Skip to main content

MAP-Elites with Cosine-Similarity for Evolutionary Ensemble Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13986))

Abstract

Evolutionary ensemble learning methods with Genetic Programming have achieved remarkable results on regression and classification tasks by employing quality-diversity optimization techniques like MAP-Elites and Neuro-MAP-Elites. The MAP-Elites algorithm uses dimensionality reduction methods, such as variational auto-encoders, to reduce the high-dimensional semantic space of genetic programming to a two-dimensional behavioral space. Then, it constructs a grid of high-quality and diverse models to form an ensemble model. In MAP-Elites, however, variational auto-encoders rely on Euclidean space topology, which is not effective at preserving high-quality individuals. To solve this problem, this paper proposes a principal component analysis method based on a cosine-kernel for dimensionality reduction. In order to deal with unbalanced distributions of good individuals, we propose a zero-cost reference points synthesizing method. Experimental results on 108 datasets show that combining principal component analysis using a cosine kernel with reference points significantly improves the performance of the MAP-Elites evolutionary ensemble learning algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balasubramanian, M., Schwartz, E.L.: The isomap algorithm and topological stability. Science 295(5552), 7–7 (2002)

    Article  Google Scholar 

  2. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann Publishers Inc., Burlington (1998)

    MATH  Google Scholar 

  3. Boisvert, S., Sheppard, J.W.: Quality diversity genetic programming for learning decision tree ensembles. In: Hu, T., Lourenço, N., Medvet, E. (eds.) EuroGP 2021. LNCS, vol. 12691, pp. 3–18. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72812-0_1

    Chapter  Google Scholar 

  4. Bruneton, J.P., Cazenille, L., Douin, A., Reverdy, V.: Exploration and exploitation in symbolic regression using quality-diversity and evolutionary strategies algorithms. arXiv preprint arXiv:1906.03959 (2019)

  5. Cava, W.L., et al.: Contemporary symbolic regression methods and their relative performance. In: 35th Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1) (2021)

    Google Scholar 

  6. Cawley, G.C., Talbot, N.L.: Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Netw. 17(10), 1467–1475 (2004)

    Article  MATH  Google Scholar 

  7. Cazenille, L.: Ensemble feature extraction for multi-container quality-diversity algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 75–83 (2021)

    Google Scholar 

  8. Chen, Q., Xue, B., Zhang, M.: Preserving population diversity based on transformed semantics in genetic programming for symbolic regression. IEEE Trans. Evol. Comput. 25(3), 433–447 (2020)

    Article  Google Scholar 

  9. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521(7553), 503–507 (2015)

    Article  Google Scholar 

  10. Dick, G., Owen, C.A., Whigham, P.A.: Evolving bagging ensembles using a spatially-structured niching method. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 418–425 (2018)

    Google Scholar 

  11. Dolson, E., Lalejini, A., Ofria, C.: Exploring genetic programming systems with MAP-Elites. In: Banzhaf, W., Spector, L., Sheneman, L. (eds.) Genetic Programming Theory and Practice XVI. GEC, pp. 1–16. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04735-1_1

    Chapter  Google Scholar 

  12. Gaier, A., Asteroth, A., Mouret, J.B.: Aerodynamic design exploration through surrogate-assisted illumination. In: 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 3330 (2017)

    Google Scholar 

  13. Goldberg, D.E., Richardson, J., et al.: Genetic algorithms with sharing for multimodal function optimization. In: Genetic Algorithms and Their Applications: Proceedings of the 2nd International Conference on Genetic Algorithms, vol. 4149 (1987)

    Google Scholar 

  14. Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Representations (2017)

    Google Scholar 

  15. Iba, H.: Bagging, boosting, and bloating in genetic programming. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation-Volume 2, pp. 1053–1060 (1999)

    Google Scholar 

  16. La Cava, W., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-objective analysis of lexicase selection and \(\varepsilon \)-lexicase selection. Evol. Comput. 27(3), 377–402 (2019)

    Article  Google Scholar 

  17. La Cava, W., Singh, T.R., Taggart, J., Suri, S., Moore, J.H.: Learning concise representations for regression by evolving networks of trees. In: International Conference on Learning Representations (2018)

    Google Scholar 

  18. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218 (2011)

    Google Scholar 

  19. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–6816 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  21. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_3

    Chapter  Google Scholar 

  22. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909 (2015)

  23. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, vol. 14 (2001)

    Google Scholar 

  24. Nickerson, K., Hu, T.: Principled quality diversity for ensemble classifiers using map-elites. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 259–260 (2021)

    Google Scholar 

  25. Nickerson, K., Kolokolova, A., Hu, T.: Creating diverse ensembles for classification with genetic programming and neuro-map-elites. In: Medvet, E., Pappa, G., Xue, B. (eds.) European Conference on Genetic Programming (Part of EvoStar), pp. 212–227. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02056-8_14

    Chapter  Google Scholar 

  26. Nikfarjam, A., Neumann, A., Neumann, F.: On the use of quality diversity algorithms for the traveling thief problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 260–268 (2022)

    Google Scholar 

  27. Nilsson, O., Cully, A.: Policy gradient assisted map-elites. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 866–875 (2021)

    Google Scholar 

  28. Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.: Pmlb: a large benchmark suite for machine learning evaluation and comparison. BioData Min. 10(1), 1–13 (2017)

    Article  Google Scholar 

  29. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Pietropolli, G., Manzoni, L., Paoletti, A., Castelli, M.: Combining geometric semantic GP with gradient-descent optimization. In: Medvet, E., Pappa, G., Xue, B. (eds.) European Conference on Genetic Programming (Part of EvoStar), pp. 19–33. Springer, Cham (2022)

    Chapter  Google Scholar 

  31. Schölkopf, B., Smola, A., Müller, K.R.: Kernel principal component analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.D. (eds.) International Conference on Artificial Neural Networks, pp. 583–588. Springer, Cham (1997). https://doi.org/10.1007/BFb0020217

    Chapter  Google Scholar 

  32. Urquhart, N., Hart, E.: Optimisation and illumination of a real-world workforce scheduling and routing application (WSRP) via Map-Elites. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 488–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_39

    Chapter  Google Scholar 

  33. Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: Openml: networked science in machine learning. ACM SIGKDD Explor. Newsl. 15(2), 49–60 (2014)

    Article  Google Scholar 

  34. Virgolin, M.: Genetic programming is naturally suited to evolve bagging ensembles. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 830–839 (2021)

    Google Scholar 

  35. Wang, S., Mei, Y., Zhang, M.: Novel ensemble genetic programming hyper-heuristics for uncertain capacitated arc routing problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1093–1101 (2019)

    Google Scholar 

  36. Wang, Y., Xue, K., Qian, C.: Evolutionary diversity optimization with clustering-based selection for reinforcement learning. In: International Conference on Learning Representations (2021)

    Google Scholar 

  37. Zhang, H., Zhou, A., Zhang, H.: An evolutionary forest for regression. IEEE Trans. Evol. Comput. 26(4), 735–749 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengzhe Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Chen, Q., Tonda, A., Xue, B., Banzhaf, W., Zhang, M. (2023). MAP-Elites with Cosine-Similarity for Evolutionary Ensemble Learning. In: Pappa, G., Giacobini, M., Vasicek, Z. (eds) Genetic Programming. EuroGP 2023. Lecture Notes in Computer Science, vol 13986. Springer, Cham. https://doi.org/10.1007/978-3-031-29573-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29573-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29572-0

  • Online ISBN: 978-3-031-29573-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics