
Using Differential Evolution for GEP Constant Creation

Qiongyun Zhang
Department of Computer

Science
University of Illinois at Chicago

Chicago, IL, 60607, USA

qzhang@cs.uic.edu

Chi Zhou
Physical Realization Research

Center of Motorola Labs
Schaumburg, IL 60196, USA

Chi.Zhou@motorola.com

Weimin Xiao
Physical Realization Research

Center of Motorola Labs
Schaumburg, IL 60196, USA

awx003@motorola.com

Peter C. Nelson
Department of Computer

Science
University of Illinois at Chicago

Chicago, IL 60607, USA

nelson@cs.uic.edu

Xin Li
Department of Computer

Science
University of Illinois at Chicago

Chicago, IL 60607, USA

xli1@cs.uic.edu

ABSTRACT
Gene Expression Programming (GEP) is a new evolution-
ary algorithm that incorporates both the idea of simple, lin-
ear chromosomes of fixed length used in Genetic Algorithms
(GAs) and the structure of different sizes and shapes used
in Genetic Programming (GP). As with other genetic pro-
gramming algorithms, GEP has difficulty finding appropri-
ate numeric constants for terminal nodes in the expression
trees. In this paper, we describe a new approach of con-
stant generation using Differential Evolution (DE), which is
a simple real-valued GA that has proven to be robust and
efficient on parameter optimization problems. Our exper-
imental results on two symbolic regression problems show
that the approach significantly improves the performance of
the GEP algorithm. The proposed approach can be easily
extended to other Genetic Programming variants.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence–
Learning

General Terms
Algorithms, Experimentation

Keywords
Constant Creation, Genetic Algorithms, Genetic Program-
ming, Gene Expression Programming, Differential Evolu-
tion,

1. INTRODUCTION
Gene Expression Programming (GEP) is an evolutionary

algorithm for automatic creation of computer programs, first
proposed in [5] by Cândida Ferreira. Unlike traditional GP,
in GEP, computer programs are represented as linear strings
of fixed length called chromosomes (genotype) which sub-
sequently are mapped into Expression Trees (ETs) (pheno-
type) of different sizes and shapes for fitness evaluation. The
search space is separated from the solution space, which re-
sults in unconstrained search of the genome space while still

ensuring validity of the program’s output. Due to the linear
fixed-length genotype representation, genetic manipulation
becomes much easier than that on parse tress in GP. Com-
pared with traditional GP, the evolution of GEP has more
flexibility and power in exploring the entire search space.
GEP methods have performed well for solving a large va-
riety of problems, including symbolic regression, optimiza-
tion, time series analysis, classification, logic synthesis and
cellular automata, etc. [5]. Zhou, et al. applied a differ-
ent version of GEP and achieved significantly better results
on multi-class classification problems, compared with tradi-
tional machine learning methods and GP classifiers [17] [18].
Instead of the original head-tail method in [5], their GEP
implementation uses a chromosome validation algorithm to
dynamically determine the feasibility of any individual gen-
erated, which results in no inherent restrictions in the types
of genetic operators applied to the GEP chromosomes, and
all genes are treated equally during the evolution [18]. The
work presented in this paper is based on this revised version
of GEP.

Despite its flexible representation and efficient evolution-
ary process, GEP still has difficulty discovering suitable
function structures, because the genetic operators are more
disruptive than traditional tree-based GP, and a good evolved
function structure is very likely to be destroyed in the sub-
sequent generations [7]. Different tentative approaches have
been suggested, including multi-genetic chromosomes, spe-
cial genetic operators, and constant creation methods [5].
Our attention was drawn to constant creation methods due
to their simplicity and the potential benefits. It is assumed
that local search effort for finding better combinations of nu-
meric constants on top of an ordinary GEP process would
help improve the fitness value of the final best solution. In
this paper, we propose a new constant creation approach
for GEP using Differential Evolution (DE), and have tested
them on two typical symbolic regression problems. Exper-
imental results have demonstrated that the approach can
achieve significant improvement on GEP performance, and
is able to find optimal constants for a given GEP formula
structure.

The rest of the paper is organized as following: Section
2 describes the GEP algorithm and provides a brief review

1

Chromosome: Q.*.−.+.a.b.c.1

Mathematical form: sqrt((a−b)*(c+1))

Q

_ +

*

a b c

Figure 1: An example of GEP chromosome, the cor-
responding expression tree and the mathematical
form.

of related work on constant generation. Section 3 briefly
reviews the Differential Evolution algorithm , and describes
our approach of embedding DE into GEP for constant tune-
up. Experiments and results with our new approach are
presented and analyzed in Section 4. Section 5 summarizes
this research work and presents ideas for future work.

2. RELATED WORK

2.1 Gene Expression Programming(GEP)
Gene Expression Programming is a genotype/phenotype

system that evolves computer programs of different sizes and
shapes encoded in linear chromosomes of fixed length [4].
When GEP is used to solve a problem, usually five compo-
nents are specified: the function set, the terminal set that in-
cludes problem-specific variables and pre-selected constants,
fitness function, control parameters, and stop condition. A
chromosome in GEP is a character string of fixed length,
which can be any element (called gene) from the function
set or the terminal set. Figure 1 shows an example of a
chromosome of length 8, using the function set {+, -, *, Q}
where Q represents the math function sqrt, and the terminal
set {a, b, c, 1}. This is referred to as the Karva Notation, or
K-expression [3]. A K-expression can then be mapped into
an Expression Tree (ET) following a breadth-first procedure
and be further written in a mathematical form as shown in
Figure 1.

A chromosome is valid only when it can map into a legal
ET within its length limit. Therefore all the chromosomes
randomly generated or reproduced by genetic operators are
subject to a validity test, in order to prevent illegal expres-
sions from being introduced into the population [18].

To start, the GEP algorithm initially generates a random
population of linear fixed-length chromosomes. Then the
chromosomes are represented as ETs, evaluated based on
a user defined fitness function, and selected according to
fitness to reproduce with modification. The individuals in
this newly generated population are subjected to the same
development process until a pre-specified number of genera-
tions are completed, or a solution has been found. In GEP,
the selection procedures are often determined by roulette-
wheel sampling with elitism [8] based on individuals fitness,
which guarantees the survival and cloning of the best indi-

vidual to the next generation. Variation in the population
is introduced by applying genetic operators, i.e., crossover,
mutation and rotation [5], to selected chromosomes, which
usually drastically reshape their corresponding ETs. Refer
to [18] for detailed description on GEP.

2.2 Related Work on Constant Creation
The problem with constant creation has received quite a

bit research and discussion in GP community, as it is difficult
for GP to find good numeric constants for the terminal nodes
in s-expression trees. This is one of the issues that GP has to
overcome in order to achieve greater efficiency for complex
applications. Ryan and Keijzer [12] analyzed the density
and diversity of constants over generations in GP. They also
introduced two simple constant mutation techniques, creep
mutation and uniform/random mutation, and experiments
with these techniques have shown better search performance
of GP.

Some other approaches to constant creation procedure in
GP can be categorized as local search algorithms. Several re-
searchers have tried to combine hill climbing, simulated an-
nealing, local gradient search [15] [5] [16], and other stochas-
tic techniques to GP to facilitate finding useful constants for
evolving solutions or optimizing extra parameters. Although
meaningful improvements have been achieved, these meth-
ods are complicated to implement compared with simple mu-
tation techniques. Furthermore, an overly constrained local
search method would possibly reduce the power of the free
style search inherent in the evolutionary algorithms. A novel
view of constant creation by a digit concatenation approach
is presented in [10] for Grammatical Evolution (GE). Most
recently, a new concept of linear scaling is introduced in [6]
to help the GP system concentrate on constructing an ex-
pression that has the desired shape. However, this method
is suitable for finding significant constants for evolved ex-
pressions that are approximately linearly related to their
corresponding target values, but it is generally ineffective
for identifying other candidates with good function shapes.
The idea of embedding a GA process into GP has been pro-
posed and implemented, and experiments have shown this
approach is very good at finding models that fit the training
data [2] [1].

Since the invention of GEP, constant creation techniques
have received attention in the research literature. Ferreira
introduced two approaches for symbolic regression in the
original GEP [4]. One approach does not include any con-
stants in the terminal set, but relies on the spontaneous
emergence of necessary constants through the evolutionary
process of GEP. The other approach involves the ability to
explicitly manipulate random constants by adding a ran-
dom constant domain Dc at the end of chromosome. Previ-
ously Li et. al. [7] proposed several GEP constant creation
methods similar to creep and random mutation as described
in [12], but in a greedy fashion. Their experimental results
demonstrated that the constant tune-up process for the en-
tire population can significantly improve the average fitness
of the best solutions.

3. DIFFERENTIAL EVOLUTION FOR GEP
CONSTANT CREATION

3.1 Differential Evolution

First proposed in [14], Differential Evolution(DE), is a
simple vector-based evolutionary algorithm. The algorithm
optimizes a system by choosing appropriate system param-
eters that are represented as a real-valued vector. Despite
its simple form, it has been proven to be effective and ro-
bust at numerical optimization and is more likely to find a
function’s true global optimum [14].

In DE, a population of solution vectors are successively
updated by vector operations that performs linear recombi-
nation such as addition, subtraction, and component swap-
ping, until the population converges. It starts with NP ran-
domly generated solution n-dimensional vectors,

Xi = (xi1, xi2, ...xin), i = 1, ..., NP,

as the initial population. At each generation, two opera-
tions mutation and crossover are applied to each individual
vector in the current population, to generate an offspring.
Following that, a selection between each individual and its
corresponding offspring is performed, based on their objec-
tive values computed by a user-defined objective function.
The one that yields a better objective value is select as an
individual in the next population, and the other one is elim-
inated.

For each solution vector, first a mutant vector,

Vi = (vi1, vi2, ...vin), i = 1, ..., NP,

is formed using one of the following schemes [11] [14]:

Vi = Xr1 + F (Xr2 − Xr3) (1)

Vi = Xbest + F (Xr2 − Xr3) (2)

Vi = Xi + F (Xbest − Xi) + F (Xr1 − Xr2) (3)

Vi = Xbest + F (Xr1 − Xr2) + F (Xr3 − Xr4) (4)

Vi = Xr1 + F (Xr2 − Xr3) + F (Xr4 − Xr5) (5)

where Xbest is the best individual in the current popula-
tion, and Xr1,Xr2,Xr3,Xr4, Xr5 are mutually distinct ran-
domly chosen vectors from the population. F is a real and
constant scaling factor that controls the amplification of the
difference between two vectors, and F usually falls in the
range of (0, 2) [11]. The scheme used in our work is equa-
tion 4.

Following the mutation operation, the crossover operation
is applied to each individual Xi and its mutant vector Vi,
so as to generate a new vector Ui called a trial vector which
is the offspring of Xi. For each vector component, draw a
random number randj in the range of [0, 1]. The trial vector
is produced, with

Uij =



Vij if randj ≤ CR;
Xij if randj > CR.

where CR is a user-defined crossover threshold between 0
and 1. Therefore the trial vector has some components from
the mutant vector, and some from the parent vector Xi. To
ensure some crossover, one component of Ui is selected at
random to be from the mutant vector Vi [14].

For the selection between the vector Xi and its offspring
Ui, a comparison is performed based on a user-defined ob-
jective function f. In most cases, the objective function
transforms the optimization problem into a minimization

Selection based on fitness

Initial Population

Evaluated Population

Termination
Condition Met?

Evaluate

NO

YES
Return the best
Chromosome

Evaluate

for every chromosome
DE tunes up constants

New population

Crossover, mutation and rotation

Figure 2: GEP with DE embedded.

task [14]. In other words, the vector that yields a smaller
objective function value is considered a better solution.

XG+1
i =



Ui if f(Ui) < f(Xi);
Xi if f(Ui) ≥ f(Xi).

DE has the advantages of a simple structure, speed and
robustness. Therefore DE has been widely used in optimiza-
tion problems with real variables and many local optima,
and has been proven to be a very efficient algorithm [9] [11] [13].

3.2 Using DE for GEP Constant Creation
Given the power of DE on parameter optimization, we can

utilize DE to tune up the constant creation process in GEP.
A special gene named Random Number Generator (RNG)
is introduced into the GEP terminal set to replace a list of
constant genes, e.g., {1, 2, 3, 5, 7,...}. Different instances
of this RNG gene will have different values which are ran-
domly initialized in the range of [0, 1]. The idea behind
fusing the DE algorithm into GEP is to extract all random
number generators from a GEP chromosome as a param-
eter vector, and apply a separate DE process to optimize
those parameters using the same fitness evaluation function
as in GEP. As a result, the GEP learning process is divided
into two phases: in the first phase, the GEP algorithm fo-
cuses on searching for the best solution structure, while in
the second phase, DE focuses on optimizing the constant
parameters given the fixed solution formula. This can be
implemented as such: for every chromosome in the GEP
population, when evaluating the fitness, apply the DE algo-
rithm to search for the best constants in that chromosome
without changing the structure of the chromosome. After
the DE process is finished, the parameter vector with the
best DE fitness will be assigned to the chromosome. Figure
2 illustrates the new GEP algorithm with DE.

With the structure of the formula fixed, the application of
DE algorithm tunes up the constants. Most importantly, by
making use of the DE algorithm, the choices of constants are
not only limited to pre-defined constant gene list as in con-

ventional GEP algorithm. Instead, real number constants
are enabled in a GEP formula.

4. EXPERIMENTS
In order to test if the DE algorithm can help in find-

ing constants in the training process of GEP, we have se-
lected two problems that have have been studied by other
researchers with regard to constant creation issue in GP or
GEP. The experimental results presented in previous work
by Li et al. [7] will be used as a comparison benchmark.

4.1 Experiment Settings
The two datasets tested in the experiments are regression

problems. One is a simple polynomial with real-number co-
efficients (6). A set of 21 fitness cases equally spaced along
the x axis from −10 to 10 are chosen for this polynomial.
The second equation is a V-shaped function which not only
has real number coefficients, but also exhibits complex func-
tionality and structure (7). That adds to the difficulty for
GEP to obtain a close approximation to the target function.

y = x3 − 0.3x2 − 0.4x − 0.6 (6)

y = 4.251a2 + ln(a2) + 7.243ea (7)

For GEP control parameters, same as in [7], we used 100
for the GEP chromosome length, 500 for the GEP popula-
tion size, 1000 for the maximum number of generations, 0.7
as the crossover probability and 0.02 as the mutation prob-
ability. The roulette-wheel selection with elitism is utilized
as the selection method based on the fitness function calcu-
lated by (8), where fitnessi indicates the fitness function
for the ith individual in the population, minR is the best
(or minimun) residual error obtained so far, and ResErrori

is the individual’s residual error. Note that this is the fit-
ness function used for selection in GEP, and the fitness of a
chromosome is measured by its residual error which is better
when smaller. Both GEP and DE have the same objective
which is to minimize the residual error.

fitnessi = minR/(minR + ResErrori) (8)

For the experiments on the two datasets, the terminal set
includes the input attributes (the variable x or a in specific
problems). No constants are selected beforehand. Instead,
they are represented by RNGs (Random Number Genera-
tors) that have an initial random real value, and will be op-
timized by the DE algorithm. Due to our prior knowledge
about the two benchmark problems, the function set used for
first dataset is {+, −, ∗, /}, and {+, −, ∗, /, log, exp, power,
sin,cos} for the V-shaped function problem, where log is the
natural logarithm, exp represents ex and power(x, y) repre-
sents xy. The stopping condition for both datasets are the
same: either the residual error of the obtained formula on
the dataset is less than 10−4 or the number of generations
has reached 1000.

As for the parameters of the DE algorithm, we chose 128
as the size of vector population NP, 0.2 as the crossover
threshold CR, 0.5 as the amplification factor F, and the
number of generations is 500.

Several different experiments have been performed. We
start with the experiment where in every generation of GEP,
DE is applied to optimize the constants for each individual

chromosome in the population. Due to the extra time re-
quired by the computational intensive process, this exper-
iment is only used with the polynomial function problem.
The second experiment is similar to the first one, except
that instead of having DE applied in every generation, we
only have DE process turned on for every 5th generation.
Also we experimented with DE in every 10th generation.
The purpose of the latter two experiments is two-fold: one
is to decrease the computational cost, and the other is to
find out if the DE process would still help in choosing con-
stants even if it’s not applied in every generation. These
experiments have been performed on both datasets. Taking
into account the stochastic behavior of the GEP algorithm,
these experiments are repeated 30 times, and the results are
averaged.

4.2 Experiment Analysis
We compare the results of the three experiments on the

two problems, to get some insight into the effect of different
strategies on the combination of the DE process with GEP.

In Table [1], the best residual is the best(smallest) residual
error of a chromosome among all of the final best individuals
throughout the 30 runs. Average of best residuals is the
average of all 30 final best residual errors. Average tree size
refers to the average size of the expression trees, i.e., the
number of nodes in the tree, of the 30 best residuals.

The first set of statistics are obtained from the experiment
where the DE process is turned on in every GEP generation.
As mentioned above, the first approach where DE is invoked
every generation is computationally expensive and takes sig-
nificant extra time, therefore, this experiment is only done
with the polynomial function dataset. The second and third
set of statistics correspond to the experiment where the DE
process is applied in every 5th and 10th GEP generation
respectively. The last set of numbers are the best results on
the same dataset, reported in [7], where constant creation
is done using the non-DE approach. The following observa-
tions can be made from Table [1]:

• GEP with DE shows significantly better results in terms
of Best residual, compared with the results in [7]. Hav-
ing the DE process applied in every GEP generation
provides better results than in every 5th and 10th gen-
eration.

• The experiments show better results in terms of the av-
erage of best residuals. Having DE in every generation
produces much better result than having DE applied
less frequently. The improvement on the polynomial
problem is more dramatic than that on the V-shaped
problem.

• Our approach generates significantly smaller expres-
sion trees on the polynomial problem than previous
work in [7], with the first experiment slightly outper-
forming the other two experiment. Expression trees for
the V-shaped problem almost have the same average
size as those in [7].

The conclusion drawn from the experiment is that hav-
ing DE embedded into GEP helps produce better approx-
imation of the optimal solution. The more frequent DE is
invoked in the evolution procedure, the better results GEP
can produce.

Dataset Statistics Every Gen. Every 5th Gen. Every 10th Gen. Best in [7]

Polynomial
Best residual 5.901 ∗ 10−6 1.0776 ∗ 10−5 1.989 ∗ 10−5 0.157

Avg. of best residuals 2.913 ∗ 10−4 0.005128 0.0223 0.966
Avg. tree size 22.2 22.8667 23.9333 37.3

V-shaped
Best residual 0.0089 5.1425 ∗ 10−4 1.038

Avg. of best residuals 0.2572 0.3404 1.863
Avg. tree size 26.5333 28.8667 28.4

Table 1: Comparison of the results of the experiment on both datasets.

4.3 A Closer Look at Constants
Since GEP, like any other genetic programming algorithm,

can produce a mathematical formula that is an approxima-
tion of the target solution for a regression problem, it pro-
vides us with a way to examine the constants tuned up by
DE process. To analyze the effect of DE on the choices of
constants for each of the two problems, we examined both
a good and a bad example of their GEP formulas.

The polynomial regression problem is relatively simple
and most of its GEP formulas in the two experiments are
almost perfect. A good example is shown in (9), which is
equivalent to the equation in (10). Its corresponding best
residual error is 9.463 ∗ 10−5. As shown in (10), the con-
stants are almost the same as those in the target function
in equation (6), with slight differences less than 10−4. A
relatively bad example of the GEP formula for the same
problem that produces best residual error 0.1309 is shown
in equation (11), which is equivalent to (12). The constants
in (12) are still very close to those in the target function,
with differences less than 10−3.

y = (x∗(−0.399962−((−1∗x)∗(x−0.300001))))−0.599972
(9)

y = x3 − 0.300001x2 − 0.399962x − 0.599972 (10)

y = (x ∗ (0.501598 + (((2.180309/x) ∗ (x + 0.243787)) (11)

+x) − 1.855177)) ∗ (x − 1.126747)

y = x3 − 0.300017x2 − 0.400092x − 0.59878 (12)

Comparing equation (9) with equation (11), the difference
in their structures are noticeable, but both of them can be
converted into exactly the same structure of the target func-
tion. After the conversion, the constants in both formulas
(10) and (12) are very close to those in the target function,
but the real numbers in (12) are less precise than those in
(10).

The V-shaped function is much more complicated. As
shown in the previous sections, the performance of our ex-
periment on this dataset was far from perfect, although
decent improvement was shown. The GEP formula corre-
sponding to the best residual error on this dataset is shown
in (13), which is equivalent to the equation in (14). This
is a close approximation of the target function in equation
(7). Equation (15) is a worse example of the formula for this
dataset, whose corresponding best residual error is 0.5360.
Notice the structure of equation (15); it is far from the struc-

ture of the target function (7), and no matter how we try to
convert this equation, its equivalence is nothing like (7).

y = 7 ∗ (ex/0.138066) − ((log(x)/(−0.500009)) (13)

−elog(x)−(−1.001507∗(1.445251+log(x))))

y = 7.242913ex + log(x1.999964) + 4.252168e1.447429 (14)

y = log(ex/0.042217 +(−1.865846+x∗(−119.921534))) (15)

The above analysis shows that when GEP finds a structure
close to that of the target function, DE often times can find
proper constants for that arbitrary formula. While GEP
fails to find an appropriate formula structure through its
evolution, the power of DE can not be made full use of
in optimization, even though it might still be able to find
the best constants given a bad structure of the formula.
Therefore, GEP and DE are dependent on each other in the
process of evolution, to find a good approximation. A good
GEP formula structure may brings out the power of DE, and
proper constants found by DE may simplify the structure of
a GEP formula.

5. CONCLUSIONS AND FUTURE WORK
We have explored a new way of constant creation for GEP

using Differential Evolution (DE), which improves the per-
formance the GEP algorithm. The experimental results
reported show that the embedded DE process has a very
strong capability of finding optimal constants, and finding
a close approximation to the target regression function. In
turn, that improves the performance of the GEP algorithm,
in terms of residual error. It also may simplify the structure
of a GEP formula, by reducing the size of the expression
tree. However, to what extent its power can be utilized and
it can contribute to finding the optimal solution largely de-
pends on the structure of a GEP formula. If GEP fails to
evolve a structure close to the target formula, DE may not
be able to find constants that are close to those in the tar-
get function, even if it may still find the optimal constants
for that arbitrary structure. On average, the DE controlled
tuneup process improves the performance of GEP signifi-
cantly, and is able to find constants close enough to the
optimal ones.

In our future work, we plan to further examine the DE
embedded GEP algorithm with large scale regression prob-
lems. To do this, we need to first address the drawback of
this approach, i.e., the extra computation caused by the DE
process. Therefore, one of our main efforts will be to reduce
the computational cost. We have experimented with DE not

invoked in every generation of GEP, and it still improves the
GEP algorithm significantly, although not as good as when
DE is invoked in every generation. Another alternative is to
apply DE only when the fitness of the GEP population is
improved, compared with an earlier generation. Currently,
DE is applied on every chromosome in a population to tune
up their constants, which is very time consuming. One al-
ternative to this is to apply DE on the best individual chro-
mosome or an elite group that contains set of individuals
with relatively high fitness values.

6. ACKNOWLEDGMENTS
We appreciate the Physical Realization Research Center

of Motorola Labs for providing funding for this research
work.

7. REFERENCES
[1] S. Cagnoni, D. Rivero, and L. Vanneschi. A purely

evolutionary memetic algorithm as a first set towards
symbiotic coevolution. In IEEE World Congress on
Evolutionary Computation(CEC2005), pages
1156–1163, Edinburgh, United Kingdom, September
2005.

[2] H. Cao, L. Kang, Y. Chen, and J. Yu. Evolutionary
modeling of systems of ordinary differential equations
with genetic programming. Genetic Programming and
Evolvable Machines, 1(4):309–337, 2000.

[3] C. Ferreira. Gene expression programming: A new
adaptive algorithm for solving problems. Complex
Systems, 13(2):87–129, 2001.

[4] C. Ferreira. Function finding and the creation of
numerical constants in gene expression programming.
In The 7th Online World Conference on Soft
Computing in Industrial Applications, Septempter -
October 2002.

[5] C. Ferreira. Gene Expression Programming:
Mathematical Modeling by an Artificial Intelligence.
Angra do Heroismo, Portugal, 2002.

[6] M. Keijzer. Improving symbolic regression with
interval arithmetic and linear scaling. In European
Conference on Genetic Programming., volume 2610 of
LNCS, pages 70–82, 2003.

[7] X. Li, C. Zhou, P. C. Nelson, and T. M. Tirpak.
Investigation of constant creation techniques in the
context of gene expression programming. In
M. Keijzer, editor, Late Breaking Papers at the 2004
Genetic and Evolutionary Computation Conference,
Seattle, Washington, USA, July 2004.

[8] M. Mitchell. An Introduction to Genetic Algorithms
(Complex Adaptive Systems). MIT Press, 1996.

[9] M. Neal, M. Wastney, G. Levy, R. Drynan,
W. Fulkerson, E. Post, B. Thorrold, C. Palliser,

P. Beukes, and C. Folkers. Applying differential
evolution to a whole-farm model to assist optimal
strategic decision making. In MODSIM 2005
International Congress on Modelling and Simulation.
Modelling and Simulation, pages 246–252, Melbourne,
Australia, December 2005.

[10] M. ONeill, I. Dempsey, A. Brabazon, and C. Ryan.
Analysis of a digit concatenation approach to constant
creation. In Proceedings of European Conference on

Genetic Programming, volume 2610 of LNCS, pages
173–182, Essex, April 2003.

[11] K. E. Parsopoulos, D. K. Tasoulis, N. G. Pavlidis,
V. P. Plagianakos, and M. N. Vrahatis. Vector
evaluated differential evolution for multiobjective
optimization. In IEEE Congress on Evolutionary
Computation (CEC 2004), pages 204–211, Portland,
Oregon, USA, 2004.

[12] C. Ryan and M. Keijzer. An analysis of diversity of
constants of genetic programming. In Proceedings of
European Conference on Genetic Programming,
volume 2610 of LNCS, pages 404–413, Essex, April
2003.

[13] R. Storn and K. Price. Differential evolution design of
an iir-filter. In IEEE International Conference on
Evolutionary Computation ICEC’96, pages 268–273,
New York, USA, May 1996.

[14] R. Storn and K. Price. Differential evolution a simple
and efficient heuristic for global optimization over
continuous spaces. Journal of Global Optimization,
11(4):341–359, December 1997.

[15] N. M. I. the Discovery of Numeric Constants in
Genetic Programmin. Matthew evett and thomas
fernandez. In the Third Annual Genetic Programming
Conference, pages 66–71, Madison, Wisconsin, 1998.

[16] A. Topchy and W. F. Punch. Faster genetic
programming based on local gradient search of
numeric leaf values. In the Genetic and Evolutionary
Computation Conference, pages 155–162, San
Francisco, California, 2001.

[17] C. Zhou, P. C. Nelson, W. Xiao, and T. M. Tirpak.
Discovery of classification rules by using gene
expression programming. In Proceedings of the
International Conference on Artificial Intelligence
(ICAI02), pages 1355–1361, Las Vegas, U.S.A., June
2002.

[18] C. Zhou, W. Xiao, P. C. Nelson, and T. M. Tirpak.
Evolving accurate and compact classification rules
with gene expression programming. IEEE
Transactions on Evolutionary Computation,
7(6):519–531, 2003.

