed less than 500 generations before the performance stopped
increasing. We have not yet studied the performance of the 5 images that were
wrongly sent to the number recognizer. However, these could probably be elimi-
nated by a combination of matching on the “0” number and applying road gram-
mar (as explained in Section 18.5.1). We have not fully explored all possible pa-
rameter settings for the architecture. Thus, there is a potential for further improv-
ing the performance. Further, a threshold unit could be introduced to avoid mis-
classifying numbers by rather indicating no distinct match.
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In addition to achieving a high rate of correct classification, we have made
much effort at the same time to reduce the processing time. This would be highly
needed in a future real-time system. By applying digital logic gates for the number
classification, we have almost eliminated the processing time for this operation. To
have a robust and reliable system, more images should be analyzed and this is a
part of our future work.

With the promising results so far, future work also consists of further improv-
ing the algorithms and implementing the most computational demanding parts
in special hardware. More image data should be applied to better test the general-
ization performance. Further, possible inclusion of evolution in other parts of the
system is of interest as well. Finally, a prototype to be applied in a vehicle will be
implemented.

18.7. Conclusions

In this chapter, an EHW architecture for pattern classification including incremen-
tal evolution has been introduced. Experiments show that the performance can
be substantially increased by applying incremental evolution compared to evolv-
ing a system directly in one operation. This has been shown for both prosthetic
hand control and road sign image recognition. Another benefit is that the hard-
ware would be compact and provide a cost effective platform.

The architecture would be appropriate for any application having real-time
constraints and which could benefit from being online adaptable. The results illus-
trate that this is a promising approach for evolving systems for complex real-world
applications.
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19
Evolutionary photogrammetric
network design

Gustavo Olague and Enrique Dunn

19.1. Introduction

This chapter is about the automation of photogrammetric networks by means of
evolutionary computation. The optimal design problem in photogrammetry may
be stated: given the required quality (precision and reliability) of a set of parame-
ters that are to be estimated, find the set of measurements that will achieve this with
the least cost. This problem is known as photogrammetric network design (PND).
Today, it is widely accepted that the process of designing a photogrammetric net-
work should be done through simulation using an optimization approach. A truly
optimal network would achieve the highest possible precision and reliability in
the most economical manner! However, this turns to be difficult if not impossible
in terms of design costs. Therefore, photogrammetrists have referred to network
optimization as the search for a satisfactory configuration. In this way, the design
process is concluded once a network achieves the accuracy within the limit of cost
and/or time.

A first benefit of simulating photogrammetric networks through evolution-
ary computation is the natural interaction between both research areas based on
the common goal of obtaining a suitable (satisfactory) solution (configuration).
It is known that solving photogrammetric networks through a unique sequence
of mathematical steps, possibly involving iteration, is not possible [19]. However,
analytical design is applied to describe the criteria that are employed within the
optimization approach. Moreover, a significant advantage of using evolutionary
search lies in the gain of flexibility and adaptability to solve the task at hand, due
to the combination of robust performance and global search characteristics. In
this way, evolutionary computation should be understood as a general adaptable
concept for problem solving, especially well suited for solving difficult optimiza-
tion problems such as photogrammetric network design, instead of a collection
of related and ready-to-use algorithms. On the other hand, from the evolution-
ary computation standpoint researchers are looking for challenging new problems
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Figure 19.1. Typical sensor planning research is carried out with a robot manipulator and a CCD
camera in what is known as a hand-eye configuration.

to enhance their understanding of evolutionary algorithms. In this avenue, PND
represents a rich research subject.

Although the level of automation achieved in digital close-range photogram-
metry has allowed the effective integration of vision metrology systems into in-
dustrial environments [16], the PND remains as an open problem in photogram-
metry. Today, there are photogrammetric systems capable to achieve routinely ac-
curacies above 1 : 100 000 of the principal dimension of the object [15]. However,
to achieve such high accuracy in metrology, it is necessary to be a photogrammet-
ric expert. Expertise is involved to decide about the arrangement and number of
cameras to gain the strongest network, the appropriate placement of targets on the
object to be measured, setting the lighting to obtain strongly contrasting targeted
features, estimation of camera calibration and bundle adjustment, identification,
and labeling of targets using feature detection techniques up to subpixel accuracy.
Finally, the expert should run a program with all the above information and decide
if the results are within some predetermined limit, or make some change, check for
errors, and repeat it with new values until the objectives are achieved. The moti-
vation of this research is to reduce the cost of vision system design and to equip
autonomous inspection systems with photogrammetric network capabilities, for
example, measurement robots used in flexible manufacturing, see Figure 19.1.

Nowadays, vision metrology is actively used in conjunction with computer
vision, robotics, computer graphics, and other visual-related disciplines to solve
problems in areas such as medicine, biology, architecture, industrial engineering,
aerospace technology, to mention but a few. Traditionally, vision metrology has
been enhanced also with methods from artificial intelligence and more recently
with computational intelligence approaches. This research is about how evolu-
tionary computation can be applied to design a photogrammetric network for
industrial inspection tasks following a simulation approach. Computer simula-
tion of close-range photogrammetric networks has been successfully employed
and, with the sophistication of computers, a considerable boost to interactive net-
work design has been achieved. The process of photogrammetric network design
optimization through computer simulation can follow a number of approaches.
One traditional procedure is based on the widely accepted classification scheme of
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Grafarend [18], in which network design has been divided into four design stages
of which only the first three are used in close-range photogrammetry [14].

(i) Zero-order design (ZOD): this stage attempts to define an optimal da-
tum in order to obtain accurate object point coordinates and exterior
orientation parameters.

(ii) First-order design (FOD): this stage involves defining an optimal imaging
geometry which, in turn, determines the accuracy of the system.

(iii) Second-order design (SOD): this stage is concerned with adopting a suit-
able measurement precision for the image coordinates. It consists usu-
ally in taking multiple images from each camera station.

(iv) Third-order design (TOD): this stage deals with the improvement of a
network through the inclusion of additional points in a weak region.

The initial step is to achieve a suitable observation and measuring scheme
(FOD stage) in order to fulfill the required triangulation precision criteria. This
entails the selection of an appropriate camera format, focal length, and image mea-
surement system, as well as a first approximation to a suitable network geometry.
FOD or SOD steps are applied if the network fails to achieve the criteria. If both
corrections are insufficient, a completely new network needs to be proposed and
the whole process is repeated iteratively. This chapter describes an evolutionary
computation-based methodology for solving the fundamental stage in network
design, that is, configuring an optimal imaging geometry. The problem is posed in
terms of a global optimization design, which is capable of managing the problem
using an adaptive strategy. The solution space is explored using both noncontinu-
ous optimization and combinatorial search. Basically, the approach is to minimize
the uncertainty of three-dimensional measurements using as a criterion the aver-
age variance of the 3D object points, presuming that the optimization satisfies a
number of primary constraints and design decisions. This chapter details the op-
timization process based on an evolutionary strategy, and how the primary con-
straints and design decisions are managed in order to overcome the computational
burden.

19.2. Problem statement

A main research problem on photogrammetric network design is devoted to the
spatial distribution planning of cameras and targets in order to perform pho-
togrammetric tasks. This section presents the modeling of a multistation sensor
configuration in order to model accurate positions of 3D target points. Target
points will be represented by error ellipsoids describing the uncertainty of their
position. Changing the camera attitudes, position and orientation, changes the
orientation and size of the error ellipsoids. The main question we will answer is
where should we place the cameras in order to obtain the minimal 3D error?

19.2.1. Three-dimensional reconstruction

Brown [1] originally developed the bundle method in a fully general form. Today,
the bundle method is recognized as a critical factor in exploiting the mensuration
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potential of photogrammetry and is almost exclusively used in applications requir-
ing high accuracy. However, nonrigorous approaches have been used to simplify
the process of simulation. Here, we will describe a combined approach in which
3D reconstruction is achieved following computer vision and photogrammetric
approaches. In computer vision, the camera network is commonly modeled from
a geometric standpoint according to the projective model. This model is based on
the fundamental assumption that the exposure center, the ground point, and its
corresponding image point, all lie on a straight line.

Let ui j and vi j denote the photo coordinates of the image of point j in photo-
graph i. For each pair of image coordinates (ui j , vi j)t observed on each image, the
following relationship exists:

ui j =
mi

11Xj +mi
12Yj +mi

13Zj +mi
14

mi
31Xj +mi

32Yj +mi
33Zj +mi

34
,

vi j =
mi

21Xj +mi
22Yj +mi

23Zj +mi
24

mi
31Xj +mi

32Yj +mi
33Zj +mi

34
.

(19.1)

This system of equations assumes that light rays travel in straight lines, that all rays
entering a camera lens system pass through a single point and that the lens system
is distortion-less or, as is usual in highly accurate measurement, that distortion has
been canceled out after having been estimated. In this way, a point in the scene Pj ,
j = 1, . . . ,n, of homogeneous coordinates (Xj ,Yj ,Zj , 1)t is projected into points
pi j of image coordinates (ui j , vi j)t, through a projection matrix Mi, i = 1, . . . , k,
of size 3 × 4 corresponding to the ith image. In this case, k = 2. Therefore, three-
dimensional measurements can be obtained from several images. Each matrix M
represents a mapping composed of a transformation W → C from the world co-
ordinates W to the camera coordinates C given by

⎛⎜⎜⎜⎝
x
y
z
1

⎞⎟⎟⎟⎠ =
[
RWC TWC

01×3 1

]⎛⎜⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎟⎠ , (19.2)

where the rotation matrix RWC , which is a function of three rotation parameters
(α,β, γ) and the translation vector TWC , also of three degrees of freedom, charac-
terizes the camera’s orientation and position with respect to the world coordinate
frame. Under perspective projection, the transformation from 3D-world coordi-
nate system to the 2D-image coordinate is

⎛⎜⎝susv
s

⎞⎟⎠ = [RWC TWC

01×3 1

]⎛⎜⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎟⎠ , (19.3)
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where the matrix

K =

⎛⎜⎝−ku f 0 u0 0
0 kv f v0 0
0 0 1 0

⎞⎟⎠ , (19.4)

represents the intrinsic parameters of the camera, f is the focal length of the cam-
era, (ku, kv) are the horizontal and vertical pixel sizes on the image plane, and
(u0, v0) is the projection of the camera’s center (principal point) on the image
plane.

In computer vision, calibration is the process of estimating the intrinsic and
extrinsic parameters of a camera. It can be thought of as a two-stage process in
which we first compute the matrix M and then we compute the intrinsic and ex-
trinsic parameters from M. Here, we follow the approach proposed by Faugeras
and Toscani [11, 12] to calibrate each camera in order to obtain the 10 intrinsic
and extrinsic parameters.

In photogrammetry, the bundle method accords simultaneous consideration
to all sets (or “bundles”) of photogrammetric rays from all cameras. The bundle
method is based on a mathematical camera model comprised of separate func-
tional and stochastic models. The functional model describing the relationship
between the desired and measured quantities consists of the well-known collinear-
ity equations. The collinearity equations, derived from the perspective transfor-
mation, are based on the same fundamental assumption of the projective model.
Thus, the pinhole camera model (central projection) is the underlying model for
both the projective approach and the collinearity-based approach. In this way, for
each pair of image coordinates (xi j , yi j) observed on each image, the following pair
of equations is written:

Fx = xi j − xp + f
m11

(
Xj − Xc

i

)
+m12

(
Yj − Yc

i

)
+m13

(
Zj − Zci

)
m31

(
Xj − Xc

i

)
+m32

(
Yj − Yc

i

)
+m33

(
Zj − Zci

) ,

Fy = yi j − yp + f
m21

(
Xj − Xc
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)
+m22

(
Yj − Yc
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)
+m23

(
Zj − Zci

)
m31
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)
+m32

(
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i

)
+m33

(
Zj − Zci

) ,

(19.5)

where (xi j , yi j) denote the coordinates of point j on photograph i, f and (xp, yp)
are the camera constant and image coordinates of the principal point of the sen-
sor defining the sensor’s orientation, (Xj ,Yj ,Zj) are the object space coordinates
of the corresponding point feature, (Xc

i ,Yc
i ,Zci ) are the object space coordinates

of the perspective center, and mkl are the elements of an orthogonal matrix which
defines the rotation between the image and object coordinate systems. If each cam-
era is calibrated following the Faugeras and Toscani approach, then it is possible to
express the calibration through the collinearity equations. Thus, f is expressed as
two projections along the main directions αu = −Ku f and αv = Kv f . The image
coordinates of the principal point are simply expressed as xp = u0 and yp = v0. In
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this way, the analysis could be simplified after removing the intrinsic parameters
to obtain the following models:

(a) computer vision

P′ =
[
RWC TWC

01×3 1

]
P, (19.6)

(b) photogrammetry

P′ = R
(
Pj − Pc

)
. (19.7)

However, the last equation is expressed in nonhomogeneous coordinates. In
order to state this equation as in the computer vision model, we write the equation
as follows:

P′ = RPj − RPc (19.8)

to obtain

P′ =
[
R3×3 −RPc
01×3 1

](
Pj
1

)
, (19.9)

where Pc = −RtTWC .

19.2.2. 3D uncertainty estimation

Due to the nature of the measurement process, observations are accompanied by
errors. Because of random errors, as evidenced by small differences between ob-
servations of the same quantity, observations can be regarded as random variables
and their effects described by means of a stochastic model. Equation (19.5) can
be linearized through the first-order development using the Taylor series. A func-
tional model can be given as

v = Ay − l,

C1 = σ2
0P−1,

(19.10)

where l, v, and y are vectors of observations, residuals, and unknown parameters,
respectively; A is the design or configuration matrix; C1 is the covariance matrix
of observations; P is the weight matrix; and σ2

0 is the variance factor. In situations
where A is of full rank (i.e., where redundant or explicit minimal constraints are
imposed), the parameter estimates ŷ and the corresponding cofactor matrix Qy

and covariance matrix Cy are obtained as

ŷ
(

AtPA
)−1

AtPL = QyAtPL, (19.11)

Cy = σ2
0Qy. (19.12)
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The ultimate aim of any photogrammetric measurement is the determination of
triangulated object point coordinates along with estimates for their precision. The
bundle method is simplified by considering two groups of parameters in the vector
ŷ : ŷ1, comprising exterior orientation (self-calibration parameters were not con-
sidered for simplicity), and ŷ2 containing object coordinate corrections. Equation
(19.11) then assumes the form

(
ŷ1

ŷ2

)
=
(

At
1PA1 At

1PA2

At
2PA1 At

2PA2

)−1 (
AtPL
AtPL

)
(19.13)

and the cofactor matrix Qy can be written as

Qy =
(

Q1 Q1,2

Q2,1 Q2

)
. (19.14)

The design optimization goal for precision is to achieve an optimal form of Q2

and therefore the covariance matrix of object point coordinates (Xj ,Yj ,Zj), con-
sidering the applicable design constraints. The criterion used in the minimization
process is the average variance along the covariance matrix σ2

c , that is,

σ2
c =

σ2
0

3n

(
trace Q2

)
. (19.15)

Before dramatic improvements in computer processing power in recent years, a
valid criticism of designing close-range networks by simulation was the compu-
tation time required for a bundle adjustment after each design-iteration even for
relatively small networks. As shown by Brown [1], the covariance matrix can be
obtained through the equation

Q2 = σ2
0

[(
At

2PA2
)−1

+ K
]
, (19.16)

where

K =MQ1Mt,

M = (At
2PA2

)−1
At

2PA1.
(19.17)

In this way, the determination of Q2 using this approach represents a rigorous ap-
proach that is termed total error propagation (TEP). On the other hand, it has been
demonstrated (Fraser [16]) that, for a wide range of convergent photogrammetric
networks, K = 0. This consideration is nonrigorous in that it implicitly assumes
that exterior orientation parameters exhibit no dispersion and is called limited er-
ror propagation (LEP). The perspective parameters are assumed to be error free
and the variances in object point coordinates arise solely from the propagation of
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random errors in the image coordinate measurements. What is remarkable from a
network design standpoint is that, for strong networks (convergent networks), LEP
is sufficiently accurate compared to TEP, causing considerable computing savings.
Following the computer vision model, it is possible to apply the LEP approach in
order to simplify the uncertainty analysis. The analytical method that is applied in
our work takes account of the fact that the uncertainty of the image measurements
propagates to the world measurements according to the following proposition.

Proposition 19.1. Given a random variable p ∈ Rm, of Gaussian distribution, mean
E[p], and covariance Λp, and P ∈ Rn, the random vector given by P = f (p), where
f is a function of class C1, the mean of P can be approximated to a first-order Taylor
expansion by f (E[p]) and its covariance by

ΛP = ∂ f
(
E[p]

)
∂p

Λp
∂ f
(
E[p]

)
∂p

t

. (19.18)

19.3. Objectives and constraint’s requirements in
sensor planning for vision metrology

This section provides a broad list of objectives and constraints that could be found
in sensor planning research in the case of passive sensors such as a CCD camera.
The first set of constraints depends only on the optical lens design, and is defined
by three fairly generic feature detectability constraints. These constraints require
that the scene features, which are being imaged by the camera, are in focus, within
the field of view of the camera, and within a sufficient resolution.

19.3.1. Optical constraints

The optical constraints characterize the distance between the camera viewpoint
and the scene features of interest. In general, a synthesis approach has been taken
to solve the problem. Each optical constraint is characterized by an analytical re-
lationship. The admissible domain of sensor placement and settings is bounded
by the frustum defined through the analytical relationships, and where a globally
admissible viewpoint is sought.

(i) Resolution constraint. The resolution of the object in the image must be
sufficient to support image mensuration to the desired precision. The minimum
required scene feature resolution is a function of the camera optical lens, the pixel
spacing of the sensor, and the camera location and orientation with respect to the
feature of interest. For example, the pixel resolution of a given feature is increased
when the camera is positioned closer to the observed feature while maintaining
the same orientation, or the focal length of the lens is increased.

(ii) Field of view constraint. One of the major considerations of photogram-
metrists in network design is to attempt to place each camera station such that the
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entire scene lies within the field of view of the camera. This goal is motivated by the
fact that capturing the entire scene in each frame will lead to a simplified design.
However, this goal is contrary to the resolution constraint as long as a shorter-
length lens could be less desirable from a precision point of view. Of course, the
field of view goal is not always possible like in the case of complex 3D objects due
to occlusions of the environment or self-occlusions produced by the object itself.

(iii) Depth of field constraint. Features to be measured should lie within the
range of sufficiently sharp focus. Sharply focused images are desirable because they
contain more information. Moreover, images that are not sharply focused have lost
image contrast and detail and their edges are blurred. Depth of field is a function
of the sensor’s aperture and effective focal length, the admissible diameter of the
circle of confusion, and the sensor-to-feature distance.

For any camera and lens setting, there is only one object distance called the
focus distance, for which points are in perfect focus. While the focus distance is
unique for a given setting of the lens, in practice there exists a range of object dis-
tances for which an image is considered to be focused. However, a reasonable re-
laxation of this limit can be tolerated when digital image mensuration techniques
are employed. The depth of field remains as a factor constraining both image scale
and sensor configuration geometry.

19.3.2. Environmental constraints

Planning an appropriate camera configuration needs to take into account a set of
constraints pertaining to the environment. Next, we define three common envi-
ronmental constraints.

(i) Visibility constraint. Obstructions in the workplace often preclude the pos-
sibility of imaging all points of interest which would otherwise lie within the field
of view of the camera. Thus, the visibility of a feature of an object from a particular
viewpoint could fail if the feature is occluded by either some part of the object on
which it lies, self-occlusion, or other objects in the environment. This problem is
produced by the opaqueness of the objects. Also, the visibility could fail if the fea-
ture lies outside the field-of-view limits of the sensor. These two cases of rendering
a feature invisible are addressed as separate constraints in the literature. The first
is named the visibility constraint, while the second is the field-of-view constraint.
In vision metrology, the visibility constraint may affect the triangulation accuracy,
because the occlusions could cause a poor contribution of the imaging geometry
and convergent angles. Therefore, the strength of the intersection geometry may
be compromised if the number of rays falls below that of a basic generic network.

(ii) Workspace constraint. The workspace in which the sensor planning survey
is conducted can impose restrictions on the camera placement. The sensor config-
uration can be limited by the workspace if the environment imposes restrictions.
Those restrictions could be produced by the walls of the room, any objects between
the camera and the scene being studied, or the kinematic and dynamic constraints
generated when the camera is placed by a robot manipulator. The workspace con-
straint limits the availability of viewpoints where a camera could be placed.
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(iii) Illumination constraint. The quality of object illumination plays an im-
portant role in the quality of the sensing tasks. Therefore, sensor planning should
also include planning of the illumination. A vision task is specified by an object
model that includes photometric properties, light source type, as well as geomet-
ric properties of the feature object. For example, the light source is assumed to
be a point light source, and no area light sources are supported. The background
must be dark enough to distinguish the object clearly from the background. No
secondary reflection or ambient light is considered. All faces have uniform re-
flectance; no colour or shading effect is considered. In summary, for natural object
features such as edges, however, the illumination constraint is very critical. On the
other hand, in photogrammetry retro-reflective targets are most commonly the
features to be measured. Criteria for the illumination of these targets are well un-
derstood and can generally be satisfied by ring-flash illumination of the object
from each camera station.

19.3.3. Photogrammetric constraints

Including the constraints that we have described just above, there are a number of
constraints that are studied in vision metrology. The photogrammetric network
design must deal with a series of constraints in order to select an optimal camera
distribution. The accuracy of the system is related to the imaging geometry (main
objective in PND) as well as the convergence angle of each camera with respect to
each object surface. Considering all the constraints limiting the search space, we
identify the following main objective and constraints.

(i) Contribution to intersection angles or the imaging geometry. The contribu-
tion of a single camera station to a network configuration cannot be treated in
isolation. For example, at least 3 rays are necessary to ensure strong intersection
angles at a target or feature. The stations or cameras rising these rays must be
placed at positions separated in 3D space. Each camera adds strength to the ray
intersection geometry, contributing to the triangulation precision. Consequently,
each camera station cannot be independently added to a configuration, but rather
consideration should be given to how it will interact with the other stations to
produce strong multiray intersections. Hence, within a camera placement system
the main objective is to know the contribution of each camera with respect to the
others. Two fundamental questions need to be answered. How many cameras will
be needed and where should they be placed? A solution to the second question has
been proposed by [23]. If we have solved where to place a given number of cam-
eras, it is possible to compute then the appropriate number of cameras for the task
of measuring an object.

(ii) Number and distribution of image points. The statistical reliability of the
photogrammetric orientation can be enhanced through the greater redundancy
provided by extra targets. The number and distribution of image points also sig-
nificantly influences the precision of recovery of sensor calibration parameters in
self-calibrating bundle adjustment. However, there is a relative independence of
triangulation precision and number of targets. The independence of target density
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and object point precision is explained in terms of the limited error propagation,
which takes into account only the intersection geometry at each point and the di-
rectional dispersion of the imaging rays to the point. On the other hand, it is im-
portant to attempt to maximize the total number of object points seen at a station
since an increasing number of image points is accompanied by an improvement in
the internal reliability of the individual observations.

(iii) Incidence angle constraint or convergence angle. The reliability of image
measurements from directions close to coplanar is difficult and even impossible
to obtain. The minimum allowable incidence angle is dependent on the type of
feature, its geometry, and its material, as well as the illumination. The accuracy
of the measurement with respect to the convergence angle is a function of the
viewing direction and the surface normal at the feature. In the case of circular
targets, the minimum convergence angle is about 20 to 30 degrees for the kind
of retroreflective targets that are normally used. An hyperbolic model describing
the behavior of the error measurement for this kind of targets has been proposed
recently, see [23].

19.4. An evolutionary photogrammetric network design system

As discussed in previous sections, the PND problem offers a geometrical design
problem with an intricate ensemble of mathematical, optical and operational con-
siderations. These aspects can be addressed in a coherent manner by approaching
the PND problem in optimization terms. However, an optimization needs to be
carried out over a poorly understood search space that presents numerical and
combinatorial aspects. A close examination of the problem will yield the following
challenges.

(i) The search space is nonlinear. The relationship between the imaging geom-
etry of multiple cameras and reconstruction accuracy of a 3D object is modeled by
a complex mathematical model that is difficult to address by analytical or numer-
ical means.

(ii) The search space offers discontinuities. Concave 3D objects present the
problem of self-occlusion for visual sensing, giving rise to a combinatorial opti-
mization process.

(iii) The search space is multimodal. There exist multiple configurations (with
very different geometrical topology) which provide very similar results.

EC techniques offer a powerful paradigm to address all these issues, due to
their stochastic and population-based metaheuristics. Indeed, the flexibility of the
EC paradigm allows us to extend the study of PND beyond a purely geometrical
problem through the use of a properly designed simulation based approach. The
evolving positions of cameras (EPOCA) system is an example of a system devel-
oped following these principles.

EPOCA is a CAD-based planning system which incorporates automated cam-
era network design algorithms with a 3D simulation environment and interface.
The system takes as input a 3D CAD model of the object and determines auto-
matically the location and attitude of a set of cameras converging on the object.
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Figure 19.2. Outline of evolutionary photogrammetric network design.

The ongoing development of EPOCA has extended this basic scenario to include
the operation of an active vision system as well as to address different evolution-
ary optimization techniques. The following sections describe some of the different
ways in which EC has been incorporated into the EPOCA system to address differ-
ent issues in the PND problem.

19.5. Designing an optimal camera network for 3D reconstruction

Evolutionary algorithms operate over a set of parameterized solutions through
a set of stochastic heuristic functions. The evolution process optimizes a pho-
togrammetric network design criterion under a number of constraints, see Section
19.2. In this way, there is a special nomenclature used in the EC literature for the
basic algorithmic elements used in the development of an evolutionary algorithm.
For example, the set of solutions is called a population while each single solution
is called an individual. The set of stochastic functions are called genetic operators
while the criterion to optimize is termed a fitness function. Accordingly, the goal
of the EPOCA system is to evolve a population of camera configurations in or-
der to solve the PND problem. The first algorithmic aspect to be addressed is the
definition of a suitable genetic representation (see Figure 19.3).

19.5.1. Genetic representation

The design of an optimal camera network is considered as the problem of deter-
mining an optimal imaging geometry. In turn, the main issues to be addressed are
the convergence angle of each camera with regard to the object features, as well as
the relative orientation of each camera with respect to the other sensing stations.
Our evolutionary approach requires a parameterization of the PND that effectively
represents these aspects. The viewing sphere model is adopted in order to have a
representation that provides 3D convergent networks while maintaining a param-
eterization of reduced dimensionality. Under this viewing model all cameras are
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Fitness value

Cam 1 Cam 2 Cam 3 Cam 4

100110 011100 100110 011100 100110 011100 100110 011100

Figure 19.3. Genetic representation of an individual. The camera positions are encoded with a binary
string using the hierarchical structure of a tree as in the linear genetic programming.

placed on the surface of a sphere which is centered on the object under observa-
tion. In this way, the position and orientation of a single camera can be expressed
by the spherical coordinates on the viewing sphere, denoted by (α, β). The EPOCA
system uses a binary encoding of these coordinates which allows the system to ef-
fectively deal with the combinatorial aspects of our optimization problem. In this
way, given a coding size L (i.e., number of bits used to represent each variable), a
camera network of n cameras can be represented by a binary vector

X ∈ B
2Ln where xi ∈ {0, 1} for i = 1, . . . ,n. (19.19)

Accordingly, each camera network is represented by a binary vector

αi =
{
xL(2i−2)+1, xL(2i−2)+2, . . . , xL(2i−2)+L

}
,

βi =
{
xL(2i−1)+1, xL(2i−1)+2, . . . , xL(2i−1)+L

}
for i = 1, . . . ,n.

(19.20)

Moreover, the viewing sphere model allows a straight-forward incorporation
of the optical parameters. This simplification can be achieved by a priori deter-
mination of the optical constraints (field of view, focus, and resolution) allowing
each camera to observe the complete object. The optical constraints are satisfied
once the focal length and distance to the object are properly selected.

19.5.1.1. Recombination and mutation

In genetic algorithms, the search for improved solutions is driven by the process of
recombining individuals from the population. This recombination is implemented
through a genetic operator called crossover. For a binary representation, the role
of this operator consists in combining the information of two individuals in the
population in order to generate two new individuals. This is normally done by
selecting a single bit position and exchanging the information on either side of
this “cut” position. In our algorithm, this heuristic is implemented at the camera
level. In this way, a single parameter is combined only with the corresponding
parameter in another individual. Hence, given two binary vectors representing a
camera parameter, X ,Y ∈ BL, as well as a cut position 1 ≤ c ≤ L, the two new
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Figure 19.4. Integrating different constraints on PND. The object being observed is divided into a
number of disjoint regions. The sensing contribution of each camera position is validated for each
object region. Invalid sensing positions are automatically repaired.

binary vectors X ′, Y ′ will be obtained as follows:

X ′i =
⎧⎨⎩Xi if i < c,

Yi otherwise,
Y ′i =

⎧⎨⎩Yi if i < c,

Xi otherwise,
for i = 1, . . . ,L. (19.21)

Mutation is also incorporated into our approach by stochastically changing a
single bit position subject to a predetermined probability.

19.5.2. Constraint handling

A valid camera configuration is one that provides sufficient image measurements
to effectively reconstruct all the object features under study. Moreover, such con-
figuration must comply with the different constraints mentioned in previous sec-
tions. This requires evaluating different types of constraints for a single camera as
well as for the complete camera network (see Figure 19.4).

Visibility constraints are incorporated into the EPOCA system by means of
an offline ray-tracing module that evaluates the visibility of each object feature
from the different camera positions available in the viewing sphere. The results
of each visibility evaluation are stored in a database for online query during the
evolution process. It is required that every camera observes a nonempty subset of
the object features. However, depending on the object being studied, it is possible
for the evolution process to produce invalid camera positions. Such positions are
validated and corrected if necessary.

The incidence angle constraint is enforced during fitness evaluation. For a sin-
gle feature, only those cameras that comply with this constraint contribute to the
feature reconstruction process. A closely related constraint is the lack of redun-
dancy in image measurements due to an insufficient sampling. EPOCA validates
the last constraint and penalizes the invalid configurations assigning a predeter-
mined fitness value. These constraints are stored in an internal database that keeps
record of which camera positions can observe a given object region.
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Figure 19.5. Fitness evaluation of an individual. A mathematical model is dynamically formulated for
each object region. This is based on a particular camera configuration value and the constraint database
previously calculated.

19.5.3. Evaluation

In our evolutionary algorithm, the evaluation of an individual is given by the qual-
ity of the reconstruction (in terms of precision) derived from the camera con-
figuration. The uncertainty of our 3D reconstruction can be evaluated using the
different criteria presented in previous sections. In order to attain a reasonable
computational time for our evolutionary algorithm, the approach based on the er-
ror propagation phenomena was originally developed [23]. The evaluation process
partitions the objects into separate regions of interest. The mathematical model for
3D reconstruction is built for each object region considering the subset of cameras
observing it. In this way, the fitness evaluation is a dynamical process that depends
on the topology of the object, as well as on the evaluated camera network (see
Figure 19.5).

19.5.4. Experimentation

A number of experiments were carried out in order to validate the proposed ap-
proach. All the experiments used a population of 30 individuals with a coding
length L = 10. Hence, for a network of n cameras, each individual can be repre-
sented by a vector of 2× 10× n binary values. For large networks this would be a
very difficult optimization task. However, thanks to the tree-based representation
adopted, the search space is efficiently explored by our evolutionary algorithm.
Figure 19.6 illustrates the type of results provided by the system. The obtained
networks are good in terms of camera distribution and ray inclination. Moreover,
for the case of a planar structure, the results are consistent with networks previ-
ously proposed by photogrammetrists [13]. In this way, human competitive results
can be obtained through the use of evolutionary techniques for the solution of a
complex design problem.
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(a) (b)

(c) (d)

Figure 19.6. Experimental results. Examples of camera networks designed by the EPOCA system; (a)
four cameras observing a plane; (b) six cameras observing a plane; (c) eight cameras observing four
planes; (d) twenty cameras observing a complex object. Each of these configurations correspond to the
best results that were obtained in several executions.

19.6. Incorporating a manipulator robot

Once an appropriate imaging geometry has been achieved, the next phase is to
consider the manner by which the sensing actions will be carried out. Here, the
case of a manipulator robot used for automated image acquisition is considered.
A straight forward approach would be to directly use the optimal configuration
designed by EPOCA. However, a more general approach is to include the different
operational aspects of the photogrammetric project into the design of an optimal
imaging geometry. This requires to consider several aspects such as the robotic
system and computational costs, as well as their relationship with the main task of
accurate reconstruction. Stating the PND problem in multiobjective (MO) opti-
mization terms provides a general framework where all these aspects can be stud-
ied. Hence, extending the EPOCA system to include this framework allows for
a better characterization of the different tradeoffs involved in the overall perfor-
mance of an automated photogrammetric system.
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Fitness value

Cam 1 Cam 2 Cam 3 Cam 4

1 0.37 0.91 1 0.25 0.48 0 0.12 0.54 1 0.87 0.19

Figure 19.7. Modified genetic representation of an individual. The tree structure is extended to in-
corporate a “control bit” for each camera. In this example the third camera will be excluded since the
corresponding control bit is turned off.

19.6.1. Genetic representation

The original representation of the EPOCA system was modified to real value en-
coding in order to study the fine-grain compromises between different objectives.
In this way, for a network of n camera positions, the real-coded genotype utilized
is given by

�x ∈ R
2n where αi = x2i−1, βi = x2i for i = 1, . . . ,n. (19.22)

Furthermore, the principles presented in the structured genetic algorithm pro-
posed in [3] are incorporated in our approach in order to evaluate networks of
different sizes during the same evolution process (see Figure 19.7). Therefore, an
additional binary section of the form

�xb ∈ B
n, where xbi ∈ [0, 1] for i = 1, . . . ,n, (19.23)

is added to the genotype. The value of each bit xbi determines the inclusion of a
camera position into a network specification. Thus, our extended genotype is of
the form X = 〈�xb,�x〉.

19.6.2. Recombination and mutation

The crossover and mutation operators used for real-valued encoding are differ-
ent from those used for the binary representation. The simulated binary crossover
(SBX) emulates the working principle of the single point crossover operator on
binary strings. From two parent solutions P1 and P2, it creates two children C1 and
C2 as follows:

C1 = 0.5
[
(1 + β)P1 + (1− β)P2

]
C2 = 0.5

[
(1− β)P1 + (1 + β)P2

] with β =

⎧⎪⎪⎨⎪⎪⎩
(2u)1/(ηx+1) if u < 0.5,(

1
2(1− u)

)1/(ηx+1)

otherwise.

(19.24)
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The spread factor β depends on a random variable u ∈ [0, 1] and on a user-
defined nonnegative value ηx that characterizes the distribution of the children in
relation to their parents. The mutation operation modifies a parent P into a child
C using the boundary values P(LOW) and P(UP) of each of the decision variables in
the following manner:

C = P +
(
P(UP) − P(LOW))δ with δ =

⎧⎨⎩(2u)1/(ηm+1) − 1 if u < 0.5,

1− [2(1− u)]1/(ηm+1) otherwise.
(19.25)

19.6.3. Constraint handling

The integration of a robotic arm into the image acquisition system requires the
consideration of the kinematic restrictions of the manipulator since they can limit
the space of attainable camera positions. These restrictions are evaluated offline,
through a simulation environment that solves the inverse kinematic problem, and
stored in a database for online query.

19.6.4. Evaluation

The criterion based on the error propagation phenomena is used for evaluating
the precision of 3D measurements. The operational cost of robot displacement
is evaluated through a 3D instance of the traveling salesman problem. For camera
networks of small size an exhaustive search is carried out, while larger networks use
a greedy heuristic combined with a 2-opt algorithm. Furthermore, computational
cost is considered as a function of the number of cameras used for reconstruction.
In this case, the fitness of an individual depends on its Pareto ranking with respect
to the population. Accordingly, selection pressure will promote individuals which
offer an optimal tradeoff between objectives which are known as Pareto optimal
solutions.

19.6.5. Experimentation

Experimentation was carried out for the simulation of a complex three-dimension-
al object under observation by a manipulator robot. The goal was to obtain a pho-
togrammetric network that is optimal in terms of reconstruction accuracy and
manipulator motion (see Figure 19.8). It is reasonable to assume that the most ef-
ficient configuration, in terms of motion alone, will be one where the robot takes
images from virtually the same viewpoint. On the other hand, an optimal network
in terms only of precision will be one where a well-distributed set of viewpoints is
achieved. Using a population of N = 100 individuals, the evolutionary algorithm
was executed for a period of tmax = 100 generations. The crossover probability was
Px = 0.8 with a spread factor ηx = 2. The mutation probability was Pm = 0.012
with ηm = 2. The resulting set of optimal tradeoffs is illustrated in Figure 19.9.
The horizontal axis reflects the magnitude of the 3D reconstruction uncertainty.
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Evaluation values

Cam 1 Cam 2 Cam 3 Cam 4 Cam 5

1 0.61 0.23 1 0.49 0.72 1 0.96 0.35 0 0.84 0.02 1 0.17 0.6

Disabled

Genotype value decoding Deterministic tour planning

Determine camera position
Evaluate precision

Determine task specification
Evaluate operational cost

Figure 19.8. Genotype to phenotype transformation. A genotype representation that allows for up to
five cameras is depicted. Only four are expressed into the decoded camera network, from which a robot
tour is determined.

The vertical axis illustrates the total distance traveled by the manipulator. A single
point in this plot represents the function values corresponding to a given sensing
specification. The asymptotic behavior on both axes, as well as the convex shape
of the Pareto front, support the assumption that our sensor planning problem is
indeed multiobjective. These results provide an unbiased representation of the dif-
ferent options available for selecting a camera configuration in an automated envi-
ronment. Obviously, a selection must be made from this set of possible solutions.
However, such a decision is dependent on the needs of a particular application
and/or the individual preferences of the practitioner.

19.7. Conclusions

In this chapter we have presented a solution to the problem of configuring an op-
timal photogrammetric network with the goal of achieving highly accurate 3D
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Figure 19.9. Experimental results. The set of optimal tradeoff solutions is illustrated along with some
of their corresponding sensing specifications. Note the existence of networks with different sizes that
were obtained during a single execution.

measurements in terms of an optimization design. This chapter has been divided
into two main parts. The first was devoted to reviewing the bundle method and
an analytical error model from which a criterion was derived. Also, we have re-
viewed several constraints that need to be taken into account such as the optical
constraints and environmental constraints. The criterion we have chosen was the
average variance extracted from the covariance matrix of the object point coordi-
nates. This criterion was selected in order to simplify the stochastic optimization
process. The second part was devoted to our approach based on evolutionary com-
putation used to solve the PND problem in terms of a global optimization method
in order to minimize the criterion. Due to the occlusions of points, caused by the
different constraints, the problem presents discontinuities, which leads to combi-
natorial aspects in the optimization process. These constraints are logically incor-
porated into the evolutionary computation strategy. The strategy proposed in this
work provides the ability to adapt the PND to produce a suitable multistation con-
figuration for each new inspection task. The optimization search strategy consid-
ers the large number of competing considerations towards the optimal satisfaction
of all placement constraints until the best acceptable configuration is found. This
work has shown how evolutionary computation is able to design human com-
petitive photogrammetric networks. We believe that in the future the design of
photogrammetric networks will be based on this kind of optimization-based ap-
proach.
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20
Genetic algorithms and neural
networks for object detection

Mengjie Zhang

20.1. Introduction

As more and more images are captured in electronic form, the need for programs,
which can find objects of interest in a database of images, is increasing. For ex-
ample, it may be necessary to find all tumours in a database of X-ray images, all
cyclones in a database of satellite images, or a particular face in a database of pho-
tographs. The common characteristic of such problems can be phrased as “given
subimage1, subimage2, . . . , subimagen, which are examples of the objects of interest,
find all images which contain this object and the locations of all of the objects of
interest.” Examples of this kind include target detection problem [28, 67], where
the task is to find all tanks, trucks, or helicopters in an image. Unlike most of the
current work in the object recognition area, where the task is to detect only objects
of a single class [28, 54], the aim of the work presented in this chapter is to detect
multiple objects of a number of different classes in a database of large images.

The object recognition task, using traditional image processing and computer
vision methods [24, 77], usually involves the following stages: preprocessing, seg-
mentation, feature extraction, and classification. The main goal of preprocessing is
to remove noise or enhance edges. Segmentation aims to divide an image into co-
herent regions. Feature extraction is concerned with finding transformations to
map patterns to lower-dimensional spaces for pattern representation and to en-
hance class separability. The output of feature extraction, which is often a vector
of feature values, is then passed to the classification step. Using these vectors, the
classifier determines the distinguishing features of each object class such that new
vectors are placed in the correct class. To obtain good performance, a number of
“important” specific features need to be manually determined (selected and ex-
tracted) and the classifier has to be chosen for the specific domain. If some objects
are lost in one of the early stages, it is very difficult or impossible to recover them
in the later stage. In contrast, this chapter focuses on the development of a domain
independent method without preprocessing and segmentation for multiple class
object detection in a single pass.
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In recent years, neural networks and genetic algorithms have attracted atten-
tion as very promising methods of solving automatic target recognition and de-
tection problems [13, 31, 56, 64]. A wide variety of problem domains have been
shown to be amenable to being treated with these learning and adaptive techniques
due to the enormous flexibility of the representation afforded. In terms of input
patterns for the neural networks for object detection and recognition, two main
approaches have previously been used—feature based and pixel based. In feature-
based approach, various features such as brightness, colour, size, and perimeter are
extracted from the sub-images of the objects of interest and used as inputs [15, 52].
These features are usually different and specific for different problem domains. In
pixel-based approach [56, 33], the pixel values are used directly as inputs. To avoid
the disadvantages of hand-crafting feature extraction programs, the approach de-
scribed in this chapter uses raw pixel data.

The overall goal of this paper is to determine whether domain independent
object detection systems, which use raw pixel data and neural and genetic learning,
can be built. We require that the systems find objects of different types in one pass.
Furthermore, we would like to characterise the kinds of problems for which such
systems are likely to be successful. In particular, we will examine the following
approaches.

(i) Train a feedforward neural network on cutouts of the objects of interest
and use the trained network as template for sweeping the large images
to detect the objects of interest. We refer to this as the basic approach
[BP-train].

(ii) Use a two-phase process in which the first phase is to train the network
on the cutouts, using the backpropagation algorithm as in the BP-train,
and the second phase is to refine the trained network with a genetic al-
gorithm that uses a fitness function based on detection rate and false
alarm rate [BP-train + GA-refine].

The remainder of this paper gives a brief literature survey, then describes the
three image databases used here. After describing the basic BP-train approach
for object detection, we describe how to use a genetic algorithm GA-refine to
refine the networks trained by BP-train. Finally, we analyse the results and draw
our conclusions.

20.2. Background

20.2.1. Object detection versus object classification

The term object classification here refers to the task of discriminating between im-
ages of different kinds of objects. Each image contains only one of the objects of
interest. The term object detection here refers to the detection of small objects in
large images. This includes both object classification, as described above, and object
localisation, which gives the positions of all objects of interest in the large images.
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Number of images: 10
Number of classes: 4

Input field size: 14× 14
Number of objects: 240
Image size: 700× 700

Easy (circles and squares)

(a)

Number of images: 20
Number of classes: 5

Input field size: 24× 24
Number of objects: 200
Image size: 640× 480

Medium difficulty (coins)

(b)

Number of images: 20
Number of classes: 5

Input field size: 16× 16
Number of objects: 164
Image size: 1024× 1024

Very difficult (retinas)

(c)

Figure 20.1. Object detection problems of increasing difficulty.

20.2.2. Multiclass object detection

In automatic object detection systems, in most cases, all the objects of interest
are considered as one class of interest [56, 45]. These systems generally focus on
finding the locations of the objects of interest, and all other locations are consid-
ered nonobject or the background. In contrast, the multiple class detection problem
refers to the case where there is more than one class of objects and both their
classes and locations must be determined. In general, multiclass object detection
problems are much harder than single class detection problems, and multiclass de-
tection using a single trained program, such as a neural network, is an even more
difficult problem.

20.2.3. Performance evaluation

Performance in object detection is measured by detection rate (DR) and false
alarm rate (FAR). The detection rate is the number of objects correctly reported as
a percentage of the total number of real objects, and false alarm rate is the num-
ber of objects incorrectly reported as a percentage of the total number of real ob-
jects. For example, there are 18 grey squares in Figure 20.1(a). A detection sys-
tem looking for grey squares may report that there are 25. If 9 of these are cor-
rect, the detection rate will be (9/18) ∗ 100 = 50%. The false alarm rate will be
(16/18)∗ 100 = 88.9%.

It is important to note that detecting objects in images with very cluttered
backgrounds is an extremely difficult problem and that false detection rates of
200–2000% are common [54, 56]. Also note that most work which has been done
in this area so far only presents the results of the classification stage and assumes
that all other stages have been properly done. However, the results presented in this
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chapter are the performance for the whole detection problem (both localisation
and classification) in a single pass.

20.2.4. Neural networks related work to object classification/detection

Since the late 1980s, the use of neural networks in object classification and de-
tection has been investigated in a variety of application domains. These domains
include military applications, human face recognition, agricultural product classi-
fication, handwritten character recognition, and medical image analysis. The types
of the neural networks used include multilayer feedforward networks [55], self or-
ganising maps [37], higher order networks [29], and ART networks [14].

A summary of neural networks for object classification is given in Table 20.1
according to the kinds of the networks, application domains or problems, and
the first authors. Most of these systems are feature-based. In that specific image,
features are used as inputs to neural networks.

A summary of neural networks for object detection is presented in Table 20.2.
Typically, they belong to the one-class object detection problems, where the objects
in a single class in large images need to be detected. Very few work in multiple class
object detection based on a single network or in one stage has not been reported so
far.

In this chapter, we will investigate pixel-based neural network approaches for
multiclass object detection problems.

20.2.5. Related work of genetic algorithms for evolving neural networks

In addition to the backpropagation algorithm, genetic algorithms can be also used
to train (evolve) neural networks. Related work in this area can be grouped into
three approaches.

Evolving weights in fixed networks [38, 69]. In this approach, the neural net-
work architecture and learning parameters are predefined. The genetic algorithm
is used to train the given network by evolving the weights and biases. In the genetic
algorithm, the network weights and biases are encoded into a chromosome. Each
chromosome is an individual member of a population, and a population often has
several hundred chromosomes. During the evolutionary process, the genetic op-
erators of selection, crossover, and mutation are applied to these individuals. After
each generation of the process, the chromosomes are applied to the network, that
is, the weights and biases are set from the values which the chromosomes repre-
sent. Some accuracy or error measures on the training patterns are then computed
and used as the fitness for the genetic algorithm.

Evolving network architectures [49, 76]. In this approach, genetic algorithms
are used to evolve not only the network weights and biases, but also the network
architecture or topology. References [74, 75] present overviews and classifications
of the research in the area of evolutionary design of neural network architectures.

Evolving other factors in neural networks. This includes evolving learning pa-
rameters [9], learning rules [26], delta values [39], and input features [12].
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Table 20.1. Neural networks for object classification.

Kind of network Applications/problems Authors Source

Feedforward

networks

Classification of mammograms Verma [66]

target recognition with sonar
Barshan et al. [8]

Ayrulu and Barshan [5]

Classification of missiles,
Howard et al. [32]

planes, and helicopters

Maneuver target recognition Wong and Sundareshan [73]

Classification of tanks and
Troxel et al. [62]

trucks on laser radar images

Underwater target classification Azimi-Sadjadi et al. [6]

Mine and mine-like
Miao et al. [48]

target detection

Handwritten character recognition Verma [65]

Agricultural product recognition Winter et al. [70, 71]

Multispectral remote sensing
Lee and Landgrebe [43]

data classification

Natural object classification Singh et al. [57]

Helicopter classification Stahl and Schoppmann [60]

Shared weight

neural networks

Handwritten optical
Soulie et al. [58]

character recognition

Zip code recognition LeCun et al. [40, 42]

Digit recognition de Ridder et al. [18, 19]

Lung nodule detection
Lo et al. [47]

microcalcification classification

Autoassociative
Face recognition

Abdi [1, 63]

memory networks Valentin et al. [64]

ART networks
Vehicle recognition Bernardon and Carrick [10]

Tank recognition Fogler et al. [51]

Serf-organising

maps
Handwritten word Wessels and Omlin [68]

recognition Dehghan et al. [20]

Probability Cloud classification Tian et al. [61]

neural networks Radar target detection Kim and Arozullah [35, 36]

Gaussian basis 3D hand gesture
Ahmad and Tresp [3]

function networks recognition

Neocognitron Bend point and
Fukushima et al. [27]

networks end point recognition

High-order

neural networks

2D and 3D helicopter
Spirkovska and Reid [59]

(F18) recognition

Apple sorting (classification) Hecht-Nielsen [31]

Recognition of bars, triangles, and squares Cross and Wilson [17]

Hybrid/multiple

neural networks

River identification (classification) Liu et al. [46]

Classification of hot and
Casasent and Neiberg [15]

cold objects

Handwritten character recognition LeCun et al. [41]

Review Egmont-Petersen et al. [22]
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Table 20.2. Object detection based on neural networks.

Kind of Network Applications/problems Authors Source

Feedforward Target detection in
Shirvaikar and Trivedi [56]

neural networks thermal infrared images

Shared weight
Vehicle detection

Khabou et al. [34]

neural networks Won et al. [72]

Probabilitistic
Face detection and

recognition
Lin [44]decision-based

neural networks

Other hybrid/
multiple neural
networks

Aircraft detection and recognition Waxman et al. [67]

Vehicle detection Bosch et al. [11]

Face detection
Féraud et al. [25]

El-Bakry et al. [23]

Triangle detection Ahmad and Omohundro [2]

Detection/extraction of
Roth [53]

weak targets for radars

Review of target detection Rogers et al. [50]

Review of target recognition Roth [54]

The major advantage of these approaches is that the local minima problem,
in which gradient descent algorithms often result, can be avoided. The networks
evolved by genetic algorithms presented in the literature are relatively small and
the process runs quite well. For the object detection problems investigated in this
paper, however, the networks are very large due to the use of pixels as inputs. We
will investigate whether genetic algorithms can be used to refine large networks for
multiclass object detection problems.

20.3. Image data sets

One of our goals is to characterise the kinds of image detection problems for which
our techniques are likely to be successful. To this end, we have investigated three
object detection problems of increasing difficulty. Example images and key char-
acteristics are given in Figure 20.1.

The first data set consists of several synthetic images (the easy images), which
were generated to give well-defined objects against a uniform background. The
pixels of the objects were generated by using a Gaussian generator based on the
normal distribution [4] with different means and variances for different classes.
All the objects in each class have the same size but are located at different positions.

There are three classes of objects of interest in this database: black circles
(class1), grey squares (class2), and white circles (class3) against a uniform grey
background (class other). The three kinds of objects were generated with differ-
ent intensities. 10 and 5, 180 and 25, 230 and 20, and 140 and 0 were taken as the
mean and standard deviation for class1, class2, class3, and other, respectively.
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The second data set (the coin images) was intended to be somewhat harder
than the easy images and were taken with a CCD camera over a number of days
with relatively similar illumination. In these images, the background varies slightly
in different areas of the image and between the images. The brightness of objects
also varies in a similar way. The objects to be detected are more complex than those
in the easy images, but still regular. All the objects in each class have a similar size.
They are located at arbitrary positions and with different rotations.

Each of the images contains four object classes of interest, that is, the head
side of 5 cent coins (class head005), the head side of 20 cent coins (class head020),
the tail side of 5 cent coins (class tail005), and the tail side of 20 cent coins (class
tail020). The background (class other) is relatively uniform, not totally uniform,
because of the different lighting conditions and camera positions.

The retina images (data set 3) were taken by a professional photographer with
a special apparatus at a clinic. Compared with the previous two data sets and other
data set used in automatic target detection problems such as the recognition of
regular manmade small objects, the detection problems in this database are very
difficult. The images contain very irregular and complex objects of varying sizes,
in several classes against a highly cluttered background.

There are two object classes of interest: haemorrhages (class haem) and mi-
croaneurisms (class micro). To give a clearer view of representative samples of the
target objects in the retina images, one sample piece of these images is presented in
Figure 20.2. In this figure, haemorrhage and microaneurism examples are labeled
using white surrounding squares.

These objects are not only located in different places, but the sizes of the ob-
jects in each class are different as well, particularly for the haemorrhages. In addi-
tion, there are also other objects of different classes such as veins (class vein) with
different shapes and the retina “edges” (class edge). The backgrounds (class other)
are varied: some parts are quite black, some parts are very bright, and some parts
are highly cluttered.

20.3.1. Training and testing subsets

To avoid confusion, we define a number of terms related to the image data. A set of
entire images in a database constitutes an image data set for a particular problem
domain. In this paper, it is randomly split into two parts: a detection training set,
which is used to learn a detector, and a detection test set, which is used for mea-
suring object detection performance. Cutouts refer to subimages which are cut out
from a detection training set. Some of these subimages contain examples of the
objects of interest and some contain background. These cutouts form a classifi-
cation data set, which is randomly split into two parts: a classification training set
used for network training, and a classification test set for network testing in object
classification. The classification test set is also used to tune the trained network for
object detection to avoid overfitting. An input field refers to a square in the large
images. This is used as a moving window for the network sweeping (detection)
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Figure 20.2. An enlarged view of one piece of the retina images.

Classification training set

Image data set

Detection training set Detection test set

Label objects
Generate cutouts

Classification data set

Classification test set

BP-train
Network detection

Network testing Trained network Detection results

Performance evaluation

Object detection

Figure 20.3. An overview of the basic approach (BP-train).

process. The size of the input field is the same as that of the cutouts for network
training.

20.4. Basic approach (BP-train)

An overview of the basic approach (BP-train) is presented in Figure 20.3. It con-
sists of the following main steps.

(1) Assemble a data set of images in which the locations and classes of all the
objects of interest are manually determined. Divide these entire images
into two sets: a detection training set and a detection test set.
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(2) Determine an appropriate size (n) of a square which will cover all single
objects of interest and form the input field of the network.

(3) Manually label the target objects (their centres and classes). Generate
a classification data set by cutting out squares of size n × n from the
detection training set. Include examples which are centred on the objects
of interest and examples of background.

(4) If rotation invariance is required, generate new rotated examples from
the cutouts. Randomly split the cutouts into a classification training set
and a classification test set.

(5) Determine the network architecture. A three layer feed forward neural
network is used in this approach. The n× n pixel values form the inputs
of a training pattern and the classification is the output. The number of
hidden nodes is empirically determined.

(6) Train the network by the backward error propagation algorithm on the
classification training data. Test on the classification test set to measure
the object classification performance.

(7) Use the trained network as a moving window template [7] to detect the
objects of interest in the detection test set. If the output of the network
for a class exceeds the threshold, then report an object of that type at the
current location.

(8) Using search, find a threshold which results in all objects in the detection
test set, being found with the smallest false alarm rate.

(9) Evaluate the object detection performance of the network by comparing
the classes and locations detected with the known classes and locations
in the detection test set and calculating the detection rate and the false
alarm rate.

20.4.1. Object classification—network training and testing

We use the backward error propagation algorithm [55] with online learning and
the fan-in factor [40, 18] to train the networks. In online learning (also called the
stochastic gradient procedure), weight changes are applied to the network after
each training pattern. The fan-in is the number of elements that either excites or
inhibits a given node of the network. The weights are divided by the number of
inputs of the node to which the connection belongs before network training, and
the size of the weight change of a node is updated in a similar way.

The training is terminated when the classification accuracy in the classifica-
tion training set reaches a predefined percentage. When training is terminated,
the trained network weights and biases are saved for the use in network testing or
subsequent resumption of training.

The trained network is then applied to the classification test set. If the test per-
formance is reasonable, then the trained network is ready to be used for object de-
tection. Otherwise, the network architecture and/or the learning parameters need
to be changed and the network retrained, either from the beginning or from a pre-
viously saved, partially trained network. During network training and testing, the
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Figure 20.4. Sample object sweeping maps in object detection.

classification is regarded as correct if the output node with the largest activation
value corresponds to the desired class of a pattern.

20.4.2. Object detection

After network training is successfully done, the trained network is used to detect
the classes and locations of the objects of interest in the detection test set, which
is not used in any way for network training. Classification and localisation are
performed by the procedures: network sweeping, finding object centres, and object
matching.

20.4.2.1. Network sweeping

During network sweeping, the trained neural network is used as a template
matcher and is applied, in a moving window fashion, over the large images to
detect the objects of interest. The template is swept across and down these large
images, pixel by pixel in every possible location.

After the sweeping is finished, an object sweeping map for each object class
of interest will be produced. An object sweeping map contains the outputs of the
network for each pixel position in the large image and can be visualised as a grey
level image. Sample object sweeping maps for class1, class2, and class3 together
with the original image for the easy detection problem are shown in Figure 20.4.

During the sweeping process, if there is no match between a square in a de-
tecting image and the template, then the neural network output is 0, which corre-
sponds to black in the sweeping maps; partial match corresponds to grey on the
centre of the object, and best match is close to white. The object sweeping map can
be used to get a qualitative indication of how accurate the detection step is likely to
be. Figure 20.4 reveals that class1 and class3 objects will be detected very accurately
but there will probably be errors in class2.

20.4.2.2. Finding object centres

Since we use the cutouts centred on the target objects as training examples, we
expect that the trained network will give the largest activation output value for the
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For each object sweeping map:
(1) set a threshold for the class;
(2) set all of the values in the sweeping map to zero

if they are less than the threshold;
(3) search for the largest value, save the corresponding

position (x, y), and label this position as an object centre;
(4) set all values in the square input field of the labeled

centre (x, y) to zero;
(5) repeat steps (3) and (4) until all values in the object

sweeping map are zero.

Algorithm 20.1

target class of an object to be detected when the sweeping window associated with
the trained network is centred on the object. Otherwise, the trained network with
the sweeping window would result in false alarms or missing objects.

Based on this expectation, we developed a centre-finding algorithm to find the
centres of all objects detected by the trained network. For each class of interest, this
algorithm is used to find the centres of the objects based on the corresponding ob-
ject sweeping map. The centre-finding algorithm is presented in Algorithm 20.1.

20.4.2.3. Choice of thresholds

During the object detection process, various thresholds result in different detec-
tion results. The higher the threshold, the fewer the objects that can be detected
by the trained network, which results in a lower-detection rate, but also a lower
false alarm rate. Similarly, the lower the threshold selected, the higher the detec-
tion rate and also the higher the false alarm rate. Thus there is a trade-off between
the detection rate and the corresponding false alarm rate. Ideally, there will be a
threshold, will give 100% detection with 0% false alarms. If such a threshold can-
not be found, we use the one that gives the highest detection rate with fewest false
alarms as the best detection result. The thresholds were found by an exhaustive
search.

20.4.2.4. Object matching

Object matching compares all the object centres reported by the centre-finding
algorithm with all the desired known object centres and reports the number of
objects correctly detected. Here, we allow location error of tolerance pixels in the x
and y directions. Clearly, the use of a large value for tolerance will result in better
detection rate and false alarm rate, but this will lead to the fact that the detected
object centres are allowed very far from the true centres of the target objects. Ac-
cordingly, to keep a balance between the two aspects, we choose a value of 4 for
tolerance in this approach. For example, if the coordinates of a known object are
21, 19 and the coordinates of a detected object are 22, 21, we consider that the
object has been correctly located.
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Table 20.3. Classification results of network training on cutouts, 15 runs.

Easy Coins Retinas

Size of input field 14 24 16

Training set size 60 100 100

Test set size 180 100 61

No. of input nodes 196 576 256

No. of output nodes 4 5 5

No. of hidden nodes 4 3 4

Learning rate 0.5 0.5 1.5

Momentum 0 0 0

Training epochs 199 234 475

Training accuracy (%) 100 100 75

Test accuracy (%) 100 100 71

20.4.3. Results

We first give the results for the network training on the cutouts and then for the
object detection performance.

20.4.3.1. Object classification results

The results for network training on the cutouts are shown in Table 20.3. From the
table, it can be seen that there is a large variation in the number of epochs of train-
ing needed and that the number of epochs increases with increasing complexity of
the objects, as would be expected. The number of hidden nodes was determined
empirically by finding the smallest number which gave successful training, how-
ever, the performance was quite robust for up to 10 hidden nodes. Also, the easy
and coin objects can be classified without error but not so for the retina objects.
For the easy and coin objects, training was terminated when all of the training ex-
amples were correctly classified. For the retina objects, this could not be achieved
and training was terminated when 75% of the training examples were correctly
classified.

20.4.3.2. Object detection results

This section describes the detection performance of the basic approach on the
three detection problems. The 15 networks from the runs described in the previous
section were used in the object detection step of the methodology. The results are
shown in Table 20.4. These are averages over 15 training and detection runs.

On the easy images, the basic approach always achieved a 100% detection rate
and a corresponding zero false alarm rate for class1 (black circles) and class3 (white
circles). However, this could not be achieved for class2 (grey squares). Even if a
neural network achieved a 100% detection rate under a certain threshold, 91.2%
false alarm rate was also produced.
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Table 20.4. Average detection results (DR and FAR) on detection test set over 15 runs.

Easy Coins Retinas

Size of input field 14 24 16

Network architecture 196-4-4 576-3-5 256-5-4

DR for class1 (%) (black circles) 100 (head005) 100 (haem) 74

FAR for class1 (%) 0 0 2859

DR for class2 (%) (grey squares) 100 (tail005) 100 (micro) 100

FAR for class2 (%) 91.2 0 10104

DR for class3 (%) (white circles) 100 (head020) 100 —

FAR for class3 (%) 0 182 —

DR for class4 (%) — (tail020) 100 —

FAR for class4 (%) — 37.5 —

On the coin images, in each run, it was always possible to find a threshold for
the network output for classes head005 and tail005, which resulted in detecting
all of the objects of these classes with no false alarms. However, detecting classes
head020 and tail020 was a relatively difficult problem with this method. Although
all the objects in these two classes were correctly detected (100% detection rate),
the neural networks produced some false alarms. The average false alarm rates for
the two classes at a 100% detection rate were 182% and 37.5%, respectively.

Compared with the performance of the easy and coin images, the results on
the very difficult retina images are disappointing. The best detection rate for class
haem was 73.91% with a corresponding false alarm rate of 2859%. Even at a de-
tection rate of 50%, the false alarm rate was still quite high (about 1800%). All the
objects of class micro were correctly detected (a detection rate of 100%) but with a
false alarm rate of 10104%. By adjusting the thresholds, the false alarm rate could
be reduced, but only at the cost of a decrease in the detection rate.

20.4.4. Discussion

The experimental results showed that this approach performed very well for de-
tecting a number of simple and regular objects against a relatively uniform back-
ground such as detecting black circles and white circles in the easy images. It per-
formed poorly on the detection of class haem and class micro objects in the retina
images. As expected, the performance degrades when the approach is applied to
detection problems of increasing difficulty.

In the basic approach, the network is trained on the cutouts of the objects
and the trained network was directly applied to the entire images in the detection
test set. The remainder of this chapter will use a genetic algorithm to refine the
trained networks over full images in the detection training set, then apply the re-
fined networks on full images in the detection test set to measure object detection
performance. We expect that the genetic algorithm can refine the trained networks
which improve the false alarm rates at the same best detection rate as in the basic
approach.
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Figure 20.5. An overview of the two-phase approach.

20.5. Genetic algorithms for network refinement

This section introduces a genetic algorithm to refine the trained networks for ob-
ject detection [78, 79]. The network training step in the basic approach was com-
bined with the genetic algorithm to form a two-phase approach. An overview of
the two-phase approach is shown in Figure 20.5.

In the first phase, the network is trained on the cutouts for object classifica-
tion, using the backward error propagation algorithm to maximise the classifica-
tion accuracy on the cutouts in the classification training set. In the second phase,
the weights of the trained network are refined using a genetic algorithm, which
uses a fitness function which maximises detection performance on the entire im-
ages in the detection training set.

This two-phase approach results in a new object detection method: network
training by the backward error propagation algorithm in the basic approach fol-
lowed by network refinement by the refined genetic algorithm (BP-train + GA-
refine). BP-train has been described in the previous section and the rest of this
section describes the GA-refine algorithm.

As discussed in Section 20.2.5, there are many difference approaches to the
use of genetic algorithms for training neural networks. In this approach, as the
network has been trained by the backpropagation algorithm as described in the
previous section, the network architecture has already fixed. The goal of the GA-
refine algorithm is to refine the weights in the trained network in order to reduce
the false alarm rate in object detection, and the genetic algorithms for learning net-
work architectures will not be considered here. On the other hand, the 2DELTA-
GANN algorithm [39, 16] has been proved very successful in learning weights
for very small feedforward neural networks such as the xor and the 424 encoder
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if (x1 == 1) then
if (x2 == 1 and x3 == 1) then

delta2 = delta2 ∗ 2;
else

delta2 = delta2/2;
endif
delta1 = delta1 + delta2;

endif
weight = weight + delta1;

end

Algorithm 20.2. Weight-updating mechanism in the genetic algorithm.

networks. In this chapter, we use this genetic algorithm as our GA-refine algo-
rithm to investigate whether it can be applied to our large networks and lead to
better object detection performance. Unless otherwise specified, a bias in the net-
work is treated as just another weight.

20.5.1. Gene structure and weight update algorithm

Rather than encoding all the weights of a neural network themselves into the chro-
mosomes directly, this approach only encodes the prospective change (deltas) of a
weight into a gene and uses three rule bits in the gene for the use of genetic op-
erators and for updating these weight changes. A gene in the GA-train algorithm
corresponds to a single weight in the network (but not the weight itself) and is a
composite structure.

(i) There are three rule bits called x1, x2, and x3.
(ii) There are two floating-point values called delta1 and delta2.

With this gene structure, the number of rule bits in each chromosome, which
corresponds to a single network, will be three times the number of weights in the
network. The number of the floating point values, which represents the deltas as-
sociated with each chromosome, is twice the number of the weights. Note that
the weights of the network are not a part of the chromosome, whose genes repre-
sent a method of changing the weights of the network in the way specified by the
weight-updating rule.

As shown in Algorithm 20.2, the x1, x2, and x3 values specify a heuristic rule
to apply to delta2. Delta1 will then be modified by delta2, and this will in turn
be applied to the weight associated with the gene. The interpretation of the rule
bits and the mechanism of updating weights is presented in Algorithm 20.2. For
example, if x1, x2, and x3 are all 1, then delta2 is doubled, the new value of delta2
is then added to delta1, and the new weight is calculated by adding the new value
of delta1 to the original weight.

The changing mechanism allows for a weight to be changed by a delta1 value,
which in turn is modified by the delta2 value. The rate of change of the weight and
delta1 (the gradient) is changeable due to the delta2 value. This is used to provide
a heuristic “second order” changing mechanism to the weight modification rule.
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Figure 20.6. Sample genes and chromosomes associated with a network for the simple object detec-
tion problem in the easy image in the genetic algorithm.

20.5.2. Sample networks with chromosomes

Figure 20.6 shows a network architecture of 196-3-4 for the easy images with sam-
ple chromosomes and genes for weight changes. In this figure, there are two chro-
mosomes corresponding to two evolved networks. The weights are labeled as
w1,w2, . . . . As mentioned earlier, the network architecture and the actual weights
are not encoded in the genetic algorithm but saved outside. Supposing the orig-
inal values of w1 and w2 are 0.34 and −0.49, we explain how the mechanism of
updating weights is applied and the new weights calculated.

For w1 in network1, x1 = 1, x2 = 1, x3 = 0, delta1 = 0.13 and delta2 = 0.02.
According to the weight-changing mechanism, the value of the delta2 should be
halved and the new value of delta2 becomes 0.02/2 = 0.01. Then, this value is
added to delta1 and the new value of delta1 becomes 0.13 + 0.01 = 0.14. The new
value of w1 is accordingly updated to 0.34 + 0.14 = 0.48. Similarly, since x1 =
x2 = x3 = 1 in the gene of w2, the new values for delta2, delta1, and the actual
weight for w2 are delta2 = delta2∗ 2 = 0.05∗ 2 = 0.10, delta1 = delta1 + delta2 =
0.35 + 0.10 = 0.45, and w2 = w2 + delta1 = (−0.49) + 0.45 = −0.04.

For w1 in network2, since x1 = 0, delta1 and delta2 will remain unchanged,
and the new value of w1 becomes w1 = w1 + delta1 = 0.34 + 0.42 = 0.76.

20.5.3. Genetic operators

The commonly used biased roulette wheel mechanism [30] is used for parent se-
lection. The crossover operator is based on parameterised uniform crossover [21].



Mengjie Zhang 431
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x1 x2 x3 Delta1 Delta2

0 1 1 0.12 −0.04

1 0 0 −0.08 0.32

x1 x2 x3 Delta1 Delta2

0 0 1 0.32

1 1 0 0.12 −0.04

Figure 20.7. Crossover in the GA-train algorithm.

Original chromosome Chromosome after

x1 x2 x3 Delta1 Delta2

0 1 1 0.12 −0.04

x1 x2 x3 Delta1 Delta2

0 0 1 −0.21 0.16

Figure 20.8. Mutation in the GA-train algorithm.

Crossover is applied to both the rule bits of the chromosome and the deltas. If
there is an exchange of any of the rule bits during crossover, the delta1 and delta2
values are exchanged between the parent chromosomes. Notice that this crossover
requires the two real values for the deltas exchanged completely/simultaneously
when the rule bit part is changed, which is different from that in the real-valued
genetic algorithm. This is mainly because the three bits and the two real values
form a single gene in a chromosome, representing the change of a single weight in
a neural network. In addition, the two real-valued deltas in each gene are depen-
dent of each other, which is shown in the weight updating rule. Figure 20.7 shows
an example of the crossover operator in the genetic algorithm.

The mutation operator is based on the standard single bit mutation. If any bit
on a gene is mutated, the delta1 and delta2 values for that gene will be replaced with
randomly generated values in order to maintain a sufficiently diverse population
of chromosomes. Figure 20.8 shows an example of the mutation operator in the
genetic algorithm.

20.5.4. Fitness function

In this genetic algorithm, a chromosome corresponds to a neural network. The
weights of the network are initialised with the trained weights obtained in the first
phase instead of being randomly generated.

In network refinement process, the fitness of a chromosome is calculated as
follows.

(1) Realise the network from the weights and the weight changes encoded
in the chromosome.

(2) Apply the network as a moving n × n window template across the en-
tire images in the detection training set to locate the object of interest.
This is identical to the corresponding detection procedure used in the
basic approach except that this is now performed as part of the training
procedure.
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(3) Compare the detected object centres with known locations of the desired
objects, obtain the number of objects correctly and incorrectly detected
by the network, and determine the overall detection rate and false alarm
rate of this network.

(4) Compute the fitness according to

fitness (FAR, DR) = FAR/(FAR + DR) +Wd ∗ (1−DR), (20.1)

where DR and FAR represent the detection rate and the false alarm rate
of the network, and Wd is a constant which reflects the relative impor-
tance of the false alarm rate and the detection rate. When Wd is close to
zero, the influence of false alarm rate increases; when the Wd is getting
bigger, the influence of detection rate will become larger.

Under this design, the smaller the fitness, the better the detection perfor-
mance. The best case is zero fitness when the detection rates for all classes are
100% and the false alarm rates are zero, that is, all the objects of interest are cor-
rectly detected by the network without any false alarms.

20.5.5. Results

The GA parameters and the detection results at the best detection rate were
achieved for BP-train + GA-refine in Table 20.5. The parameter values were
carefully selected through empirical search via trial experiments. The evolution-
ary process for network refinement was terminated when either the problem was
solved or the number of generations reached 50.

It is evident from Tables 20.4 and 20.5 that the refinement genetic algorithm
GA-refine significantly improved the object detection performance on all the
three data sets. For the easy and coin image data sets, the two-phase approach
BP-train + GA-refine successfully detected all the objects of interest in all
classes without any false alarms. For the very difficult retina image data set, the
best detection and false alarm rates were also greatly improved for both the haem
and micro classes, although an ideal performance was not achieved.

To give a clearer view of the comparison of the two-phase method over the
basic approach, we present the extended ROC curves of detecting the heads and
tails of 20 cent coins and detecting the haemorrhages and microaneurisms in the
retina images in Figure 20.9.

As can be seen from Figure 20.9, at all levels of detection rate, the BP-train +
GA-refine always achieved a smaller false alarm rate than the BP-train method.
In particular, the BP-train + GA-refine method did not produce any false
alarms for classes head020 and tail020 at all levels of detection rate (achieved per-
fect performance). For class haem, the two-phase method not only improved the
false alarm rates at all levels of detection rates over the basic method, but also
achieved better detection rate. For class micro, the new two-phase method signifi-
cantly reduced the false alarm rates at different detection rates. These experimental
results show the refinement genetic algorithm always resulted in better detection
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Table 20.5. GA parameter values and the average detection results (DR and FAR) using BP-train +
GA-refine on detection test set over 15 runs.

Easy Coins Retinas

Size of input field 14 24 16

Network architecture 196-4-4 576-3-5 256-5-4

Population size 200 200 500

Crossover rate 95% 95% 90%

Mutation rate 5% 5% 10%

Max generations 50 50 50

Delta1 range ±0.08 ±0.04 ±0.02

Delta2 range ±0.05 ±0.02 ±0.005

Wd 0.4 1.5 0.67

DR for class1 (%) (black circles) 100 (head005) 100 (haem) 82

FAR for class1 (%) 0 0 2156

DR for class2 (%) (grey squares) 100 (tail005) 100 (micro) 100

FAR for class2 (%) 0 0 2706

DR for class3 (%) (white circles) 100 (head020) 100 —

FAR for class3 (%) 0 0 —

DR for class4 (%) — (tail020) 100 —

FAR for class4 (%) — 0 —

performance than the corresponding methods without the refinement in all three
data sets.

20.5.6. Discussion

To achieve the goal of domain independence, we used the raw pixel values directly
as inputs to neural networks. However, this led to large networks and longer train-
ing times. One issue that remains is whether all pixel values are needed or whether
pixel statistics or pixel level domain-independent image features such as the means
and standard deviations of some local regions or edges in the image cutouts could
be used to achieve similar accuracy with smaller networks. We have used such
kind of features shown in Figure 20.10. An investigation, which used the same al-
gorithms but with some features based on pixel statistics instead of pixel values,
found that the false alarm rates were higher while the same detection rates could
be achieved.

20.6. Conclusions

The goal of this chapter was to develop and evaluate a domain independent ap-
proach to multiple class object detection problems and to characterise the kinds of
problems for which it is likely to be successful. The goal was successfully achieved
by developing a method based on training a neural network classifier on cutouts
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Figure 20.9. Extended ROC curves for (a) class head020, (b) class tail020, (c) class haem, and (d) class
micro.

of the objects of interest and then refining the network weights using a genetic al-
gorithm with fitness based on maximising the detection rate and minimising the
false alarm rate. The results show that the technique is likely to be successful if (1)
the objects are on a relatively uncluttered background, (2) the objects in each class
are roughly the same size, and (3) the objects are regular but can have complex
internal details.
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F1 F2 Big square A1-B1-C1-D1
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F7 F8 Upper right square E1-O-H1-B1
F9 F10 Lower left square G1-O-F1-D1

F11 F12 Lower right square O-H1-C1-F1
F13 F14 Central row of the big square G1-H1
F15 F16 Central column of the big square E1-F1
F17 F18 Central row of the small square G2-H2
F19 F20 Central column of the small square E2-F2

Figure 20.10. Features based on local image region intensities (sd: standard deviation).

Domain independence has been achieved by using raw pixel values as inputs
to the network and thus avoiding the problems of hand-crafting feature selection
programs. Rotation invariance is achieved by having the objects in the training
images at random orientations and/or by rotating the cutouts prior to network
training. Also, the method finds objects of different classes in a single pass, unlike
most current work in this area which use different programs in multiple indepen-
dent stages to achieve localisation and classification.

There are two negative aspects of the method—there are a number of new
parameters whose values must be determined by the user, and the run times for
the genetic algorithms can be quite long, although this could be ameliorated by
the use of parallel hardware.

The method achieved a 100% detection rate and a 0% false alarm rate for sim-
ple object detection against a uniform background in the easy images and medium
complexity object detection against a relatively uniform background in the coin
images. However, on a very difficult problem involving retinal pathologies on a
highly cluttered background, the detection performance was disappointing. How-
ever, it was competitive with alternative techniques such as different types of neural
networks and some statistical methods on similar problems.

The two-phase method with the backpropagation algorithm for network
training on the cutouts and the genetic algorithm for network weight refinement
always achieved significantly better performance, suggesting that the genetic algo-
rithm can successfully refine neural networks for object detection problems.
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For future work, we will investigate alternative fitness functions for the re-
finement genetic algorithm and examine this approach on other data sets such as
detecting small objects in satellite images.
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An evolutionary approach for
designing multitarget tracking
video systems

Jesús Garćıa, Óscar Pérez, Antonio Berlanga,
and José M. Molina

21.1. Introduction

A video surveillance system is usually made up of several blocks that carry out in-
terrelated processes at different levels: characterization of background, detection
of moving pixels, grouping moving pixels (blobs), association of blobs to real tar-
gets, tracks parameters estimation, and so forth [16]. Thus, each of these blocks
has a set of adjustable parameters that regulate the different processes performing
machine-vision tasks, and as a result of this, each one of them rules the perfor-
mance of part of a particular block.

A new generation of surveillance systems has developed new technologies
based on the acquisition and analysis in real time of digital images. Digital tech-
nology has not changed the essence of the surveillance and tracking operations but
has extended the reliability and the wide range of possibilities to analyse the infor-
mation. Moreover, such technologies are in an experimental stage and so, many
proposals are being suggested in different surveillance applications [15, 17, 23].

In our case, we have the challenge of building a specific video surveillance
system which is focused on the detection and tracking of moving objects [1, 11].

The purpose of this work consists of obtaining the most general set of pa-
rameters by means of evolution strategies, that is, the parameters which allow the
surveillance system to have the best performance in different scenarios and condi-
tions.

Thus, our work proposes a machine-vision application built and adjusted by
means of a collection of examples or scenarios of the real world. These examples
must represent the widest range of different situations that might happen so that
the system is trained and fixed for a general set of conditions [24].

Specifically, many of the machine-vision systems are focused on surveillance.
In order to achieve our purpose, we propose several steps to follow. First of

all, we take a representative set of scenarios to train the system. In particular, our
work is focused on an airport domain and all the scenarios represent common
situations for surface movements. This application of video technology in airport
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areas is a new way to support ground traffic management inside the new paradigm
of or advanced surface movement, guidance, and control systems (ASMGCS) [2,
14, 22]. The surveillance system used for this study is based on some previous
works carried out in the airport domain [6].

Second, evolution strategies are the technique chosen to adjust the parameters
that give the best performance to the tracking system [25, 28, 32]. One of the
innovations of our proposal is that the fitness function is adjusted in different ways
in order to optimize the tracking of distinct moving multitargets, from a single one
in a specific scenario to many of them in different scenarios. That is the process
followed to obtain the most general set of parameters. Thus, whereas overfitting
means obtaining particular parameters for specific situations, generalization is the
capability to adapt the parameters to be used in many different cases [33, 34].

The reason for the election of ES technique for this application is justified
since the function landscape is very irregular, with plenty of local optima. Classical
techniques of optimization such as those based on a gradient descent are poorly
suitable to these types of problems, when there is a high number of local optima,
or other properties like high roughness and local flat surfaces [3, 5].

In the next section, the video processing system is outlined, indicating the
structure and effects of parameters open to be adjusted by the designer. The third
section describes the scenarios taken into account in the design, as a sample of
the typical characteristics in this airport surveillance domain. The fourth section
presents the evaluation procedure, suggested metrics, and aggregation scheme for
including multiple situations. Finally, the fifth section presents the optimization
results carried out to assess the effectiveness of the proposal, closing the work with
some final conclusions.

21.2. Surveillance video system

This section describes the structure of an image-based tracking system. Camera
sensors are being explored as a complementary source of data in this environment
[9], with respect to classical sensors such as surface movement radars [31].

The system architecture is a coupled tracking system where the detected ob-
jects are processed to initiate and maintain tracks (see Figure 21.1). These tracks
represent the real targets in the scenario and the system estimates their location
and cinematic state. The detected pixels are connected to form image regions re-
ferred to as blobs.

The association process assigns one or several blobs to each track, while nonas-
sociated blobs are used to initiate tracks.

It is important to point out that the adjustment parameters that are optimized
are written in uppercase.

21.2.1. Detector and blobs extraction

The positioning/tracking algorithm is based on the detection of moving multiple
targets by contrasting with local background [10], whose statistics are estimated
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Figure 21.1. Structure of the video surveillance system.

and updated with the video sequence. Then, the pixel level detector is able to ex-
tract moving features from background, comparing the difference with a thresh-
old:

Detection(x, y) := [Image(x, y)− Background(x, y)
]
> THRESHOLD∗σ

(21.1)

being σ the standard deviation of pixel intensity. This parameter determines the
first filter on the data amount to be processed in following phases [29].

Finally, the algorithm for blobs extraction marks with a unique label all mov-
ing detected pixels, by means of a clustering and growing regions algorithm [30].
Then, the rectangles which enclose the resulting blobs are built, and their cen-
troids and areas are computed. In order to reduce the number of false detections
due to noise, a minimum area, MIN AREA, is required to form blobs. This pa-
rameter is a second data filter which avoids noisy detections from the processing
chain.

21.2.2. Blobs-to-track association

The association problem lies in deciding the most proper grouping of blobs and
assigning them to each track for each frame processed [8, 12, 21]. Due to image
irregularities, shadows, occlusions, and so forth, a first problem of imperfect image
segmentation appears, resulting in multiple blobs generated for a single target. So,
the blobs must be reconnected before track assignment and updating. However,
when multiple targets move closely, their image regions may overlap. As a result,
some targets may appear occluded by other targets or obstacles, and some blobs
can be shared by different tracks. For the sake of simplicity, first a rectangular box
has been used to represent the target. Around the predicted position, a rectangular
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box with the estimated target dimensions is defined, (xmin, xmax, ymin, ymax). Then,
an outer gate, computed with a parameter defined as a margin, MARGIN GATE,
is defined. It represents a permissible area in which to search more blobs, allowing
some freedom to adapt target size and shape.

The association algorithm analyses the track-to-blob correspondence [18, 20].
It first checks if the blob and the track rectangular gates are compatible (overlap),
and marks as conflictive those blobs which are compatible with two or more differ-
ent tracks. After gating, a grouping algorithm is used to obtain one “pseudoblob”
for each track. This pseudoblob will be used to update track state. If there is only
one blob associated to the track and the track is not in conflict, the pseudoblob
used to update the local track will be this blob [27]. Otherwise, two cases may
occur.

(1) A conflict situation arises when there are overlapping regions for several
targets (conflicting tracks). In this case, the system may discard those
blobs gated by several tracks and extrapolate the affected tracks. How-
ever, this policy may be too much restrictive and might degrade track-
ing accuracy. As a result, it has been left open to design by means of a
Boolean parameter named CONFLICT which determines the extrapo-
lation or not of the tracks.

(2) When a track is not in conflict, and it has several blobs associated to it,
these will be merged on a pseudoblob whose bounding limits are the
outer limits of all associated blobs. If the group of compatible blobs
is too big and not dense enough, some blobs (those which are further
away from the centroid) are removed from the list until density and size
constraints are held. The group density is compared with a threshold,
MINIMUM DENSITY, and the pseudoblob is split back into the origi-
nal blobs when it is below the threshold.

21.2.3. Tracks filtering, initiation, and deletion

A recursive filter updates centroid position, rectangle bounds, and velocity for
each track from the sequence of assigned values, by means of a decoupled Kalman
filter for each Cartesian coordinate, with a piecewise constant white acceleration
model. The acceleration variance that will be evaluated, usually named as “plant-
noise,” is directly related with tracking accuracy. The predicted rectangular gate,
with its search area around, is used for gating. Thus, it is important that the filter
is “locked” to real trajectory. Otherwise, tracks would lose its real blobs and fi-
nally drop. So this value must be high enough to allow manoeuvres and projection
changes, but not too much, in order to avoid noise. As a result, it is left as an open
parameter to be tuned, VARIANCE ACCEL.

Finally, tracking initialization and management takes blobs which are not as-
sociated to any previous track. It requires that nongated blobs extracted in suc-
cessive frames accomplish certain properties such as a maximum velocity and
similar sizes which must be higher than a minimum value established by the pa-
rameter MINIMUM TRACK AREA. In order to avoid multiple splits of targets,



Jesús Garcı́a et al. 445

Raw images

(a)

Detected pixels

(b)

Extracted blobs

(c)

Estimated tracks

(d)

Figure 21.2. Information levels in the processing chain.

established tracks preclude the initialization of potential tracks in the surrounding
areas, using a different margin than the one used in the gating search. This value
which allows track initialization is named MARGIN INITIALIZATION.

To illustrate the whole process, Figure 21.2 depicts the different levels of in-
formation interchanged, from the raw images until the final tracks.



446 Evolutionary design for MTT video systems

Upper taxiway

Lower taxiway

Figure 21.3. Picture of the first scenario.
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Figure 21.4. Picture of the first scenario for the targets number 1, 2, and 3 at the beginning of the
scenario (a) and after 7 seconds (b).

21.3. Set of examples

This section shows the set of three types of scenarios that we have used for our
experiments and the selected objects for tracking. The scenarios represent a good
set for training the system as they are long and varied enough to cover the most
common situations of surface movements in an airport.

(i) The first scenario is a multipleblob reconnection scenario. An aircraft is
moving from left to right with partial appearance because it is hidden by
other aircraft and vehicles parked in the parking places. Thus, there are
multiple blobs which represent this aircraft that must be reconnected.
At the same time, there are four vehicles (three cars and a bus) moving
on parallel roads or inner taxiways (upper taxiway and lower taxiway)
whose tracks must be kept separated from this aircraft trajectory.

Figure 21.4 and 21.5 show the enumeration followed by the program to iden-
tify each target. As we said, the evaluation is carried out over each trajectory on
moving object, so these numbers will be useful to identify the targets in the tables
of results.

This first scenario contains five targets as follows.
(1) A car which goes from the centre to the left side of the screen fol-

lowing the lower taxiway.
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Figure 21.5. Picture of the first scenario for the targets number 4 and 5 after 19 seconds (a) and 25
seconds (b).

(2) A car which heads towards the right side of the picture in the upper
taxiway.

(3) A bus for passengers. This bus makes very slow and slight move-
ments, practically nonappreciable.

(4) Another car that appears in the right side of the pictures, drives all
along the upper taxiway, and finally disappears in the left side.

(5) And finally, a big aircraft that heads from the left to right in the
lower taxiway.
Figure 21.3 shows the sequence of movements in the first scenario.

(ii) The second scenario presents three aircraft moving in parallel taxiways
(see Figure 21.6). The aircraft images overlap when they are crossing.
This always occurs with uniform motion on straight segments (Figures
21.7 and 21.8).

(iii) Finally, the third scenario presents two aircrafts moving on inner taxi-
ways between airport parking positions. The aircraft moves in different
directions. The first conflict situation arises when one of the aircrafts
turns to the right and it is partially hidden by the other aircraft, which
has already changed its direction by turning to the left. The second con-
flict situation happens at the end of the video sequence when another
airplane appears on the right side of the taxiway. This new airplane is
also partially hidden by the first aircraft that is disappearing from the
field of view of the camera in that moment.

Finally, this third scenario presents also three targets.
(1) The first target is an aircraft that appears in the left side, turns to the left

and has a conflicting situation with the second target (another aircraft)
that is moving in a parallel taxiway. We say that is a conflicting situa-
tion because it will be difficult for the tracking system to separate both
targets.

(2) The second aircraft appears in the left side of the screen, turns to the
right and before disappearing, it is crossing with another aircraft (the
third target) that suddenly appears. This will be a conflicting situation
and the detector will not be able to distinguish separately the two targets.
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Figure 21.6. Picture of the second scenario.

1 2 3

Figure 21.7. Picture of the second scenario for the targets number 2, 3, and 4 after 26 seconds.

(3) As we said above, the third target is another aircraft that appears in the
right side at the end of the video.

Figure 21.9 shows the moving targets in the second 25.

21.4. Adjustment of surveillance system: evaluation and generalization

The method presented in this section carries out the search for suitable parameters
for the best performance of the surveillance video system. The pursued goals of this
method are as follows.

(1) Evaluation of the tracks provided by the surveillance system. Thus, we
are going to assess the performance of the surveillance video system by
evaluating each resulting single track and by means of some proposed
evaluation metrics.

(2) Adaptation and optimization (by means of evolution strategies) of the
parameters that regulate the system processes. It is necessary the whole
adaptation of these processes taking into account that they are strongly
interrelated.

(3) Generalization, understood as the capacity of the parameters found to
solve several cases, adapting the system for a whole group of situations.
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Figure 21.8. Picture of the second scenario.

2
1

Figure 21.9. Picture of the third scenario for the targets number 1 and 2 after 25 seconds.

The approach is depicted in Figure 21.10 by means of a loop that will be
stopped after accomplishing a condition that fulfill the requirement of obtain-
ing a suitable set of parameters for the surveillance system. Thus, the definition
of an evaluation methodology allows automating the search of these parameters
and adjusting the whole system to the best performance in the considered cases.

The triple arrow in Figure 21.10 represents that the surveillance detections of
a specific track and its correspondent reference data (ground truth) are introduced
in the evaluation module for their assessment and subsequent adjustment of the
parameters.

21.4.1. Evaluation metrics and evaluation function

The evaluation function calculates a numerical value that represents the quality
of the tracking system with regard to a reference track or ground truth [7]. Two
aspects have been considered.

(i) The ground truth is the result of a study from pre-recorded video se-
quences and a subsequent process in which a human operator selects coordinates
for each target [13, 26, 27]. The coordinates of the targets are selected frame by
frame; they are marked and bounded with rectangles, taking the upper-left and
lower-right corners as location of target objectives. Thus, the ground truth can be
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Figure 21.10. Approach for system adjustment.
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Figure 21.11. Extraction of the ground truth.
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Figure 21.12. Computation of evaluation metrics.

defined as a set of rectangles that define the real locations of each target. Finally,
they are stored in a table which will be used to compare with the output tracks of
the tracking system. Figures 21.11 and 21.12 show the extraction and evaluation
processes, respectively.

(ii) The performance evaluation system calculates some numerical values by
means of a set of proposed metrics, based on the ground truth mentioned above.
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Figure 21.13. Metrics of overlap area, X-error and Y-error.

For the evaluation, the output tracks must be matched with ground truth trajecto-
ries in the first place. The optimization of this evaluation outcome will be the goal
for the evolutionary strategy program.

The evaluation system computes four parameters per target which are classi-
fied into “accuracy metrics” and “continuity metrics.”

Accuracy metrics (see Figure 21.13).
(1) Overlap-area (OAP): overlap area (in percentage) between the real target

and the detected track.
(2) X-error (Ex) and Y-error (Yx): absolute difference, in x and y coordi-

nates, between their centres.

Continuity metrics.
(3) Number of Tracks per target (NT): it is checked if more than one detected

track is matched with the same ideal track. If this happens, the program
keeps the detected track which has a bigger overlapped area value, re-
moves the other one and marks the frame with a flag that indicates the
number of detected tracks associated to this ideal one.

(4) Commutation (C): a commutation occurs (see Figure 21.14) when the
identifier of a track matched to an ideal track changes. It typically takes
place when the track is lost and recovered later.

The evaluation function is based on the previous metrics, by means of a
weighted sum of different terms which are computed for each target:

E = W1M

T
+
W2

∑
(1−OAP) +W3

∑
EX +W4

∑
EY

CT

+
W5OC +W6UC +W7

∑
C

T

(21.2)

with the terms defined as follows.
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one, although the target is
the same. Thus, we have a

commutation case (C).
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Track identifier = 1

Y axis

X axis(0,0)

Figure 21.14. Commutation metric.

(i) Mismatch (M): a counter which stores how many times the ground truth
and the tracked object data do not match up.

(ii) The three next terms are the total sum of the nonoverlapped areas
(
∑

(1−OAP)) and the central error of x(
∑
Ex) and y axes (

∑
Ey).

(iii) The next two elements are two counters.
(a) Overmatch-counter (Oc): how many times the ground truth track

is matched with more than one track object data.
(b) Undermatch-counter (Uc): how many times the ground track is not

matched with any track at all.
(iv) The number of commutations in the track under study (

∑
C).

(v) The continuity elements are normalized by the time length of track, T ,
while the accuracy terms are normalized by the time length of track be-
ing continuous, CT (i.e., when they can be computed).

(vi) W1,2,3,4,5,6,7 are the relative weights for the terms (detailed later). Highest
values have been given to the continuity terms, since this aspect is the
key to guarantee the global viability.

21.4.2. Fitness aggregation over several trajectories

We have presented above the evaluation function per target. In order to carry out
a general evaluation over different targets and cases, aggregation operators must
be applied over partial evaluations. The initial or basic function is this evaluation
function per target (or track):

ei j = f
(
x−i j , θ

)
= W1M

T
+
W2

∑
(1−OAP)+W3

∑
EX+W4

∑
EY

CT
+
W5OC +W6UC +W7

∑
C

T
,

(21.3)
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where:
(a) ei j is the evaluation result for the ith track/target in the scenario jth

scenario;
(b) x−i j is the vector of metrics and;
(c) θ is the vector of parameters to optimize.

Thus, the extension of the evaluation function must allow assessing simulta-
neously:

(a) one or various targets per scenario:
Scenario j : {e1 j , e2 j , e3 j , . . . , eNj j};

(b) various scenarios with several targets per scenario:
M Scenarios: {e11, e21, e31, . . . ,eN11, . . . , e1, j , e2 j , e3 j , . . . , eNj j , . . . , e1M ,
e2M , e3M , . . . , eNM ,M}.

Two aggregation operators have been analysed.
(a) Sum:

Ej =
∑
i

ei j , E =
∑
i

∑
j

ei j . (21.4)

(b) Maximum (or minimax):

Ej = max
i

(
ei j
)
; E = max

i

(
max
j

(
ei j
))
. (21.5)

In fact, the maximum operator generally has a good performance for aggregation
in multiobjective optimization problems with a complex tradeoff required, as it
was showed in a previous work related with optimization applied to a multicon-
straint design problem [19]. The sum operator has been taken as a reference for
comparison.

21.5. Results

This section shows the approached evaluation method, and the subsequent use
of ES optimization, for the video tracking system. The eight parameters pointed
before are searched for the best performance of the surveillance system under dif-
ferent situations. In order to analyse the generalization capability, this search is
done in three steps, from the particular optimization of a single target (the param-
eters for the best tracking of a single target) to the most general optimization (the
parameters for the best tracking of all targets of all videos).

(i) First, the parameters will be optimized to obtain the best tracking per-
formance for specific targets in every scenario. This means that the sys-
tem finds the best parameters for each specific track, and it will be the
benchmark to compare the rest of results. Thus, the number of parame-
ter sets will be the same as the number of targets in all videos.
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(ii) Second, the best parameters will be searched for the best tracking per-
formance for the set of targets composing every scenario. In order to be
able to compute the fitness value of one scenario, an aggregation opera-
tor of the individual fitness values of each target must be used as fitness
function. As it was said before, sum and maximum operators were ap-
plied to compute the total fitness for each scenario. Thus, the number of
parameter sets will be the same as the number of videos or scenarios.

(iii) Finally, the optimization will be applied to obtain the best performance
for the whole set of scenarios. In this section, we are not going to focus
on a specific target, not even on a specific scenario, but on the whole
set of scenarios. As it was said in the previous section, an aggregation
operator of the individual fitness values of each target must be used to
compute the total fitness function for the set of videos. We also use the
sum and maximum aggregation functions as fitness function.

21.5.1. Implementation details: solution encoding, evaluation of
tracking performance and system optimization

As it was mentioned before, the evolution strategies are the technique applied to
optimize the system performance. The fitness function is defined over the system
output compared with references, accordingly to (21.2), and applying aggregation
operators over partial evaluations to the set of trajectories considered to adapt the
system, following (21.3). Since this function comprises error terms, the lower the
evaluation function, the better the quality of the tracking system.

Regarding implementation, the size of population was reduced to the mini-
mum one in order to carry out the experiments within a reasonable time, while
convergence to appropriate solutions was kept with an appropriate setting for mu-
tation factor. The configuration of ES optimization is outlined below.

(a) Continuous representation, a solution is a vector in  8, with all com-
ponents directly encoding the configuration parameters highlighted in
Section 21.2.

(b) Each individual comprises 8 real numbers, all constrained to be positive:
(THRESHOLD, MINIMUM AREA, MARGIN GATE, MINIMUM
DENSITY, CONFLICT, VARIANCE ACCEL, MINIMUM TRACK
AREA, MARGIN INITIALIZATION).

(c) Selection scheme (μ + λ)-ES, applying discrete crossover.
(d) Size of population and offspring = 6 + 6 (μ = λ = 6).
(e) Gaussian mutation, where the adaptation factor Δσ was tuned to 0.5.
(f) Stopping criterion, when the fitness function gets stagnated between

consecutive generations or a maximum number of generations of 200
is achieved (it was checked that the algorithm almost always had con-
verged before the 200 generations).

Regarding the evaluation function in (21.2), (21.3), the vector of weights was
(W1,W2,W3,W4,W5,W6,W7) = (104, 1, 1, 1, 104, 5 ∗ 103, 104). Very high values
were given to the continuity terms to enforce a robust behavior.
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Figure 21.15. Direct optimization with a sample trajectory, continuity metrics: “—” optimized pa-
rameters, “o· · ·o” initial parameters.

As an example of the tracking evaluation and direct optimization, Figures
21.15 and 21.16 present the tracking performance metrics, before and after op-
timization, taking a single-trajectory evaluation as a direct fitness function. This
result corresponds to one of the objects (the big aircraft, target 5) in the first sce-
nario described, see Figure 21.5. As we can see, the system presents track losses
and commutations with an initial random set of parameters, effects that disappear
after the optimization. Significantly, the X-Y errors and overlap degree between
tracking and ground truth also are apparently improved. These errors can be mea-
sured only in situation of continuity (one-to-one correspondence with the ideal
trajectory).

21.5.2. Benchmark table: optimization over a single target
(individual optimization)

The optimization over single tracks, presented in previous paragraph, has been
applied to every track in the three scenarios. The results are showed in Table 21.1.
This table is taken as the reference to compare with next experiments, which will
apply the parameter optimization process over combinations of several targets/
tracks simultaneously. The columns represent the target/track whose parameters
are optimized to obtain the best performance and the best fitness function. The
rows are the cross-evaluation over every target in each video. For each scenario, a
sum row displays at the end the total error for the targets contained, applying the
solution corresponding to that column.

Thus, the values in the diagonal (grey-shaded values) represent the overfitted
cases, which means that the evaluation is carried out with the parameters partic-
ularly adjusted to this case. That is the reason why this value is the minimum in
each column.

From now on, in some particular cases, the output parameters are not capa-
ble to detect the evaluated target (the undermatch-counter adds 1 unit to itself
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Figure 21.16. Direct optimization with a sample trajectory, accuracy metrics: “—” optimized param-
eters, “o· · ·o” initial parameters.

(Uc)), which is marked with the value 10,000 (a very high weigh indicating that
the evaluation gives a low performance).

In order to illustrate the overfitting effect in the results, we have selected 3
solutions from the 11 optimized sets of parameters. One target was selected per
scenario, highlighted in the previous table:

(i) target number 1 from video 1: param-Video1-T1;
(ii) target number 1 from video 2: param-Video2-T1;

(iii) target number 2 from video 3: param-Video3-T2.
So, in Figure 21.17 we can see three sets of columns, representing the perfor-

mance of each solution when it is evaluated against the 11 targets. We can check
that the parameters that optimize the track of target 1 (T1) in Video1 (param-
Video1-T1) have the best cross evaluation value for the targets that belong to
Video1 (the five first targets). In the same way, the parameters that optimize the
track of target 1 (T1) in Video2 (param-Video2-T1) have the best cross evaluation
value for the targets that belong to Video2 and worse in the rest of scenarios; and
so on for the parameters in the optimization for a target belonging to Video3.

In order to have a reference figure to be compared with the subsequent ex-
periments, Figure 21.18 shows the average of all evaluations with the optimum
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Figure 21.17. Evaluation of the obtained parameters over particular trajectories.
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Figure 21.18. Average of evaluations over the parameters for each target.

parameters for each target. They correspond to the last column in Table 21.1: each
cell is the average of the cells in that row. In some way, these values represent the
overfitting effect since each row contains the particular optimum value when the
same target is used for optimization, and other ten cases corresponding to partic-
ular optimizations for other targets.

21.5.3. Optimization over targets of a specific video:
scenario optimization

The next step is the optimization for all the tracks included in a video, applying
the addition and the maximum operators. The evaluation is carried out over all
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Table 21.2. Cross evaluation for best parameters per scenario with minimax operator.

designed

scenario
Video 1 Video 2 Video 3

Average

evaluation scenario
param-

Video1

param-

Video2

param-

Video3

Video 1

Video1-T1 2148,38 6467,07 7118,28 5244,57

Video1-T2 2816,06 2838,03 2829,93 2828,00

Video1-T3 808,49 7571,34 7722,86 5367,56

Video1-T4 611,94 4296,65 2346,35 2418,31

Video1-T5 219,49 6012,59 6898,39 4376,82

Sum1 6604,36 27185,68 26915,81 20235,28

Video 2

Video2-T1 7761,07 501,94 498,34 2920,45

Video2-T2 4774,85 735,06 1709,53 2406,48

Video2-T3 5057,37 746,73 1901,62 2568,57

Sum2 17593,2 1983,73 4109,49 7895,50

Video 3

Video3-T1 327,80 8511,76 1321,73 3387,09

Video3-T2 352,39 6639,13 4445,21 3812,24

Video3-T3 10000 10007,40 2724,84 7577,41

Sum3 10680,19 25158,29 8491,78 14776,75

Total Sum (Sum1 + Sum2 + Sum3) 34877,84 54327,70 39517,08

Faults 1 0 0

the trajectories per video. Subsequently, both operators are applied, minimiza-
tion of the maximum (minimax) and minimization of the sum, in order to obtain
the value that the evolution strategy algorithm uses to search for better individu-
als.

Table 21.2 shows the results for the maximum operator. There are three
columns which correspond with the optimization carried out over each scenario
or video. The overfit effect can be checked again in the diagonal of the table (grey-
shaded values). These values are the evaluation over the tracks used in the training
process.

Following this method (Table 21.2), we obtained a fitness value which is re-
markably better than all previous results, which were calculated by training over
a single track (Table 21.1). For example, for the first video, the sum of the fitness
gives a value of 6604.36. If we compare to the different sums given before for each
previous solution in Table 21.1 (10063.237, 33444.39, 26508.18, and 21058.22),
it is easy to infer the improvement of the performance. The same argument can
be followed for the rest of videos. In video number 2, the sum of fitness is 1983.73
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Figure 21.19. Comparison of the evaluations carried out with the maximum or addition operator
over all the tracks that belong to a specific video.

while the values obtained in the first experiment were 2511.56, 1999.89, and
2735.41.

In an analogous way, the sum operator was applied later in order to obtain the
input for the evolution strategy algorithm.

The values obtained by the sum operator show worse performance of the
tracking system than previous case, as it can be observed in Figure 21.19, com-
paring both operators. This figure shows the evaluation average over each track
for the three experiments (last column of Tables 21.2, 21.3), instead of comparing
the particular solutions obtained for each one of the three scenarios.

21.5.4. Optimization over targets belonging to the whole set of videos:
global optimization

The final step searches for the best set of parameters applied to all targets in all
videos. As in the previous experiment, we will use the addition of every single
fitness values (the results of the evaluation of the set of parameters over every
single target) and the maximum among all the single fitness values.

The results are shown in Tables 21.4 and 21.5. The best aspect of this global
optimization lies in the validity of the parameters to the whole set of videos, avoid-
ing the overfitted values obtained in the previous experiments. Table 21.4 shows
the results for the case in which the maximum fitness has been taken in each iter-
ation loop (the strategy of maintaining the maximum of the evaluation values is
called the “minimax” strategy). The results applied to a specific scenario are good,
but not better than the results obtained in the previous section where with the
particular parameters obtained for that situation.

Nevertheless, the total fitness sum for all the scenarios results much better
considering evaluations over all situations. This fact indicates that the parameters
fit well in the general case.
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Table 21.3. Cross evaluation for the best parameters per scenario with sum operator.

designed

scenario
Video 1 Video 2 Video 3

Average

evaluation scenario
param-

Video1

param-

Video2

param-

Video3

Video 1

Video1-T1 1691,76 2650,92 8046,10 4129,59

Video1-T2 2843,30 2842,96 4232,38 3306,21

Video1-T3 1141,46 1684,53 13112,50 5312,83

Video1-T4 541,82 10000 5826,94 5456,25

Video1-T5 177,96 10000 2024,31 4067,42

Sum1 6396,30 27178,41 33242,23 22272,31

Video 2

Video2-T1 1744,78 284,92 10000 4009,9

Video2-T2 9155,52 501,81 10000 6552,44

Video2-T3 4403,98 784,92 8095,01 4427,97

Sum2 15304,28 1571,64 28095,01 14990,31

Video 3

Video3-T1 7608,18 10000 631,79 6079,99

Video3-T2 6906,09 10000 2354,02 6420,03

Video3-T3 10000 10000 6432,97 8810,99

Sum3 24514,2 30000 9418,78 21311,01

Total Sum (Sum1 + Sum2 + Sum3) 46214,85 58750,06 70756,02

Faults 1 5 2

Finally, Figure 21.20 shows a comparison with all the cases and steps that we
have presented in this work: individual optimization, scenario optimization, and
global optimization. As it has been mentioned, instead of comparing particular
solutions for individual targets or scenarios, each case is represented with the av-
erage evaluation over all cases. So, values in Tables 21.4, 21.5 are compared with
the last columns in Tables 21.1, 21.2, 21.3. Furthermore, the total sum of all sce-
narios is shown below as the aggregated summary. It can be checked that the main
goal of the work is achieved: the more general solution (more cases considered in
the design), the better is the average performance. Moreover, it is relevant the good
performance of the maximum operator in this process.

To close this subsection, it is interesting to analyze the fitness convergence in
populations for both cases, optimization over each trajectory and over the worst
case of a set of trajectories. The next figure illustrates the convergence (maxi-
mum, minimum and average fitness) for the first scenario, considering individ-
ual optimization, optimization of worst-case trajectory and sum for each sce-
nario, and global optimization for all scenarios. The convergence is slower for the
minimax strategy, since now the function to optimize is more complex, as the
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Figure 21.20. Comparison with all the cases and steps that we have presented in this work: individual
optimization, scenario optimization and global optimization.

Table 21.4. Cross evaluation for parameters optimized for all scenarios with minimax.

designed scenario All videos

evaluation scenario param-Videos

Video 1

Video1-T1 2347,60

Video1-T2 2820,85

Video1-T3 1280,23

Video1-T4 3416,05

Video1-T5 1146,61

Sum1 11011,34

Video 2

Video2-T1 494,70

Video2-T2 2095,89

Video2-T3 787,59

Sum2 3378,18

Video 3

Video3-T1 5766,68

Video3-T2 5136,36

Video3-T3 3168,68

Sum3 14071,72

Total Sum (Sum1 + Sum2 + Sum3) 28461,24

evaluation takes into account the set of situations in the three trajectories. As we
have indicated, optimization with the sum function is faster but it is likely to fall
in bad solutions, local minima with bad properties in other scenarios.
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Figure 21.21. Fitness convergence for individual optimization, sum and worst-case for each scenario,
and global worst case fitness functions.

21.6. Conclusions

In this chapter we have presented a novel process to adapt the performance of a
tracking system based on the extraction of information from images captured by a
camera and evolution strategies. We have proposed the application of ES to adapt
the performance of a whole video tracking system with respect to real situations.
The sets of parameters of the tracking system have been adjusted to obtain a good
performance under very different situations (big aircraft interacting with small
vans, occluded trajectories, different manoeuvres, etc.).

A significant improvement of the global vision system is achieved, in terms
of accuracy and robustness. With this design methodology based on optimiza-
tion, the inter-relation of parameters at different levels allows a coherent behavior
under different situations. A generalization analysis has shown the capability to
overcome the overadaptation when particular cases are considered and a continu-
ous improvement when additional samples are aggregated in the training process,
comparing two different operators: sum and worst-case aggregation.
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Table 21.5. Cross evaluation for parameters optimized for all scenarios with sum.

designed scenario All videos

evaluation scenario param-Videos

Video 1

Video1-T1 2243,12

Video1-T2 2855,57

Video1-T3 7683,49

Video1-T4 1676,22

Video1-T5 105,63

Sum1 14564,03

Video 2

Video2-T1 7506,24

Video2-T2 10970,60

Video2-T3 4523,21

Sum2 23000,05

Video 3

Video3-T1 3465,03

Video3-T2 6181,07

Video3-T3 4363,25

Sum3 14009,35

Total Sum (Sum1 + Sum2 + Sum3) 51573,43
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