
The application of evolutionary
computation towards the

characterization and classification
of urothelium cell cultures

Zhen ZHANG

Doctor of Philosophy

UNIVERSITY OF YORK
Electronic Engineering

September 2018

https://www.york.ac.uk/

2

Abstract

This thesis presents a novel method for classifying and

characterizing urothelial cell cultures. A system of cell

tracking employing computer vision techniques was applied

to a one day long time-lapse videos of replicate normal human

uroepithelial cell cultures exposed to different concentrations

of adenosine triphosphate (ATP) and a selective purinergic

P2X antagonist (PPADS) as inhibitor. Subsequent analysis

following feature extraction on both cell culture and single-cell

demonstrated the ability of the approach to successfully

classify the modulated classes of cells using evolutionary

algorithms. Specifically, a Cartesian Genetic Program (CGP)

network was evolved that identified average migration speed,

in-contact angular velocity, cohesivity and average cell clump

size as the principal features contributing to the cell class

separation. This approach provides a non-biased insight into

modulated cell class behaviours.

3

Contents

Abstract 2

List of Tables 7

List of Figures 9

Acknowledgements 11

Declaration of Authorship 13

1 Introduction 15
1.1 Classification and characterization of cell cultures 15
1.2 Opportunitiess for machine learning 15
1.3 Hypothesis . 16
1.4 Thesis outline . 16

2 Literature Review 19
2.1 Introduction . 19
2.2 Cell culture and characterization 19

2.2.1 The Cell . 19
Cell Types . 20

2.2.2 Cell culture . 21
2.2.3 Application of cell culture 22

2.3 Urothelium . 23
2.3.1 Structure and functions 23
2.3.2 Significance . 26

2.4 Technologies in cell characterization 30
2.4.1 Cell tracking . 30

Ctracker . 31
2.4.2 Modeling . 34

Compartment-based models 34
Agent-based models . 36
Lattice-based models . 37

4

2.5 Machine Learning . 39
2.5.1 Machine learning tasks 40

Supervised Learning . 40
Unsupervised Learning 40

2.5.2 Artificial neural network 40
Overview . 40
History . 41

2.5.3 Principal component analysis 44
2.5.4 Support Vector Machines 45
2.5.5 Evolutionary algorithms 46

Typical EAs in pseudo-code 47
2.5.6 Genetic Programming 48

Overview . 48
History . 49
Implementation . 49

2.5.7 Cartesian Genetic Programming 53
Overview . 53
Implemention . 54

2.5.8 Advantages of Cartesian Genetic Programming 57
No bloat . 59
Heightened Neutral Genetic Drift 59
Multiple-Input Multiple Output 59
Reuse of Internally Created Sub-Structures 59
Applications . 60

2.6 Conclusion . 61

3 Methodology 63
3.1 Introduction . 64
3.2 Data acquisition . 64

3.2.1 Video acquisition . 64
3.2.2 Cell tracking software 65

Parameters for tracking software 67
Line Length . 67
Invert . 67
Number of points . 69
Output Data . 70

3.3 Data Preprocessing . 72
3.4 Feature extraction . 73

5

3.4.1 Feature consideration 74
Average migration speed 76
Average angular velocity (or migratory persistence) . . 76
Clump definition . 76
Post and Pre Contact Behaviour 80
Cell Growth . 82
Contact Duration and size 82

3.5 Data Visualization . 82
3.5.1 Comparing training and test sets 85
3.5.2 Correlations between features 87

3.6 Dataset preparation . 89
3.6.1 Cell culture dataset . 89
3.6.2 Single cell dataset . 90

3.7 Application of PCA . 91
3.7.1 Importing necessary libraries 94
3.7.2 Pre-processing . 94
3.7.3 Feature transform by using PCA 95
3.7.4 Training classifier . 95

3.8 Application of SVM . 95
3.8.1 Importing libraries . 95
3.8.2 Pre-processing . 96
3.8.3 Training the algorithm 96
3.8.4 Making predictions . 97
3.8.5 Evaluating the trained algorithm 97

3.9 Application of evolutionary algorithms 97
3.9.1 Dataset . 98
3.9.2 Fitness function . 99
3.9.3 Parameters . 99

3.10 Conclusion . 100

4 Results and analysis 101
4.1 Introduction . 102
4.2 Statistical analysis of results . 102

4.2.1 Additional features . 104
4.3 PCA results . 104

4.3.1 Single cell dataset . 104
4.3.2 Cell culture dataset . 115

4.4 SVM results . 115

6

4.4.1 Single cell dataset . 116
4.4.2 Cell culture dataset . 116

4.5 CGP results . 116
4.5.1 Choice of generation . 117
4.5.2 Preventing overfitting 118
4.5.3 Choice of number of nodes 119
4.5.4 Analysis of evolved networks 119

4.6 Comparison of different Methods 123
4.7 Comparison of different datasets 123
4.8 Discussion . 124
4.9 Conclusion . 125

5 Conclusions and Further Work 127
5.1 Conclusion . 128
5.2 Contributions . 129

5.2.1 Feature Extraction . 129
5.2.2 Application of CGP . 129

5.3 Hypothesis Revisited . 129
5.4 Further work . 130

A Appendix I 131
A.1 Model Evalution results . 131

List of Abbreviations 137

Reference 139

7

List of Tables

3.1 Number of frames tracked for each cell with different Regen
values . 68

3.2 Summary of features extracted from cell culture videos. 75
3.3 Dataset splits into 9 smaller single cell data, each of them con-

sist cell culture with same time period and ATP concentration
which including cultures with PPADS and without PPADS. . . 90

3.4 Accuracy of PCA . 94

4.1 Average migration speed and average angular velocity val-
ues for a control culture with no ATP, a culture with 10uM
ATP and a culture with 50uM ATP. 104

4.2 PCA classification result for single cell data 105
4.3 SVM classification results for single cell data 116
4.4 SVM classification result for cell culture dataset with different

kernel functions . 116
4.5 Mean and standard deviation of accuracy of classifiers with

different CGP generation . 117
4.6 Mean classification accuracy and standard deviation of clas-

sifiers with differing number of nodes. 119
4.7 Percentage of connections between input nodes and other nodes

out of the total number of total nodes. 122
4.8 Overall results from each Machine learning algorithm where

CGP result is average of 10 runs in order to get average per-
formance. 124

9

List of Figures

2.1 Cell structure . 20
2.2 Normal human urothelial(NHU) cells in culture 22
2.3 Urinary system . 24
2.4 Umbrella, intermediate and basal cells 24
2.5 Bladder . 26
2.6 Cell-Cell contact . 28
2.7 Hift Flowchart . 31
2.8 The process used for Ctracker 33
2.9 Compartment Based Model . 35
2.10 Agent Based Model . 37
2.11 Latticed Based Model . 38
2.12 General form of ANNs . 41
2.13 Difference between ANN and RNN 44
2.14 PCA example . 45
2.15 SVM demonstration . 46
2.16 General form of EAs . 47
2.17 General form of GP . 50
2.18 Subtree mutation example . 53
2.19 GP crossover example . 53
2.20 General form of CGP . 56
2.21 CGP mutation . 58

3.1 Sample frame from time-lapse video of NHU cells in culture. . 65
3.2 Ctracker example frame . 66
3.3 Ctracker link example . 66
3.4 Example Frame with large Regen 67
3.5 Regenerate Time Comparison 68
3.6 Number of points Comparison 70
3.7 Data Comparison . 71
3.8 beforescreen . 72
3.9 afterscreen . 73

10

3.10 Data formation . 77
3.11 Migration speed . 78
3.12 Cell moving direction . 78
3.13 Angular Velocity . 79
3.14 Cell example . 81
3.15 Cell movement path . 83
3.16 First five instance of dataset . 84
3.17 Output Category Count . 85
3.18 Dataset feature summary . 86
3.19 Distribution of feature . 87
3.20 Variable correlations . 88
3.21 Feature before and after standardization 91
3.22 PCA output . 93
3.23 CGP flow chart . 98

4.1 ANOVA test results . 103
4.2 Manual tracking results . 105
4.3 Post contact speed . 106
4.4 In-contact speed . 107
4.5 Angular velocity . 108
4.6 Post contact angular velocity 109
4.7 Average clump size . 110
4.8 In-contact angular velocity . 111
4.9 Average contact duration . 112
4.10 Cohesivity . 113
4.11 Cell count . 114
4.12 PCA result visualization of Cell culture dataset 115
4.13 Box plot with different generation numbers 117
4.14 BoxPlot of classifiers with different number of Nodes 119
4.15 Example CGP . 121

11

Acknowledgements
First, my heartfelt and foremost gratitude goes to my first supervisor, Prof.
Stephen Smith. He has been supporting my research by providing lots of
helpful advice since my first day as a research student. I could not have
imagined having a better advisor and mentor for my Ph.D study.

I would also like to thank my second supervisor, Dr. Steven Johnson - he’s
given me many useful suggestions and much assistance with my research
life.

My thanks also go to Prof. Jenny Southgate and Dr. Dawn Walker for their
insightful comments and encouragement.

Finally, I must express my very profound gratitude to my parents and to
my girlfriend Xun for providing me with unfailing support and continuous
encouragement throughout my years of study and through the process of
researching and writing this thesis. This accomplishment would not have
been possible without them. Thank you.

13

Declaration of Authorship
I declare that this thesis is a presentation of original work and I am the sole
author. This work has not previously been presented for an award at this, or
any other, University. All sources are acknowledged as references. Where
the thesis is based on work done by myself or jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Sections of the work described in this thesis have been previously published
in the following journal article and conference proceeding.

Journal Article

• Zhang, Z., Bedder, M., Smith, S. L., Walker, D., Shabir,

S., & Southgate, J. (2016). Characterization and classifi-

cation of adherent cells in monolayer culture using auto-

mated tracking and evolutionary algorithms. Biosystems,

146, 110-121.

Conference Paper

• Zhang, Z., Bedder, M., Smith, S. L., Walker, D., Shabir, S., &

Southgate, J. (2015, September). Automated motion analy-

sis of adherent cells in monolayer culture. In International

Conference on Information Processing in Cells and Tissues

(pp. 185-194). Springer, Cham.

15

Chapter 1

Introduction

1.1 Classification and characterization of cell cul-

tures

Cell culture is a method of simulating the internal environment (sterile, suit-
able temperature, pH and certain nutritional conditions, etc.) in vitro to
enable it to survive, grow, reproduce and maintain its main structure and
function. Cell culture is an essential process, both for the whole of bioengi-
neering and for one of the biocloning technologies, and cell culture itself is
the mass cloning of cells. The cell culture technique can consist of a single
cell being cultured in large numbers into simple single cells or multicells
with very little differentiation. Cell culture is an important and commonly
used technique in cell biology research methods, through which it is possi-
ble to obtain a large number of cells, but also to study the cell anabolism,
cell growth and proliferation.

To characterize complex biological systems requires the integration of ex-
perimental and computational research. Currently, ways to understand cell
culture include computational modelling[1]–[4] and cell tracking software[5],
[6].Computational systems biology resolves fundamental questions in our
knowledge of life, but advances here will lead to discoveries in medicine,
drug discovery and engineering.

1.2 Opportunitiess for machine learning

Machine learning, is a branch of the field of artificial intelligence whose ba-
sic idea is a discipline that builds statistical models based on data and uses

16 Chapter 1. Introduction

the models to analyze and predict the data.

The most basic approach to machine learning is to use algorithms to parse
data, learn patterns from the data, master those patterns, and then make
decisions or predictions about events in the real world. Unlike traditional
software programs that are hard-coded to solve specific tasks, the core of
machine learning is to train with large amounts of data and learn from the
data how to accomplish the task through various algorithms

Current experimental molecular biology is now producing the high-throughput
quantitative data needed to support research using numerical methods such
as machine learning. At the same time, substantial advances in software
methods and computational power have enabled the understanding and
analysis of the intricate biology.

1.3 Hypothesis

The following hypothesis is used to guide the work presented in this thesis:

“ Evolutionary Computation is an effective means of characterising and
classifying urothelium cell cultures through time-lapse spectroscopy”

It is proposed that using Evolutionary Algorithms provides a novel method
for tracking and characterizing urothelium cell cultures. Specifically, that
a Cartesian Genetic Program (CGP) network can be evolved that identifies
characteristics of cell migration as the principal features contributing to the
classification of cell cultures. This approach not only provides a non-biased
and parsimonious insight into modulated cell class behaviours, but can pro-
vide a discrete mathematical expression describing these for the parameter-
ization of related computational models.

1.4 Thesis outline

Chapter 2 provides a background to cell culture, urothelium and machine
learning. In Section 2.1, the literature of past work on this problem are re-
viewed and important methods and techniques are introduced. In Section
2.2 Evolutionary Algorithms are introduced including the concept, struc-
ture and range of algorithms available. Specifically, Genetic Programming
is considered, the algorithms discussed and the related literature reviewed.

1.4. Thesis outline 17

Chapter 3 considers the methodology adopted in this work. Firstly, the un-
derlying biological processes of the urothelium and how the cell tracking
techniques adopted are applied is described in Section 3.2. In Section 3.3
details of the definition and implementation of features to be extracted from
the cell culture time-lapse spectroscopy is explained in depth from both a
biological and computational viewpoint. The implementation and configu-
ration of the evolutionary algorithm employed, CGP, is described in Section
3.4. The visualization of the data and preparation of the data sets are consid-
ered in Sections 3.5 and 3.6 respectively. The application of the evolutionary
algorithm to the data sets is then described in Section 3.9, following con-
sideration of alternative approaches using Principal Component Analysis
(Section 3.7) and Support Vector Machines (Section 3.8).

Chapter 4 presents the results and analysis of the experimental work, for
each of the methods introduced in Chapter 3.

The thesis conclusion is provided in Chapter 5 summarising the principal
findings from the work undertaken, the implications of these and recom-
mendations for future work.

19

Chapter 2

Literature Review

Contents

1.1 Classification and characterization of cell cultures 15

1.2 Opportunitiess for machine learning 15

1.3 Hypothesis . 16

1.4 Thesis outline . 16

2.1 Introduction

This literature review comprises four parts: the first introduces the cell and
cell culture, and importantly, the role of cell culture in biological research.
The second part introduces the urothelium along with the function and sig-
nificance of urothelial cells. The third reviews current technologies applied
in the analysis and understanding of cell behaviour within cell cultures, in-
cluding modeling and cell tracking. The final part of this chapter reviews
Machine Learning and comparable numerical methods for characterizing
and classifying cell cultures.

2.2 Cell culture and characterization

2.2.1 The Cell

Frequently referred to as the ‘building block of life’, a cell is the smallest
unit of life and forms the elementary structural and biological unit of every
identified living organism.

20 Chapter 2. Literature Review

FIGURE 2.1: Cell Structure[11]

Cells comprise a cytoplasm surrounded by a membrane which consists of
numerous biomolecules, including proteins and phospholipids.[7] It is pos-
sible to categorise organisms as multicellular (including plants and animals)
or unicellular (e.g. bacteria).[8] Human beings have in excess of 10 trillion
(1013) cells, with this number differing for other plants or animals. It is only
possible to observe the majority of plant and animal cells using a micro-
scope, with dimensions ranging between 1 and 100 micrometres.[8]

In 1665, Robert Hooke discovered the cell. The units took their name from
their similarity with the cells that Christian monks had inhabited in a monastery.[9]
Matthias Jakob Schleiden and Theodor Schwann were the first to formulate
Cell Theory in 1839. This asserts that every organism consists of at least one
cell; that every cell originates from pre-existing cells; that each cell incorpo-
rates the hereditary data required for controlling the ways cells operate and
for passing information to subsequent generations of cells; and that cells
are the essential unit of structure and function in every living organism.[10]
Cells came into existence on Earth more than 3.5 billion years ago.

Cell Types

There are two types of cells. The first, termed eukaryotic, can be either single-
celled or multicellular and possess a nucleus. This is in contrast to the sec-
ond type, prokaryotic (single-celled organisms), which are devoid of a nu-
cleus.

2.2. Cell culture and characterization 21

Prokaryotic cells Prokaryotes, comprising the bacteria and archaea, are
two of the three kingdoms and were the first form of life to emerge on Earth.
They exhibited crucial biological functions such as cell signaling. In compar-
ison to eukaryotic cells, prokaryotic cells are less complex and not as big.
They are devoid of membrane-bound organelles like a nucleus. A prokary-
otic cell’s DNA comprises a single chromosome that has direct contact with
the cytoplasm. The nuclear region in the cytoplasm is referred to as the nu-
cleoid. The majority of prokaryotes are the smallest of all organisms, with
their diameter ranging from as little as 0.5 to 2.0 µm.[12]

Eukaryotic cells The following are all eukaryotic: plants, animals, fungi,
slime moulds, protozoa, and algae. Such cells are approximately fifteen
times wider in comparison to a normal prokaryotic cell; their volume has
the potential to be one thousand times the size. It can be observed that com-
partmentalization is the most notable aspect of eukaryotes in contrast to
prokaryotes. Compartmentalization refers to membrane-bound organelles
(compartments) being present where particular functions occur. The most
significant of such functions is a cell nucleus.[8] This is an organelle storing
the DNA of the cell. This nucleus is responsible for the name of the eukary-
ote ("true kernel (nucleus)").

2.2.2 Cell culture

Cell culture refers to the method of cells being grown within controlled con-
ditions, which ordinarily deviate from their natural environment. Once the
relevant cells have been separated from living tissue, it subsequently be-
comes possible to control them with the necessary conditions. Such condi-
tions differ for every type of cell, although they are typically involve an ap-
propriate vessel with a substrate or medium that provides the required nu-
trients (amino acids, carbohydrates, vitamins, minerals), additional growth
factors and hormones, and gases (CO2, O2), and controls on the physio-
chemical environment (pH buffer, osmotic pressure, temperature). Most
cells require a surface or an artificial substrate (adherent or monolayer cul-
ture) whilst it is possible to grow others free floating in culture medium
(suspension culture). The majority of cells have their lifespan dictated by
genetics. However, some culturing cells have been converted into immortal
cells allowing them to reproduce indefinitely should the necessary condi-
tions be created.[13]

22 Chapter 2. Literature Review

FIGURE 2.2: Normal human urothelial(NHU) cells in culture

The concept "cell culture" practically relates to cells originating from mul-
ticellular eukaryotes, particularly animal cells, in comparison to alternative
forms of culture that also produce cells. These include plant tissue culture,
fungal culture, and microbiological culture (of microbes). The historical
evolution and processes of cell culture are strongly linked to the develop-
ment and methods of tissue culture and organ culture. There is an addi-
tional connection to viral culture, with cells as hosts for the viruses.

2.2.3 Application of cell culture

One aspect that is crucial to the formation of viral vaccines and other prod-
ucts of biotechnology is the mass culture of animal cell lines. The culture of
human stem cells is utilised in order to broaden the quantity of cells and to
categorise the cells into a range of somatic cell types for transplantation.[14]
Stem cell culture is additionally utilised in order to harvest the molecules
and exosomes produced by the stem cells in order to ensure therapeutic
progression.[15]

Biological products generated by recombinant DNA (rDNA) technology in

2.3. Urothelium 23

animal cell cultures include enzymes, synthetic hormones, immunobiolog-
icals (monoclonal antibodies, interleukins, lymphokines), and anticancer
agents. Whilst it is possible to generate numerous less complex proteins
utilising rDNA in bacterial cultures complex, secreted and glycosylated pro-
teins need to be formed in animal cells. The hormone erythropoietin is a
significant instance of such a complex protein. Because of the expense of
developing mammalian cell cultures, research into the use of direct gene
transfer using particle bombardment and transitory gene expression of in-
sect cells, higher plants, single embryonic cell and somatic embryos has also
proved effective. Confocal microscopic observation additionally provides
the opportunity of verifying the single cell origin of somatic embryos and
the asymmetry of the first cell division, which commences the process.

Additionally, cell culture is an important process for cellular agriculture.
The objective of this is to offer innovative products as well as innovative
methods of generating existing agricultural goods such as milk, (cultured)
meat, fragrances, and rhino horn from cells and microorganisms. Conse-
quently, it is regarded as one way of fulfilling animal-free agriculture. Fur-
thermore, it is a crucial means of providing education regarding cell biology.

2.3 Urothelium

The smooth layers of muscle which encompass the pelvic urethra, the ureter
and the bladder require the covering epithelium to give a sonic hedgehog
signal from the covering in order that the mesenchyme is distinguished
from it. It is surprising that this signal continues to be expressed in the
entire life, not being the urothelium specifically.[16].

Contrastingly, the urothelium is, in fact, a highly-specific urinary tract cov-
ering the bladder’s surface, pelvic urethra, renal pelvis and the ureter which
is adjacent to the deferent ducts’ outlet in rodents.

2.3.1 Structure and functions

Urothelium, otherwise referred to as "transitional epithelium" comprises
one basal cell layer in rodents and more than one in larger mammals like
human beings and cattle, in addition to a superficial cell layer and an inter-
mediate cell layer.

24 Chapter 2. Literature Review

FIGURE 2.3: Structure of Urinary system [17]

FIGURE 2.4: Umbrella, intermediate and basal cells[18]

2.3. Urothelium 25

The "umbrella" cells which form the highly-distinctive and superficial urothe-
lium layer do not stretch to the basement of the membrane basement. In-
stead, pseudostratified epithelium conceals the collecting kidney papilla
and ducts, [19] , being the ureteric bud’s most distal area. Nevertheless,
human beings and rodents are different in that the epithelium which con-
ceals the papilla is itself concealed by urothelium instead of pseudostrati-
fied epithelium. Despite the fact that the urothelium has a particularly slow
turnover rate of 200 days, progenitor cells can be discovered throughout
the urothelium.[20] Nevertheless, there is a regional difference in their den-
sity which is about twice as high in the base of the bladder than it is in its
dome.[21]

Two of the of the urothelium’s physiological attributes are its capability of
accommodating stretch and its particular electrical resistance which is of
a high transepithelial nature. [20]. Both of these properties are attributed
to the so called “urothelial plaques". These are two-dimensional concave-
shaped crystalline frameworks of 0.3-1mm diameter which occupy 90 per-
cent of the apical surface of the urothelium. These plaques are hexameric
16-nm particle aggregates which subsequently comprise four different uro-
plakin sub-units. These asymmetrics are unit membranes which are out-
wardly concave and connected by constricted "hinge" areas.[20]. At differ-
ent anatomical sites, urothelia differ quantitatively. [19] For example, the
ureteral urothelium has a lower content of cytoplasmic fusiform vesicles
and uroplakin proteins than does the bladder urothelium.[20] However, it
is not yet settled whether the urothelium varies qualitatively within differ-
ent areas. Furthermore, the plaques possess clinical suitability since they
permit uropathogenic Escherichia coli to adhere to their surface.[20]

The late fetal and early postnatal period in rodents is characterised by ex-
treme remodelling of the lining of the bladder. During this period of time,
proliferation of the urothelium, desquamation and programmed cell death
are involved in far greater activity than at any other time. [22] . Cytok-
eratin and uroplakins are in continuous existence within the urothelium.
However, the passage of cytokeratin 18 into cytokeratin 20 expression[22]
as well as the emergence of polyploidy ker (1958) urothelial cells coexist
with the commencement of the remodelling period at the final prenatal day,
and uroplakin-positive cells continually co-express cytokeratin 20.[19]. The

26 Chapter 2. Literature Review

FIGURE 2.5: Bladder[23]

urothelium expresses several kinds of receptors, among which are choliner-
gic receptors. The activity of these receptors, having a sensory role, is con-
trolled by the activity of the sub-urothelial nerve plexus, and consequently,
local variations in vascular perfusion and/or reflex contractions of the blad-
der. In the trigone area, the sub-urothelial nerve plexus is especially well
advanced.

2.3.2 Significance

In response to physical or any other type of impairment, the urothelium
transfers quickly and transiently from a stable and mitotically-quiescent
and obstacle into a state which is extremely proliferative. This switch is
facilitated by mechanisms which are key to the bladder’s pathophysiology,
but are not well understood. It is reported that the urothelium responds
to chemical and mechanical stimulation by releasing soluble factors which
include adenosine triphosphate (ATP), which are expected to occupy a func-
tion in mediating neuronal signalling.[24] Furthermore, the urothelium in-
dicates purinergic P2X and P2Y channels and receptors which respond to
ATP which is released from paracrine or autocrine origins.[25] The conse-
quences of this signalling process are not fully comprehended, since it may

2.3. Urothelium 27

possess a feedback function in the modulation of neuronal signalling or it
may also occupy a more direct function in the repair of an urothelial ob-
struction.[25] Furthermore, it has been advocated that aberrant indication
of receptors and/or mediators which the urothelium releases is involved
in dysfunctional bladder diseases which include and interstitial cystitis and
idiopathic detrusor instability.[26] Irrespective of the indicated expression
of these receptors and channels by the urothelium, agreement has been
confounded by the contradictions in experimental techniques including the
species specificity of reagents and the characteristics of the tissue develop-
ment.[27]

A cell culture technique to examine usual human urothelial (NHU) tissues
and cells in vitro has been developed. In previous work, the application of
this culture technique demonstrated that promptin P2 receptors with exoge-
nous ATP advanced the repair of scratch wounds in addition to the ecto-
ATPase inhibitor ARL-67156. This avoids a failure of autocrine-generated
ATP. In contrast, whether ATP was present or absent, the scratch wound re-
pair[25] was inhibited by the blockade of P2X activity. This shows ATP to
be among the main elements released in the case of urothelial impairment
which will probably contribute to urothelial barrier repair.

Urothelium is the transitional epithelium which lines the bladder and is re-
lated to the role of the urinary tract as a stable, yet self-repairing, urinary
obstruction. The urothelium forms a complete barrier when the superficial
cells differentiate and acquire surface membrane plaques consisting of uro-
plakins[29] and well-developed tight intercellular junctions[30]. The sepa-
rate cells inside the urothelium are sustained in a state which is mitotically-
quiescent until, following impairment to the obstruction, cells from every
layer move into a proliferative phenotype for the purpose of effecting bar-
rier repair.[31] The balance between differentiation and the paradoxical pro-
cedures of regeneration is crucial to sustaining an efficient urinary obstruc-
tion. However, the mechanisms controlling urothelial tissue homeostasis
and the exchange between regenerative (self-repair) and quiescent pheno-
types are not well comprehended.

A simple, replicable method for culturing separated normal human urothe-
lial (NHU) cells has been developed which allows functionally-differentiated
and regenerative obstruction states to be obtained. [32] In most basic sit-
uations, NHU cells grown in serum- free, low-calcium conditions assume
a “basal” epithelial cell phenotype in which cell growth is in migratory,

28 Chapter 2. Literature Review

FIGURE 2.6: Schematic model of Wnt/-catenin signalling
crosstalk with EGFR/ERK and cell:cell contact-mediated -

catenin regulation in NHU cell proliferation.[28]

2.3. Urothelium 29

non-stratified cultures which are very proliferative and which at conflu-
ence become contact-inhibited. [33]. By manipulating exogenous calcium
from low [0.09 mM] to near-physiological [2 mM], the E-cadherin (adherens)
contacts can be altered. This may also be achieved by retroviral transduc-
tion of a negative E-cadherin (H-2Kd-E-cad) construct. Furthermore, it has
been demonstrated that population growth can be encouraged by manipu-
lating the stability of E-cadherin cell–cell contacts. This is differentially con-
trolled through the Phosphatidylinositol 3-Kinase (PI3-K)/AKT signalling
pathway and the Epidermal Growth Factor Receptor (EGFR)/Extracellular
Signal-Regulated Kinase (ERK) pathway. [34] The EGFR/ERK pathway
is down-regulated by stable adherens junctions while they induce the ac-
tivity of the PI3-K/AKT pathways which in turn advances intensification
at low-cell density. The proliferative capacity of NHU cells is impeded
by E-cadherin. Functional inactivation of these stable contacts has been
shown to be calcium mediated and also reduces E-cadherin-mediated PI3-
K/AKT induction. However, it improves the proliferation of NHU cells
by advancing the autocrine-driven EGFR/ERK pathway, thereby activating
b-catenin-TCF signalling through GSK3 phosphorylation and inactivating
the inhibition. Moreover, in this case when the EGFR is blocked, the NHU
cells respond to canonical Wnt signalling, provided the exogenous Wnt
ligand is supplied endogenously and the cells are cultured with palmitic
acid. This enables post-translational palmitylation of autocrine-produced
Wnt ligands.[28]

Therefore the inherent self-repair capacity is controlled by a complicated in-
terrelationship between a minimum of three intracellular autocrine-controlled
pathways which interact by the control of the availability or activity of com-
ponents of these major pathways (e.g. E-cadherin, EGFR, pERK, b-catenin,
and pAkt, as shown in Figure. 1). The E-cadherin-defined adherens junc-
tion, in practice, serves as a principal regulator through which urothelial
cells separately “sense” and initiate neighbour regulation for the purpose
of controlling the growth of a population of cells. This is particularly self-
regulating and context-specific within the local population as the cell den-
sity and the tendency of cells to generate cell-cell bonds influence the acti-
vation of downstream pathways and receptor availability. Additional regu-
lation is also achieved by both positive and negative feedback between the
signalling pathways. Population homeostasis disturbance; for example, by
scratch-wounding a confluent contact-inhibited culture, results in the cells

30 Chapter 2. Literature Review

having a local response. These are complicated interactions and, as pre-
viously shown, the PI3K pathway contribution[34] may be informed from
modelling.

2.4 Technologies in cell characterization

Over the past two decades, bioimaging technologies have progressed con-
siderably, permitting the dynamic processes of living cells to be investigated
at high temporal and spatial resolutions .

2.4.1 Cell tracking

Cell tracking is a key technology that facilitates quantitative analysis of in-
tracellular dynamic processes, such as cell migration, which are character-
istic in normal tissue development and tissue disease. Speed and migra-
tion type, and the morphological transformations experienced by the cell
in the course of movement are distinctly associated with the biomechani-
cal properties of the surrounding environment.[35], [36] Consequently, pre-
cise quantification of both is important for comprehending the complicated
mechanobiology of cell migration.

A hierarchical cell-tracking technique which comprises the two functions of
cell tracking and detection is sometimes referred to as a Hift. The input to
the Hift is a sequence of raw microscopy images or frames from a time-lapse
spectroscopy video. A filtering technique is first applied within the Hift to
eliminate noise and improve the contrast of the raw images or video frames.
The cells within each resulting image are then located and segmented as
part of the detection phase; the cell’s centroid being used as a unique marker
by which subsequent tracking of the cell can be performed. Consequently, it
is possible to abstract each cell as a point, using its located centroid, which
is of particular use when tracking the cell in other cultures and contexts.
Hence, the proposed Hift provides a common structure which can be used
for tracking various cell types.

There are three stages to the Hift tracking module that are concerned with
reliably tracking the trajectory of cells over successive frames of the time-
lapse video. The first stage is concerned with establishing interconnections
between every pair of cell centroids in the two neighbouring frames, which

2.4. Technologies in cell characterization 31

FIGURE 2.7: Overall flowchart of Hift cell tracking system.
The upper figure (A) introduces the detection module, and
the output of this module is a structure of cell locations in
all frames. The below figure (B) is the tracking module, af-
ter the tracklet generation step, a bunch of short tracklets are
established, which link all the detected cells. The cell motion
events will be recognized based on the tracklets to filter the

errors and complete trajectories.

are logged for subsequent analysis. The second stage involves the recogni-
tion and correction of temporary merge and division cell events according
to the tracking analysis previously completed. The third and final stage lo-
cates "lost" cells through the application of an optimisation procedure that
uses temporal and spatial active field to match the lost cell occurrences and
establish their final trajectories. Figure 2.7 depicts the Hift flowchart.

Ctracker

Ctracker is a software system developed by Matthew Bedder (Department of
Computer Science at the University of York) that utilises the Open CV com-
puter vision programming library for automated cell tracking from time-
lapsed videos.[37] Each frame is processed individually in order to identify
candidates for tracking, and subsequently, characterising, cell movement
within a cell culture.

32 Chapter 2. Literature Review

The raw time-lapse video is read into Ctracker which pre-processes each
frame to identify the position of new cells or track the movement of previ-
ously identified cells.

Gaussian blurring is applied to each frame of the movie in order to elimi-
nate noise. Intensity thresholding to a preordained value generates a binary
image, effectively segmenting the cells from the background of the video
frame image. Subsequently, a distance transform is applied to the binary
image, producing a "distance image" in which the centres of cells (or cell
groups) are allocated a high value, the edge of cells a low value, and the
background a value of zero. The distance images’ local maxima are then
calculated for the purpose of providing an estimate of the location of the
centres of the cells within the frame. Multiple local maxima located within
a small area are filtered in order to decrease the number of false cell regis-
trations due to multiple maxima being identified within a single cell’s body.
The resulting maxima’s (x,y) coordinates are subsequently used to estimate
the cell locations inside the frame. To confirm this, the position of each re-
spective cell in the previous video frame, relative to to the distance image,
is multiplied by a basic Gaussian filter and the maximum value of the pixel
in this area used to assess the position of the new cell. Despite the simplicity
of this approach, it has been shown to be both effective and efficient. The
distance image identifies the centre of the cells and the application of the
Gaussian filter confirms that the preferred matches are those adjacent to the
original cell location. Despite the efficiency of the cell-tracking procedure,
it cannot always recognise and track cell positions for the entire duration
of the video. Initially, multiple candidate cell locations are calculated for
the purpose of identifying as many cells as possible, many of which rapidly
converge to the same locations. Likewise, occasionally, the cell-tracking pro-
cedure fails to track the location of cells in subsequent frames, leading to an
overall decline in the number of cells tracked over the duration of the video.
Such problems in tracking cells may be caused by cell proliferation (produc-
tion of new cells), cell death (cell loss), occulsion (one cell moving in front of
another) and cells travelling in or out of the field of view. A technique was
devised to reduce the effect of these issues by periodically restarting the cell
recognition procedure, to identify all cell positions without dependency on
the location of cells in the previous video frame. The approach was effective
in tracking an adequate number of cells for the duration of the video, which
sufficiently described the cell population. The entire cell-tracking procedure
is outlined in figure 2.8.

2.4. Technologies in cell characterization 33

FIGURE 2.8: The process used for detecting cell locations
within a video, and tracking of detected cells between video

frames.

34 Chapter 2. Literature Review

2.4.2 Modeling

The field of systems biology has, over the past decade, gained considerably
from computational paradigms and methods previously used exclusively
in computer science to evaluate a program’s safety and correctness. The de-
sign of a biological paradigm within this setting equates to the development
of a computer program. Several programming languages, most of which are
biological domain specific, provide a method of defining the instruction se-
ries which defines the biological process control flow.

The language syntax defines the methods by which the symbols can be
merged to construct well-formed instructions or sentences. Frequently, this
specification is represented textually; for example, in a rule-based system or
process calculus. However, in many situations, a graphical representation
such as state charts or Petri nets are also available. In this way, the user
is assisted in the visualisation of the procedure with diagrams which illus-
trate species flow in the change to their internal states or their reactions.
The semantics describe the behaviour of the paradigm and how it ought
to be executed by the computer, thereby revealing the interpretation of the
syntactically valid instructions. Furthermore, there is a likelihood that a
particular paradigm, by the utilisation of a specific language syntax, could
be applied by utilising various language sources; for instance: a series of
rules on chemical reactions may be applied by utilising ongoing linguistics
(ordinary differential equations [ODEs] on concentrations of molecules) or
stochastic semantics (number of molecules), dependent upon the standard
of complexity and/or approximation [38] that is desired. For instance, CO-
PASI [39], [40] is an instrument for numerical imitation and examination of
biochemical networks for both their stochastic and continuous dynamics.

Compartment-based models

It is usual for biological systems to be organised into compartments such
as the cell nucleus, cell membrane and organelle. The compartments ex-
change molecules between one another in accordance with certain rules.
Specialised compartment-based paradigms (see figure 2.9) capture many
biological properties; for example, the compartments’ dynamic rearrange-
ments represent a type of behaviour noted in the mitochondria. The paradigms
also capture molecules movement between these.

2.4. Technologies in cell characterization 35

FIGURE 2.9: Compartment Based Model [41]

36 Chapter 2. Literature Review

Moreover, the membranes’ study which separates the sections has in com-
puter science implemented a novel field known as membrane computing
whose objective is to find new bioinspired computational models, like the P
systems.[42] Nevertheless, such paradigms are more suitable for computa-
tion theory rather than for modelling in systems biology.

Bioambients [41] is another appropriate modelling structure in which a pro-
cess algebra enhanced with important operators can particularise splitting
and merging as well as communication between biological compartments.
BAM [43], [44] is an instrument to execute stochastic bioambients which
progressed into Brane calculus [45] and presents a language to define the
vigorous membrane behaviour. However, in bioambients, ambient calcu-
lus, otherwise the compartment, occupies an active function in stipulating
which procedures may enter or leave from this. Moreover, Brane calculus
presents another aspect where membranes have control of the coordinators
and occupy their function. Currently there is no implementation of this that
is available.

Agent-based models

Agent-based models[46], [47] (see figure 2.10) consider a collection of au-
tonomous decision-making entities known as agents. These individually
sense the environment and subsequently reach decisions according to a se-
ries of rules. Despite that fact that, at its most basic level, an agent-based
paradigm comprises a system of agents and the associations between them,
it is still able to show complicated behavioural patterns regarding changes
and adaptation responding to environmental challenges or to neighbouring
agent behaviour; for instance, cooperation or competition.

Potentially, each agent has a unique history and behaviour, because each
is explicitly represented in a population. Occasionally, more complicated
agent-based models assimilate sophisticated learning and adaptation rules
on the basis of evolutionary algorithms, neural networks or other systems.

The single- cell-based paradigms represent a particularly favourable facet,
in which agents have several cellular structural and functional elements and
behaviour edging towards reality and allowing the recognition of phenom-
ena at various intermediate biosystems’ scales.

Cell-based paradigms have the ability to express significant behavioural at-
tributes of a cell like the dynamics of its repetition and information on each

2.4. Technologies in cell characterization 37

FIGURE 2.10: Agent Based Model[48]

developmental step; for example, size, mechanical properties and cell ge-
ometry.

A single cell-based paradigm ought to have the ability to comprehend the
way in which stage-dependent cell-cell directions at a microscopic scale will
result in interactions in the cell tissue mechanical attributes of the tissue at
a macroscopic standard and stage heterogeneity. For instance, paradigms
may be introduced by applying FLAME[1], [48] and REPAST.[49], [50]

Lattice-based models

A lattice (see Figure 2.11) which describes a periodically repeated graph, is
formulated by n-dimensional closed grid sites and typified by fixed or peri-
odic border conditions in every direction, is specifically relevant for a tech-
nique’s definition of interlinked procedures at the cellular, tissue, molecular

38 Chapter 2. Literature Review

FIGURE 2.11: Latticed Based Model[50]

or organ stage. Such natural stages may be approximately linked to a mi-
croscopic (interactions and molecule motion), mesoscopic (cell motion and
division, cell-cell interactions and cell-matrix), and macroscopic scale (organ
and tissue mechanical attributes) respectively. Cellular automata [3] can be
defined as discrete dynamic techniques, in time, space and state. Cellular
pattern formation emanates from short range (for example, adhesive forces
and cell-cell signalling) and long range (for example, diffusing chemicals
or mechanical stress fields) interconnections. A Bethe lattice (or a Cayley
tree)[51] is a hierarchically-ordered and cycle-free network having no ends
which has been utilised in immunological (idiotypic) networks.

It is possible to observe, in multiscale lattice-based models occurrences at
practically every scale ranging from the entire organism to the molecular
stage. Nevertheless, placing items together for the purpose of acquiring true
comprehension is a considerably more problematic task. This requires ho-
mogenisation and scaling up of paradigms over multiple spatial scales and

2.5. Machine Learning 39

associated asymptotic methods to analyse multiple time scales. It is possible
to surmount this difficulty by applying energetic considerations like the cel-
lular Potts paradigm which is also known as the Glazier Graner- Hogeweg
paradigm. This is based upon the stochastic Monte Carlo technique applied
to a regular lattice.[2] The objects, which are either discrete generalised or
discrete cells (clusters or cells, unicellular organisms, separate cells) or con-
tinuous fields (nutrient gradients or small molecules) are linked to an en-
ergy definition of procedures like cell-nutrient interaction and cell-cell ad-
hesion. Lattice rearrangements induce the growth of the technique and are
controlled by the reduction of the energy of a Hamiltonian function to a
minimum.

CompuCell3D is a particular common structure for the advancement of a
Potts paradigm [52], [53] and has been applied to model several patholog-
ical and anatomical situations at organ, tissue and cell levels. This struc-
ture is successful in amalgamating an energetic, rigorous and mechanical
treatment of the procedure with a perceptive and intuitive biological defi-
nition. Interest in network ensemble approaches is increasing, and multi-
layer networks, especially multiple networks in various networks share the
same nodes. This may be analysed by applying network entropies to quan-
tify and assess the connections between interlinked networks; for instance,
biological methods, protein, metabolite and gene networks have powerful
connection as well as interdependencies which are unable to be completely
depicted as single graphs.

2.5 Machine Learning

Machine learning is a sub-discipline of artificial intelligence that focuses on
allowing machines to learn from past experiences, model data uncertainty,
and make predictions about the future. Specifically, it is through an opti-
mization method that learns a mapping function whose input is a feature
vector of a sample and whose output is a label, this is called supervised
learning. Semi-supervised learning, also often referred to as weakly su-
pervised learning, aims to automatically learn parameters in an unlabeled
sample through a small number of examples. As for unsupervised learning,
people are usually more exposed to clustering problems: combining similar
data into clusters by analyzing the similarity of data samples.

40 Chapter 2. Literature Review

2.5.1 Machine learning tasks

It is common to categorise machine learning tasks into two fundamental
types according to whether a learning method has a “feedback” or a "sig-
nal", and are termed Supervised and Unsupervised learning, respectivelyy.

Supervised Learning

Supervised learning is a machine learning approach that uses previously
determined input-output pairs, [54] and implies a labelled training data set
comprising a group of training examples[55]. Each instance in supervised
learning is a pair which comprises an input object (usually a vector) as well
as a desired output value (known as the supervisory signal). The purpose of
a supervised learning algorithm is to analyse the training data and to create
an inferred function which may be employed to plot novel examples. In
an ideal situation, the algorithm will be enabled accurately to establish the
class labels for unseen cases.

Unsupervised Learning

Unsupervised machine learning is the machine-learning assignment of de-
ducing a function which defines the “unlabelled” data framework (i.e. un-
categorised or unclassified data). There is no simple means of calculating
the framework generated by the algorithm because the examples provided
for the learning algorithm are unlabelled. Within unsupervised learning,
the aim is usually to gather the data into typically varying classifications or
clusters.

2.5.2 Artificial neural network

Overview

Artificial neural networks (ANNs) can be defined as computing techniques
which are influenced by the biological neural networks of animal brains[56].
Techniques of this type consider examples which are not usually programmed
with any particular task rules, thereby enabling them instead to “learn” how
to solve problems.

ANNs are centred on a group of associated nodes or units known as arti-
ficial neurons which have similarity with the neurons within a biological
brain. Each of these is able to transmit signals between artificial neurons in

2.5. Machine Learning 41

FIGURE 2.12: An ANN network[57]

the same way as the synapses in a biological brain. This obtains a signal
and is able to process it and subsequently signal further artificial neurons
associated with it.

The signals at connections between neurons in ANNs for general applica-
tions is a real number, and the neuron’s output is calculated by a non-linear
function of its inputs. These connections are known as “edges” and as learn-
ing progresses, the weight of edges and artificial neurons is adjusted. Fur-
thermore, the signal strength at a connection is increased or reduced by the
weight, and the signal not sent unless the aggregate signal passes a thresh-
old assigned to the neuron. Artificial neurons are generally arranged into
layers each undertaking a change on their inputs, from the input layer (the
first) to the output layer (the last).

History

A neural network’s computational paradigm is known as a threshold logic.
Founded upon algorithms and mathematics, it was created by Warren Mc-
Culloch and Walter Pitts[58] (1943). This paradigm inspired neural network
research into two broad methods, one based upon biological processes in-
side the brain, and the other based upon the implementation of neural net-
works to artificial intelligence.

42 Chapter 2. Literature Review

Hebbian Learning During the late 1940s, D.O. Hebb[59] produced a learn-
ing hypothesis centred upon a neural plasticity mechanism called “Hebbian
learning”, unsupervised learning developed into paradigms for long-term
potentiation, a persistent strengthening of synapses based on recent pat-
terns of activity. In 1948, researchers began to apply these concepts to com-
putational paradigms with Turing’s B-type machines. In order to induce
a Hebbian network, computational machines, at that time known as “cal-
culators”, were first utilised by Farley and Clark[60] (1954). Furthermore,
Rochester, Holland, Habit and Duda (1956)[61] produced additional neu-
ral network computational machines. An algorithm for pattern recognition
known as the perceptron was produced by Rosenblatt[62] (1958), who with
mathematical notation, defined circuitry which was not in the basic percep-
tron; for example, the exclusive-or circuit which, at that time, was incapable
of being processed by neural networks [63].

Nobel laureates, Hubel and Wiesel advocated in 1959 a paradigm founded
upon their discovery of two cell types within the primary visual cortex,
namely single and complex cells [64], and in 1965, Ivakhnenko and Lapa
published the initial functional networks having several layers which be-
came the Group Method of Data Handling[65].

After Minsky and Papert (1969)[66] conducted machine-learning research,
neural network research came to a standstill. They discovered two princi-
pal difficulties regarding computational machines which processed neural
networks. The first of these was the inability of basic perceptrons to process
the exclusive-or circuit, and the second was that computers had insufficient
processing power for efficient management of the work needed by large
neural networks. Consequently, neural network research was delayed until
the advent of computers with considerably greater processing power.

Backpropagation Werbos’s (1975) backpropagation algorithm was a prin-
cipal trigger in the revival of interest in neural networks and learning. This
essentially resolved the exclusive-or problem and resulted in a general in-
crease in multilayer networks. Backpropagation redistributed the error term
back through the layers, by adjusting the weights at each node[63]. Fur-
thermore, parallel distributed processing became popular during the mid
1980s with the term “connectionism”, whose utilisation in inducing neu-
ral processes was defined by Rumelhart and McClelland (1986)[67]. Neural

2.5. Machine Learning 43

networks in machine learning gradually lost popularity to more basic sys-
tems like linear classifiers and support vector machines. Nevertheless, the
application of neural networks changed certain areas, for example, the fore-
casting of protein frameworks [68].

Max-pooling was implemented in 1992 in order to assist least shift invari-
ance and deformation tolerance in helping 3D object identification [69]. Back-
propagation training through max-pooling was in 2010 accelerated by GPUs
and discovered to give a superior performance to that of other pooling vari-
ants [70]. The many-layered feedforward networks which utilised back-
propagation as well as recurrent neural networks (RNNs) were influenced
by the disappearing gradient issue [71]. As errors proliferate from one layer
to another, they experience an exponential decrease according to the num-
ber of layers, thereby hindering the neuron weights’ tuning, based upon
such errors, specifically influencing profound networks.

Schmidhuber (1992) applied a multilayer network hierarchy pre-trained by
one level in turn, fine-tuned by backpropagation and by unsupervised learn-
ing in order to resolve this issue [72]. However, with issues like face locali-
sation and image reconstruction, Behnke (2003) relied exclusively upon the
gradient sign (Rprop)[73]. Hinton et al. (2006) advocated the application of
successive layers of binary or real-valued latent variables with a restricted
Boltzmann machine to model each layer in order to learn a high-level rep-
resentation [73]. When an adequate number of layers has been learned, the
profound architecture may be applied as a generative paradigm by sam-
pling down the paradigm (an "ancestral pass") from the top-level feature
activations [74]. Ng and Dean produced a network in 2012 which learned
to identify higher-level subjects, such as cats, exclusively from viewing un-
labelled pictures on YouTube.[75]

Recurrent neural networks Recurrent Neural Networks (RNNs) are neu-
ral networks in which it is possible for outputs from neurons to feed back
into its input. Hence, information cycles through a loop in the RNN pro-
cess, and when a decision has been reached, it considers the current input as
well as that that has been learned from the inputs previously obtained. Fig-
ure 2.13 depicts the variation within the information flow between a Feed-
Forward Neural Network and an RNN.

It is normal for an RNN to possess a short-term memory, but when coordi-
nated with Long short-term memory (LSTM), it can also possess a long-term

44 Chapter 2. Literature Review

FIGURE 2.13: Difference between ANN and RNN[76]

memory - a matter which will be considered later. An RNN attaches the im-
mediate past to the present; consequently, it has two inputs: present and
recent past. This is significant since the data sequence comprises critical in-
formation regarding what is to follow, being the reason why an RNN can
perform tasks which other algorithms cannot.

2.5.3 Principal component analysis

Principal Component Analysis (PCA) is a technique used to identify a small
number of unrelated variables (called principal components) from a large
data set. This technique is widely used to emphasize mutation and capture
strong patterns in data sets. PCA, invented by Karl Pearson in 1901[77], is a
tool used in predictive models and exploratory data analysis.

In statistics, PCA is used to simplify data sets by linear transformation. This
transforms the data into a new coordinate system so that the first large vari-
ance of any data projection is the first coordinate (called the first principal
component) and the second largest variance, the second coordinate (the sec-
ond principal component), and so forth. Principal component analysis is
often used to reduce the dimensionality of the data set, while maintaining

2.5. Machine Learning 45

FIGURE 2.14: An example of PCA where the two arrows indi-
cate the highest variance[78]

the features that the variance of the data set contributes the most (see Figure
2.14).

2.5.4 Support Vector Machines

Support Vector Machines (SVMs) as currently used were popularised in
1995[78] as they demonstrated excellent performance in text classification
tasks[79], and quickly became the mainstream of machine learning in the
2000s. The theory of SVMs originated in the early 1960s, and the concept
of statistical learning theory was established in the 1990s. The technique
has been rapidly developed since and a series of improved and extended
algorithms have since been derived for application to pattern recognition

46 Chapter 2. Literature Review

FIGURE 2.15: An example of a classification problem with
support vectors marked with gray squares[78]

problems such as portrait recognition and text classification[80], [81]. Figure
2.15 shows an example of SVM where the hyperplane is defined by support
vectors.

2.5.5 Evolutionary algorithms

Evolutionary Algorithms (EAs) are often effective in deriving solutions for
a wide range of problems as they require no prior information about the
underlying fitness landscape. However, when biological evolution is mod-
elled, EAs are usually restricted to exploring microevolutionary processes
or planning models based on cellular processes. Moreover, computational
complexity is a limiting feature of most real-world applications of EAs. Fit-
ness function evaluation is the reason for such complexity. One way to re-
solve this difficulty is to use fitness approximation. However, even simple
EAs can solve very complex problems. This suggests that, in terms of com-
plexity, there is a direct link between algorithms and problems.

2.5. Machine Learning 47

FIGURE 2.16: General form of EAs

Typical EAs in pseudo-code

Evolutionary algorithms involve three primary processes. Initialisation is
the first process and involves the random generation of an initial popula-
tion of individuals in line with a representation of a solution. Directly or
indirectly, each individual represents a potential solution. In an indirect
representation, every individual must be decoded into a solution. In the
second process, each solution is then evaluated in terms of its fitness value.
To facilitate selection, these values are then used to calculate the average
population fitness or rank individual solutions within the population. The
third process involves generating a new population based on solutions in
the existing population. These three key processes are presented in Figure
2.16.

As Figure 2.16 shows, an evaluation of the fitness of the population follows
initialisation after which the stopping criteria are evaluated. If none of the
criteria are met, a new population is generated and the process continues
until one or more of the criteria are satisfied. A stopping criterion can be ei-
ther static or dynamic. A static criterion will allow an algorithm to execute
a fixed number of iterations. A dynamic stopping criterion, on the other

48 Chapter 2. Literature Review

hand, will continue the process until the condition is satisfied, for exam-
ple, a predetermined number of the solutions lies within a given threshold
of the optimal solutions derived. Sometimes several stopping criteria are
required. The first and most important task when using an evolutionary al-
gorithm to resolve optimisation problems is to determine how to represent
the solution given the characteristics of the algorithm. The initialisation and
generation of a new population may result in solutions that are not feasible.
Therefore, it is essential that a direct or indirect solution representation is
chosen that will yield feasible solutions. This is a standard design consider-
ation for all evolutionary algorithms. The primary consideration in terms of
design, therefore, is to ensure that it is possible to decode every individual
into a feasible solution. In conjunction with a decoding procedure, an indi-
rect representation is often used in complex problems to transform the solu-
tion representation into a feasible solution. The fitness function can then be
evaluated once the solution is decoded. Two common parameters that must
be determined first are the maximum number of iterations and the size of
the population. The values chosen for these two parameters have a signifi-
cant influence on the quality of the solution and the time taken; in practice,
these values are usually determined empirically through experimentation.

2.5.6 Genetic Programming

Overview

Genetic programming (GP) may be defined as an evolutionary computa-
tion (EC) method which resolves problems automatically without any ne-
cessity for the user to be aware of or to particularise in advance the type
or framework of the solution. At its most abstract stage, GP is a domain-
independent, systematic technique for using computers to resolve difficul-
ties automatically beginning from a high-level statement of requirements.
GP discovers the efficiency of a program’s operation by operating and com-
paring its behaviour to an ideal. For instance, there may be interest in the
efficiency of a program which controls an industrial procedure or predicts
a time series, which comparison is quantified to provide a numeric fitness
value. Programs which give a good performance are selected to breed and
subsequently provide new programs for the coming generation. The initial
genetic operations which are applied for the creation of new programs from
current ones are mutation and crossover.

2.5. Machine Learning 49

History

It is probable that the initial instance of the suggestion to develop pro-
grams is that designed by Alan Turing [82] during the 1950s. Nevertheless,
about three decades passed until Richard Forsyth [83] showed the success-
ful growth of small programs which were compared to trees to undertake
categorisation of evidence of crime scenes for the UK Home Office.

John Koza patented his GA invention for the growth of a program evolu-
tion in 1988 [84] which was succeeded by being published in the Interna-
tional Joint Conference on Artificial Intelligence IJCAI-89. [85], [86] Sub-
sequently, Koza produced 205 “Genetic Programming” (GP) publications,
being a name adopted by David Goldberg, who was also one of John Hol-
land’s PhD students. [87] Nevertheless, genetic programming was really
established in 1992 when Koza began his series of four books [88] with ac-
companying videos.[89] A tremendous growth of publications followed as
the genetic programming bibliography exceeded 10,000 entries.[90]. Koza
listed 77 instances in 2010 [91] in which genetic programming was human
competitive.

Koza inaugurated the annual Genetic Programming Conference in 1996.[92]
This was followed by the annual EuroGP Conference in 1998 [93], together
with the first book[94] in a GP series which Koza edited; furthermore, the
first GP text- book was published in 1998. [93] GP continued to thrive, re-
sulting in the publication of the first specialist GP journal.[95] After another
three years, the annual Genetic Programming Theory and Practice (GPTP)
workshop was established by Rick Riolo in 2003. [96]There was continu-
ing publication of genetic programming papers at several conferences and
in similar journals. There are currently 19 GP books which include many
specifically written for students.[94]

Implementation

In this section, an introduction is provided on how trial solutions are repre-
sented in the majority of GP techniques, how an initial random population
may be constructed, and how selection, mutation and crossover are applied
to prepare new programs.

Representation It is usual for GP programs to be shown as syntax trees
instead of code lines; for instance, Figure 2.17 depicts the tree representation

50 Chapter 2. Literature Review

FIGURE 2.17: GP syntax tree representing (y/5)× (t× sin(θ)

of the program (y/5)× (t× sin(θ) .

In the program, 3, x and y, the constant and variables, are represented by
the tree’s leaves. In GP, these are known as terminals, whereas the internal
nodes arithmetical operations (+, * and max) are referred to as functions.
The groups of permitted terminals and functions jointly comprise a GP sys-
tem’s primitive set.

In more advanced GP formats, programs may comprise multiple compo-
nents, in which case the representation applied to GP is a series of trees
united under a specific root node which serves as "glue". These “sub-trees”,
referred to as branches, definee the program’s architecture.

Initialising the Population In GP, the individuals in the first population
are usually randomly generated as in other evolutionary algorithms; how-
ever, it is not necessary for the initial population to be random. If there
is some knowledge concerning potential attributes of the solution which is
desired, trees having these attributes may be utilised to seed the first popu-
lation to speed evolution.

Selection Genetic operators in GP apply to individuals that are probably
chosen on the basis of fitness, as in the majority of evolutionary algorithms.
This implies that better individuals have a greater potential of having a

2.5. Machine Learning 51

greater number of child programs than inferior individuals do. In GP, the
most frequently adopted technique for choosing individuals in GP is selec-
tion by tournament. This is considered in the following section, and fitness
proportionate selection is subsequent; however, any basic evolutionary al-
gorithm selection mechanism may be applied.

In tournament selection, a certain number of individuals is selected ran-
domly. After comparison, the best individual is selected as the parent, but
utilisation of the crossover requires two parents; therefore, there are two
selection tournaments. It should be noted that tournament selection looks
only at the better program, but it is not necessary to be aware of which one
is better. In practice, this rescales fitness automatically, resulting in constant
selection pressure on the population. Therefore, it is not possible for one ex-
ceptionally good program to swamp the subsequent generation’s offspring.
However, if this happened, it would result in a rapid loss of diversity with
a likelihood of poor subsequent performance. Contrastingly, small differ-
ences in fitness tournament selection are amplified, resulting in a preference
for a better program, even if it is only slightly better when compared with
other persons in a tournament. There is a degree of noise in tournament se-
lection as a result of the random choice of candidates. Therefore, although
the best individual is preferred, there is no guarantee in tournament selec-
tion that even programs which are of average quality have likelihood of
having offspring. As it is not difficult to introduce tournament selection
and this supplies automatic fitness rescaling, it is frequently applied in GP.
Given that choice has often been defined in the literature on evolutionary
algorithms.

Recombination and Mutation Since its introduction, of the operators of
mutation and crossover GP differs considerably from other evolutionary al-
gorithms, the type which utilised most frequently being the subtree crossover.
Where there are two parents, the subtree chooses a crossover point (a node)
in each of the parent trees independently and randomly. Subsequently, it
exchanges the respective subtrees in order to generate the offspring. The
subtree is grounded at the crossover point with a copy of the initial parent,
together with a subtree copy which is grounded at the crossover point in
the second parent, as shown in figure 2.19.

Frequently, the choice of crossover points has no uniform probability. A
characteristic primitive GP group results in trees having only an average

52 Chapter 2. Literature Review

branching factor, being the number of offspring of each of the nodes, hav-
ing a minimum of two in order that most of the nodes will be leaves. There-
fore, the uniform choice of crossover points results in crossover operations
which exchange minute amounts of genetic material such as small subtrees.
In fact, several crossovers may decrease or reduce simply to exchange two
leaves. In order to balance this, Koza (1992) advocated the extensively ap-
plied method of selecting functions for 90 percent of the time and leaves for
10 percent of the time. There are several additional types of mutation and
crossover of GP trees.

The most frequently applied mutation type in GP (otherwise called sub-
tree mutation) makes a random selection of a mutation point within a tree
and subsequently replaces the subtree which is grounded there with a ran-
domly created subtree, as shown in Figure 2.18. Occasionally, subtree muta-
tion is introduced as a crossover between a newly-created random program
and another program, a process otherwise referred to as “headless chicken”
crossover [97].

Point mutation is a further well-known type of mutation, being GP’s ap-
proximate bit-flip mutation equivalent as utilised in genetic algorithms [86].
In this mutation type, a random node is chosen which substitutes the prim-
itive which is stored there with another random primitive having the same
arity as the primitive group. If no other primitives are connected with
that arity, then that node is unaffected, although other nodes may remain
mutated. Subtree mutation utilisation concerns the modification of just a
single subtree, whereas from another perspective, point mutation is nor-
mally used on a basis that is per node, meaning each node being regarded
consecutively, and with some level of probability, is adjusted as aforemen-
tioned. This permits the independent mutation of multiple nodes in one
point mutation application, the selection of which the aforementioned op-
erators ought to be utilised to generate a probabilistic offspring. It is usual
for operators in GP to be mutually exclusive, which does not resemble other
evolutionary algorithms in which offspring are occasionally acquired through
a composition of operators, in which case the probability application is known
as operator rates. It is usual for crossover to be used with the greatest prob-
ability, with the crossover rate frequently being at least 90 percent. Con-
trastingly, the mutation rate is considerably less, usually being around one
percent. Furthermore, where the total of the rates of mutation and crossover

2.5. Machine Learning 53

FIGURE 2.18: Subtree mutation example[98]

FIGURE 2.19: GP crossover example[98]

reach a p value below 100 percent, an operator known as reproduction is ap-
plied with a 1-p rate. Basically, replication concerns an individual’s choice
on the basis of fitness as well as the inclusion of a copy of this in the suc-
ceeding generation.

2.5.7 Cartesian Genetic Programming

Overview

This type of programming progressed from a technique of evolving digital
circuits which was developed in 1997, by Miller et al. [99] Nevertheless, the

54 Chapter 2. Literature Review

expression “Cartesian genetic programming” initially arose in 1999, [100]
and in 2004 was advocated as a common form of genetic programming.
[101] The reason for naming it “Cartesian” is that it represents a program
which uses a two-dimensional grid of nodes.

Implemention

Representation Programs in CGP adopt a directed acyclic graph format
with a two-dimensional grid of computational nodes. The genes which
comprise the genotype in CGP are integers which indicate from where each
node obtains its data (inputs), the operation performed by each node upon
that data and from where the output to the program can be acquired. Upon
the decoding of the genotype, some nodes may be disregarded, a situation
which occurs when there is no application of nodes in the computation of
output data. In this situation, the nodes and their genes are known as “non-
coding”. The program resulting from the genotype decoding is known as
a phenotype, which in the case of CGP is of a set length. Nevertheless, the
phenotype size with regard to the number of computational nodes is able to
occupy a range from zero to the number of nodes which are defined in the
genotype. If every program output was directly linked to the program in-
puts, a phenotype would possess zero nodes. Furthermore, when every
node in the graph was needed, a phenotype would possess an identical
number of nodes as described in the genotype, and a defining characteristic
of this is the genotype–phenotype mapping which is utilised in CGP.

The user determines the computational node functions to be used which are
listed in a function look-up table. In CGP, every node within the directed
graph is encoded by a number of genes and represents a specific function.
One gene, known as the function gene, is the address of the node function’s
operator within the function set look-up table. The remaining node genes
determine from which other nodes the current node obtains its data. Nodes
receive their inputs in a feed-forward method from the node output in a
previous column of the Cartesian two-dimensional graph or from a pro-
gram input. The number of a node’s connection genes is determined as the
maximum number of inputs, frequently referred to as the arity, which is
possessed by any function within the look-up table. Input node addresses
range from zero to ni-1, in which ni is the number of program inputs, are
provided by the program data inputs. Addresses are given to the data out-
puts of the nodes in the genotype. Such addresses are provided sequentially,

2.5. Machine Learning 55

column by column, beginning from ni to ni + Ln - 1, in which Ln is the user-
determined higher bound of the number of nodes. Figure 2.20 depicts the
basic format of a Cartesian genetic program.

The output(s) of the program are indicated by the final gene(s) of the geno-
type. Generally a number of output genes (Oi) define the program outputs,
of which each is a node address from where the output data of the program
is obtained. It is nor permitted for nodes within the same columns to be
linked with one another, since the graph is feed-forward and directed; the
inputs of a node may be linked either to input nodes or to another node’s
output as long as it resides in a previous column, as shown in Figure 2.21.
Every node function fi gene is an integer address in a look-up function ta-
ble. All connection genes are Ci,j data addresses, assuming values between
zero and the node’s address is at the base of the previous nodes’ column.
Three parameters need to be predetermined which are: the number of rows
and columns in the Cartesian representation and the levels-back parameter
which signifies the number of preceding columns any node may seek data
to fulfil its inputs, respectively represented by nc, nr and l. The maximum
number of computational nodes permitted (Ln = ncnr) is determined by the
product of the first two parameters (rows and columns), and the connec-
tivity of the encoded graph is controlled by the levels-back parameter. The
levels-back parameter constrains from which column a node may obtain its
inputs. If I = 1, a node may obtain its inputs exclusively from a primary
input or from another node within the column immediately to its left. If l
= 2, the inputs of a node may be linked to the outputs of any of the nodes
in a primary input or to the immediate two left columns. If there is a desire
to permit nodes to link to any other nodes located to their left, then l = nc
(levels-back is set to the number of columns). If such parameters are var-
ied, then many types of graph topologies may result. When a small number
of columns is selected and a great number of rows is selected, the result-
ing graphs will be thin and tall. Selecting a large number of columns and
a small number of rows will result in wide, short graphs. The selection of
levels-back generates graphs which are highly-layered in which computa-
tions are performed column by column. One special case is significant - this
concerns the situation of these three parameters when the number of rows is
selected to be one and levels-back is set to be the number of columns. In this
situation, the genotype may indicate any directed bounded graph in which
the number of columns determines the upper bound.

56 Chapter 2. Literature Review

FIGURE 2.20: General form of CGP. A grid of nodes whose
functions are chosen from a set of primitive functions. The
grid has nc columns and nr rows. The number of program in-
puts is ni and the number of program outputs is no. Each node
is assumed to take as many inputs as the maximum function
arity a. Every data input and node output is labeled consec-
utively (starting at 0), which gives it a unique data address
which specifies where the input data or node output value can
be accessed (shown in the figure on the outputs of inputs and

nodes).[101]

2.5. Machine Learning 57

Initialising the Population The initial population is normally populated
with randomly-generated chromosomes in the same way as in other evo-
lutionary algorithms. The user defines the number of program inputs and
outputs, internal nodes and the arity of each node. The chromosomes are
then generated randomly by applying these given restrictions. For example,
each specified chromosome node will be provided with a random function
gene from the available function set, and each input of each node will be
provided a random connection gene. Lastly, each output gene will be set as
a randomly-selected program input or node within the graph.

Recombination and Mutation It is usual for CGP to apply only mutation
in generating the children from the chosen parents, by utilising probabilis-
tic mutation operators. In CGP a point mutation operator is commonly
adopted in which a point mutation, an allele at a randomly chosen gene
location is transformed into another valid random value. Where a function
gene is selected for mutation, a valid value is the address of any function in
the set. For an input gene, a valid value is the output address of the output
of any program input or of any previous node in the genotype. Finally, a
valid value for a program output gene is the address of a program input
or the output address of any node in the genotype. The user determines
the number of genes in the genotype that can be mutated each generation,
normally a probability referred to as the mutation rate, represented by the
symbol µr . The actual number of gene sites which can be mutated in the
genotype of a given length Lg, is µg, such thatµg =µr Lg.

2.5.8 Advantages of Cartesian Genetic Programming

Despite the fact that CGP has not been adopted to the same degree as the
more popular tree-based GP [102], it has many beneficial attributes which
makes it an attractive alternative:

• CGP does not experience program bloat.

• CGP is well suited to promoting neutral genetic drift.

• CGP is naturally supports multiple input, multiple output tasks.

• CGP permits internally-created sub-structures to be reused.

58 Chapter 2. Literature Review

FIGURE 2.21: An example of the point mutation operator be-
fore and after it is applied to a CGP genotype, and the corre-
sponding phenotypes. A single point mutation occurs in the
program output gene (OA), changing the value from 6 to 7.
This causes nodes 3 and 7 to become active, whilst making
nodes 2, 5 and 6 inactive. The inactive areas are shown in grey

dashes.[101]

2.5. Machine Learning 59

No bloat

Bloat is defined as “program growth with no significant return regarding
fitness”[103]. Bloat is a serious matter for tree-based GP [104] because it
frequently leads to programs of a very large size which is computationally
inefficient, unless it is actively prevented by imposing restrictions or fitness
penalisation on program size. CGP possesses a natural resilience to bloat
as it has a defined maximum number of nodes that can be used[105], there-
fore the entire matter of bloat does not arise. However, more precisely, CGP
utilises a fixed-sized genotype in which nodes can be active or inactive in
the phenotype; therefore the phenotype size can increase or decrease. De-
spite this being not usually considered for tree-based GP (as the phenotype
and genotype are practically equivalent), the phenotype bloat is a matter of
concern. Consequently, there is a likelihood that bloat does occur in CGP,
which would appear as an increase in the number of active nodes, or equiv-
alently the phenotype size.

Heightened Neutral Genetic Drift

The encoding adopted by CGP normally results in a high proportion of the
genes being inactive,[106] thereby allowing a considerable amount of neu-
tral generic drift to occur. Since neutral generic drift is considered to be ad-
vantageous to the evolutionary search[107], [108], thereby permitting easier
escape from local optima, this is considered to be a principal benefit of CGP.

Multiple-Input Multiple Output

Tree-based GP is usually only able to encode problems with multiple inputs
and a single output, but CGP architecture permits Multiple-Input Multi-
ple Output. Furthermore, since CGP involves directed graphs, it is not re-
stricted by a tree structure whilst still having the ability to evolve tree struc-
tures when the evolutionary pressure is applied to achieve this.

Reuse of Internally Created Sub-Structures

During the evolution of tree-based GP, it is impossible for a given node’s
output to be used by more than one other node, which is a significant re-
striction if the same sub-structure functionality is required on multiple oc-
casions to generate an efficient solution. For example, consider a GP func-
tion set with neither trigonometric functions, nor with the value of π. If an

60 Chapter 2. Literature Review

approximate value of π is found, this will probably be advantageous to the
evolutionary search and utilised through the course of the evolved program.
If, in tree-based GP, a value of π wad needed on multiple occasions, then it
needs to be rediscovered each time because an internally-computed value
can be used only once. However, CGP permits the outputs of any node to
be utilised by any other node in the program on the condition that it abides
by the rules of acyclic connectivity, meaning that if π were discovered, the
same value could be utilised on multiple occasions.[109]

Applications

Despite the fact that CGP was initially developed to implement and op-
timise digital circuits[95], [110], it has subsequently been utilised in other
domains. For example, EAs can be utilised as an optimiser in combination
with a feature extractor. The Cartesian representation of CGP and also the
predefined number of inputs to the network makes it particularly suitable
to process raw data values or previously extracted features.[109]

Furthermore, CGP has been used for image processing [111] in which it has
been proved to be a particularly strong method by which the function set
comprises image processing functions which included domain knowledge
in the search. This method was referred to as CGP Image Processing and
it has been successfully applied to edge detection[112], image filtering[101],
scale and rotation, medical imaging as well as real time object detection with
varying lighting, This has included several medical applications such as
classification of mammograms containing benign or malignant tumours[4],
[113], [114] as well as the assessment of Alzheimer’s disease.

CGP’s basic and flexible directed graph framework supports implicit mod-
ularity and also averts bloat, thereby providing a clear advantage over tra-
ditional GP. Furthermore, the representation is suitable for customisation to
an implicit context representation which surmounts the positional depen-
dence of the encoding of CGPs encoding. The capability of defining the
network’s geometry permits solutions to be customised in a way that is ad-
vantageous if there is need for a real-time or hardware implementation. In
addition to creating high-performance classifiers, the capability of decod-
ing the network as a discrete mathematical expression provides insight to
the system under evaluation.

2.6. Conclusion 61

2.6 Conclusion

This chapter has detailed cell and cell culture along with their roles in bi-
ological research, this chapter then introduced urothelium, a kind of cell
form urinary tract which is a stable and self-repairing tissue. Two technolo-
gies used in characterize cell culture behavior then presented which are cell
tracking software and cell modeling, cell tracking softwares provided accu-
rate means of measurement of cells and modelings gives way to understand
cell behaviors. Last section of this literature review is machine learning, a
method of data analysis that automates analytical model building, this sec-
tion also gives reason why machine learning is a novel method for under-
standing cell behaviors.

63

Chapter 3

Methodology

Contents

2.1 Introduction . 19

2.2 Cell culture and characterization 19

2.2.1 The Cell . 19

2.2.2 Cell culture . 21

2.2.3 Application of cell culture 22

2.3 Urothelium . 23

2.3.1 Structure and functions 23

2.3.2 Significance . 26

2.4 Technologies in cell characterization 30

2.4.1 Cell tracking . 30

2.4.2 Modeling . 34

2.5 Machine Learning . 39

2.5.1 Machine learning tasks 40

2.5.2 Artificial neural network 40

2.5.3 Principal component analysis 44

2.5.4 Support Vector Machines 45

2.5.5 Evolutionary algorithms 46

2.5.6 Genetic Programming 48

2.5.7 Cartesian Genetic Programming 53

64 Chapter 3. Methodology

2.5.8 Advantages of Cartesian Genetic Programming . . 57

2.6 Conclusion . 61

3.1 Introduction

This chapter considers the methodology adopted for the experimental in-
vestigations of this work. The first stage is data acquisition including time-
lapse video capture and cell tracking. The following stage is the data pre-
possessing and extraction of features which are chosen based on the under-
lying biology scientific questions; section 3.4 presents biological motivation
for the features extracted and how they are calculated. After consideration
of data visualization and preparation for analysis, the classification of the
acquired data is considered using Principal Component Analysis (section
3.7), Support Vector Machines (section 3.8) and finally, Evolutionary Algo-
rithms (section 3.7).

3.2 Data acquisition

The analysis of cell-motion within cell cultures requires capturing images of
the culture at regular time intervals using time-lapse spectroscopy. Custom-
written software is then used to analyse the resultant images as described
below.

3.2.1 Video acquisition

Normal Human Urothelial (NHU) cells were cultured in a serum-free medium,
as described in [33]. The cultures were seeded within twelve well plates
were open to 100µM PPADs (pyridoxalphosphate− 6− azophenyl − 2′, 4′ −
disulphonicacid) or 0.1% DMSO (as vehicle control) for 10 min, before ad-
dition of 0, 10 or 50µM ATP ATP by repeating this addition four times.
Cultures were examined by applying a fourfold target by differential in-
terference as compared with videomicroscopy (Olympus IX81 microscope)
within an environmental chamber at an automated mechanical level. Time-
lapse videos composed from separate images were captured digitally at
five-minute intervals during a time span of 24 hours. Figure 3.1 depicts
a basic frame of one video of this type.

3.2. Data acquisition 65

FIGURE 3.1: Sample frame from time-lapse video of NHU cells
in culture.

3.2.2 Cell tracking software

Using the OpenCV computer vision programming library, custom software
was developed for automated cell tracking.[37]. In order to track the relative
movement of cells from frame to frame, each video time points undergoes
processing to identify the likely locations of cells. This process takes the
raw videos as an input, performs image pre-processing to each frame, and
then either tries to identify the possible new cells, or track the location of
previous time point located cells. This process was explained in section
2.4.1, as previously reported by the authors[115].

66 Chapter 3. Methodology

FIGURE 3.2: Example frame showing how ctracker tracks cells

FIGURE 3.3: There is a link between cells when there distence
between two cells under parameter L

3.2. Data acquisition 67

FIGURE 3.4: Example Frame with large Regen, where a lot of
cells are losing tracking

Parameters for tracking software

Several parameters have been defined to characterise the software’s oper-
ation. However, in order to obtain optimal performance and information
from the videos, it is necessary to understand the nature and function of
these.

Line Length

Line length sets the maximum distance between two points through which
a straight line can be drawn. As depicted in figure 3.3, when the distance be-
tween two cells is less than 25 pixels, a green link between them is shown.
This parameter affects only the video which is generated by the software
and not the data file which contains the cell coordinates. Therefore, the gen-
erated video can provide some subjective information about the distances
between cells in terms of pixels. The video generated by Ctracker is only
for illustrating cell tracking and does not affect the cell tracking result nor
analysis.

Invert

Depending on the microscope imaging technique adopted, cells can appear
with differing colourings in images. There are two main types, the first is

68 Chapter 3. Methodology

Less than
20 frames
Tracked

20 - 40
Frames

40 - 80
Frames

80 - 150
frames

More
than 150
Frames

With Regen 500 964 166 320 184 362
With Regen 60 4536 524 916 546 510
With Regen 20 8734 1138 1146 776 572

TABLE 3.1: Number of frames tracked for each cell with dif-
ferent Regen values

FIGURE 3.5: Compares number of cells tracked with different
Regenerate Time

Brightfield Microscopy where the cells are dark and the surrounding is a
bright field, the other is Fluorescence Microscopy where the specimen is
usually stained, showing light against a dark background. The invert pa-
rameter determines whether or not the input video ought to be inverted.
This flag is applied in the current work since all videos have a bright back-
ground with dark cells.

Regenerate Time The Regen parameter sets how often data points are re-
generated. A value of one indicates that cell positions are regenerated for
each frame. However, the value needs to be chosen carefully, as table 3.1
shows, the number of cells tracked differs considerably with differing val-
ues of Regen. A Regen value of every 20 frame was found to be most suit-
able; if the number is too larger then it will look like figure 3.4 in which
tracking of many cells is lost.

As shown in figure 3.5 the blue line reflects manual counting of the num-
ber of cells which can be regarded as the ground truth. Ctracker with no

3.2. Data acquisition 69

Regenerate time means Ctracker only locates cells once at the beginning of
the video, meaning track of cells following cell division and other occur-
rences such as occlusion by other cells will be lost for the remainder of the
video. A regenerate time of 50, as shown by the purple line in figure 3.5,
produces a wave form indicating how cells are "re-found" each time. The
remaining two plots are regenerate every 20 frame and 30 frame, it can be
seen that the trends and values are close to ground truth. But the plot with
regenerate time 20 is more stable compared with 30 frames. Regenerate time
with 10 frames is also tried, but there is no clear advantage of doubling the
total amount of data to that achieved with regenerate with 20. Hence the
parameter is chosen was 20.

Number of points

This parameter determines the desired number of points to track in any
given frame. This number may diminish as Ctracker becomes unable to
track cells within a window. In order to track all possible cells, this parame-
ter needs to be sufficiently large, but not too large, because if the parameter
exceeds the number of cells in the video, the software will track the same
cells many times with different indices. Furthermore, the parameter cannot
be too small because this will result in some cells not being tracked by the
software. Therefore, it is important to have a general idea of the number
of cells. By manually counting, there are around 600 cells at the beginning
of videos and depending on different cell culture treatments, the number
of cells grows to 800-1000; for cell culture without inhibitor there are more
cells and for cell culture with inhibitor there are less cells. For this reason
this parameter was choose to be 1000 for cell culture with inhibitor and 1200
for cell culture without inhibitor.

As shown in 3.6 when this parameter is much higher than the actual cell
count number then Ctracker will track the same cell multiple times and lose
them in next few frames because Ctracker regenerate this number of cells
the plot with 2000 number of cells is shown in a wave form. This led to
difficulties for Ctracker to track cells continuously. The plot with parameter
set to 1000 shows the same trend.

Search Size SEARCHSIZE sets the size of the search window for tracking
cells between frames. In two continuous frames Ctracker is looking for the
likely position of cells in next frame within the searching window; if the

70 Chapter 3. Methodology

FIGURE 3.6: Compare Number of cells tracked with different
parameter value

searching window is too large, Ctracker can easily confuse two cells. On
the other hand if the tracking window is too small then Ctracker is likely
to lose track of cells. Through observation and experimentation, the cell
displacement between two continuous frame was found to be between three
and 10 frames. Hence, the searching window parameter is set to 10, so that
Ctracker can track cells that have travelled less than 10 pixels distance.

Output Data

Ctracker provides positions of tracked cells in terms of (x,y) coordinate pairs.
For each individual cell, ideally there are 245 time points and so 245 pairs
of coordinates but Ctracker might lose track of cells at some point and re-
track them when regenerate occurs and gives the cell a new index within 20
frames. In addition, new cells may appear as a result of cell division, so most
of the cells do not have 245 pair of coordinates. For each frame Ctracker is
able to track individual cells; figure 3.7 shows comparison between real cell
culture capture (bottom figure) and simulation of output coordinates from
Ctracker (top figure). It can be seen that most cells are successfully tracked
but some large debris can confuse the system and generate multiple pairs of
cell coordinates. Therefore, the data needs to be processed to remove debris
and large cells that are tracked as multiple cells.

3.2. Data acquisition 71

FIGURE 3.7: Comparison between video and data extracted
from tracking software

72 Chapter 3. Methodology

FIGURE 3.8: Histogram showing cell count with number of
frames tracked with each index

3.3 Data Preprocessing

Because Ctracker regenerates data points every 20 frames a lot of new cells
are tracked with new indexes generated, but some of these are duplicates of
original cells which means some cells are tracked more than once. Consider
the following example: the output from Ctracker generates a 245 by 13952
matrix representing 245 time points and 6976 cell indexes (13952 divided by
2). This is much larger than real cell number which is less than 1200. Figure
3.8 shows there are around 3500 cell indexes that only have one pair of co-
ordinates and another 750 cell indexes with only two pairs of coordinates.
This means tracking of these cells was lost after only one or two frames of
the video, the reason for this is being that more than one index existed for
each cell. In order to remedy this behaviour, a threshold was applied to the
number of frames tracked and the number of cell indexes was reduced to
2227. There are still small number of cells with more than one index but due
to the nature of Ctracker it is unlikely the cells have more than one index at
the same time. Figure 3.9 shows the cell count after this data cleaning.

3.4. Feature extraction 73

FIGURE 3.9: Histogram showing cell count with number of
frames tracked with each index after cleaning

3.4 Feature extraction

Following the detection of the position of each separate cell within each of
the video frames (generating the (x, y) coordinate pairs’ format as shown
in figure 3.10), features were extracted with the aim of characterising the
behaviour of the cell population. The MATLAB programming environment
was used to perform and illustrate this process. Furthermore, this study
considers a single cell from an analysed video as an example of how fea-
tures of interest are computed. An NHI cell-culture video having 50µM ex-
ogenous. ATP was used to illustrate tracking of a single cell. It can depict the
path of this cell graphically (see Figure 3.15) because it was tracked success-
fully from the video’s start to its conclusion. Here it is possible to observe
the transformation in the behaviour of the cell from the commencement of
the tracking process (adjacent to the graph’s centre) to the conclusion of the
tracking (the point at which the cell exits the reference frame’s lower left-
hand side). The cell begins its course unpredictably; however, it stabilises
at a later stage. The other features extracted from the tracking data which
characterise behavioural changes in the cells in response to environmental

74 Chapter 3. Methodology

factors include intercellular adhesion, interactions with other cells and cell
division.

3.4.1 Feature consideration

The features to be extract from the videos need to describe cell behaviour
but also practical to implement. Generally, features to be extracted can be
classified into two groups: (i) those which define the behaviour of a cell
during the period when it was successfully tracked, and (ii) those that de-
fine behaviour when the cell interacts or binds with other cells, defined as
being either in-contact or post-contact. It is interesting to consider the num-
ber of cells which share the clump size or contact. For the purpose of this
work, informed by visual observation of the videos, a clump is defined as a
group of at least five cells. The features selected are outlined in 3.2. Defini-
tion of the cells’ average angular velocity and average migration speed are
provided below.

3.4. Feature extraction 75

Fe
at

ur
e

Fe
at

ur
e

N
am

e
D

es
cr

ip
ti

on
1

A
ve

ra
ge

M
ig

ra
ti

on
Sp

ee
d

A
ve

ra
ge

sp
ee

d
of

ce
lls

ov
er

th
e

pe
ri

od
of

tr
ac

ki
ng

2
Po

st
-C

on
ta

ct
M

ig
ra

ti
on

Sp
ee

d
A

ve
ra

ge
m

ig
ra

ti
on

sp
ee

d
of

ce
lls

ov
er

th
re

e
fr

am
es

af
te

r
le

av
in

g
a

cl
um

p
of

ce
lls

3
In

-C
on

ta
ct

M
ig

ra
ti

on
Sp

ee
d

A
ve

ra
ge

m
ig

ra
ti

on
sp

ee
d

of
ce

lls
w

he
n

in
co

nt
ac

tw
it

h
fiv

e
or

m
or

e
ot

he
r

ce
lls

(a
cl

um
p

)

4
Pr

e-
C

on
ta

ct
M

ig
ra

ti
on

Sp
ee

d
A

ve
ra

ge
m

ig
ra

ti
on

sp
ee

d
of

ce
lls

be
fo

re
m

ov
e

in
a

cl
um

p
or

m
or

e
ot

he
r

ce
lls

(a
cl

um
p)

5
A

ve
ra

ge
A

ng
ul

ar
Ve

lo
ci

ty
R

at
e

of
ch

an
ge

in
m

ig
ra

ti
on

di
re

ct
io

n
of

ce
lls

be
tw

ee
n

tw
o

vi
de

o
fr

am
es

6
Po

st
-C

on
ta

ct
A

ng
ul

ar
Ve

lo
ci

ty
R

at
e

of
ch

an
ge

in
m

ig
ra

ti
on

di
re

ct
io

n
of

ce
lls

af
te

r
le

av
in

g
a

cl
um

p

7
In

-C
on

ta
ct

A
ng

ul
ar

Ve
lo

ci
ty

R
at

e
of

ch
an

ge
in

m
ig

ra
ti

on
di

re
ct

io
n

of
ce

lls
w

he
n

in
a

cl
um

p

8
Pr

e-
C

on
ta

ct
A

ng
ul

ar
Ve

lo
ci

ty
R

at
e

of
ch

an
ge

in
m

ig
ra

ti
on

di
re

ct
io

n
of

ce
lls

be
fo

re
m

ov
e

in
in

a
cl

um
p

9
C

oh
es

iv
it

y
A

ve
ra

ge
nu

m
be

r
of

co
nt

ac
ts

pe
r

ce
ll

10
A

ve
ra

ge
C

el
lC

lu
m

p
Si

ze
A

ve
ra

ge
si

ze
of

cl
um

p
in

nu
m

be
r

of
ce

lls
11

A
ve

ra
ge

C
on

ta
ct

D
ur

at
io

n
A

ve
ra

ge
du

ra
ti

on
of

ce
ll

co
nt

ac
tw

it
h

cl
um

p

12
C

el
lC

ou
nt

D
iff

er
en

ce
be

tw
ee

n
th

e
m

ax
im

um
nu

m
be

r
of

ce
lls

tr
ac

ke
d

du
ri

ng
th

e
vi

de
o

fr
om

th
e

nu
m

be
r

tr
ac

ke
d

at
th

e
be

gi
nn

in
g

TA
B

L
E

3.
2:

Su
m

m
ar

y
of

fe
at

ur
es

ex
tr

ac
te

d
fr

om
ce

ll
cu

lt
ur

e
vi

de
os

.

76 Chapter 3. Methodology

Average migration speed

An object’s speed can defined as the rate of change of its position. The ob-
jective, in this case, is to use a video to attain a cell’s migration speed. This
may be established by computing how many pixels are traversed over a
specified interval of time - in this case, the time interval between two con-
secutive video frames, the frame rate being one for every five minutes. Con-
sequently, the migration speed can be calculated by simply computing the
Euclidean distance between a cell’s respective coordinates between consec-
utive frames. Figure 5 provides a graphical representation of this in which
the cell’s starting position is located at coordinates (74,32) in one frame, and
at coordinates (75,33) in the subsequent frame. Consequently, the speed
of the cell is calculated from the distance it travels in dt (five minutes). The
same technique is applied to compute the migration of all cells for the whole
video.

Average angular velocity (or migratory persistence)

Biologists have a particular interest in persistence with regard to cell migra-
tion. This feature may be explained as the trend of cells to change their di-
rection. Consequently, it is necessary to acquire the cell’s direction of travel
in each video frame in order to compute migration persistence. The means
by which the vector angle, as determined by the cell’s coordinates in consec-
utive frames of the video, may be applied to establish the direction of travel
is illustrated in Figure 6. In this case, angular velocity is defined as the rate
of change in a cell’s direction of travel across subsequent video frames. An
example of such a calculation across two consecutive frames is depicted in
Figure 3.13.

Clump definition

Cell-cell adhesion is critical if multicellular organisms are to advance and
survive[116]–[118]. There is an expression of the Ca2+ cadherin superfam-
ily, being dependent on cell–cell adhesion proteins in the majority of tis-
sues and organs of both vertebrates and invertebrates. Various cadherins
are shown in cell layers, particular tissues as well as neuronal types of cell
which are compatible with functions in clear cellular detection as well as in
sorting procedures [117], [119]–[124] . Currently people have little knowl-
edge of the molecular or physical dynamics of compaction (maximisation of

3.4. Feature extraction 77

FIGURE 3.10: Data in the form of coordinate pairs before fea-
ture extraction

78 Chapter 3. Methodology

FIGURE 3.11: Example calculation of cell migration speed
(pixels/frame)

FIGURE 3.12: Direction of travel of cell migration.

3.4. Feature extraction 79

FIGURE 3.13: Example calculation of cell migration persis-
tence over two consecutive frames.

adhesive contacts), cell–cell adhesion (cell stickiness) or condensation (ag-
gregation of large cell colonies) in the course of the creation of tissues. This
is despite the endeavours of studies to clarify the mechanical and molecular
attributes of cadherin-mediated adhesion[125], [126] .

Cell-cell adhesion can be described in three phases. [127] The first phase in-
volves the membrane contacts between two cells instituting the amalgama-
tion of greatly-mobile E-cadherin cell surface pool into immovable punctu-
ated accumulations on the line of contacting membranes. Such E-cadherin
accumulations coincide spatially with membrane attachment sites for fila-
ments of actin which branch from circumferential actin cables and restrain
each cell. Phase Two involves these actin cables adjacent to cell–cell con-
tact sites becoming divided with the remaining two cable ends moving out-
wards towards the contact’s perimeter. Subsequently, E-cadherin puncta
subsets are driven to the contact’s margins at which location they amalga-
mate large E-cadherin plaques. This leads to the creation of a circumferen-
tial actin cable which restrains the two cells. It is also implanted into each E-
cadherin plaque at the margin of the contact. Both cells, at this point, attain
maximum contact, known as compaction. In the case of further single cells
attaching themselves to large cell groups, such changes in the actin and E-
cadherin disseminations are relocated. Phase Three of the adhesion process
is initiated when further cells attach themselves to groups of four or more

80 Chapter 3. Methodology

cells. When this occurs, it is apparent that circumferential actin cables which
are connected to E-cadherin plaques on bordering cells are retrained in a
purse-string action, leading to greater amalgamation of separate plaques
into the multicellular contacts’ vertices. The process of restructuring actin
and of E-cadherin leads to cells condensing into colonies. The formation of
a paradigm in order to clarify how actin and E-cadherin cables coordinate
to reform initial cell–cell contacts into the concluding condensation of cells
into colonies by means of compaction and strengthening.

Post and Pre Contact Behaviour

When a cell is formed by combining with other cells, it is known as an
E-cadherin-compromised cell. This cell examines the emergent behaviour
caused by the interaction of single and sub-populations of E-cadherin-compromised
cells with unaffected normal cells within a monolayer environment. It is
necessary to extract movement behaviour from different cell stages which
are pre-contact, in-contact and post-contact migration speed, pre-contact an-
gular velocity, in-contact angular velocity and post-contact angular velocity.

3.4. Feature extraction 81

FI
G

U
R

E
3.

14
:C

el
lm

ov
em

en
ti

n
an

d
ou

to
fc

lu
m

ps
th

re
e

ti
m

es

82 Chapter 3. Methodology

In figure 3.15, the red shading indicates the period when the cell is within
a clump; it is therefore an easy task to extract features before, after and in
contact with other cells. If the cell moves in and out of a clump more than
once as shown in 3.14, where horizontal line is time axis and red period
indicates cell i is in a clump, there are three separate red periods, so for cell
i the value of in-contact behaviour is the average of these time periods (and
similarly for for pre- and post- contact behaviours).

Cell Growth

Cell division is an important part of the cell cycle and possibly impacts loss
of E-cadherin function upon the growth attributes of epithelial cell popu-
lations, which otherwise would be normal. Furthermore, a comparatively
small cell population subset would have a noticeable impact upon the total
population growth dynamics, and it could be anticipated that the divergent
population would have an impact upon the normal population growth, or
if the converse would apply.

In this situation, the Cell Growth facet indicates cell count from the first
frame to the last of the video.

Contact Duration and size

Furthermore, it is particularly interesting to see how the loss of the E-cadherin
function affects the duration and size of the cell-cell bonding; these two fea-
tures are defined as below:

• Contact Duration: Duration of cell-cell binding in terms of frams(five
minuts).

• Contact Size : Number of cells in each group of cell.

3.5 Data Visualization

After computing all features, each cell index has a 1 x 11 feature vector and
an output that indicates if the respective cell culture applied an inhibitor.
Each feature vector is an instance of the respective dataset; figure 3.16 shows
the first five instances. Figure 3.17 shows the total number of instances for
two classes labelled 0 and 1, a similar number for each.

3.5. Data Visualization 83

FIGURE 3.15: Cell movement path

84 Chapter 3. Methodology

FI
G

U
R

E
3.

16
:F

ir
st

fiv
e

in
st

an
ce

of
a

da
ta

se
t

3.5. Data Visualization 85

FIGURE 3.17: Output Category Count

3.5.1 Comparing training and test sets

Having established a similar number of instances in both classes of a dataset,
it is useful to visualize the distribution of each extracted feature, as previ-
ously defined. Figure 3.18 shows each feature summary of all feature vec-
tors in the dataset. The summary includes basic statistical measures such
as the mean, standard deviation, minimum, maximum and the quantiles of
the data. Also, it can be seen that there are no missing values as all feature
counts are the same.

86 Chapter 3. Methodology

FI
G

U
R

E
3.

18
:F

ea
tu

re
su

m
m

ar
y

3.5. Data Visualization 87

FIGURE 3.19: Distribution of Average Speed in Training and
Test sets where blue is the training set and red is the test set

After viewing the summary for each feature, the next step is to check the
distribution of features in what will be the training and test sets. Figure 3.19
shows distribution of average speed in both sets; it can be seen that average
speed is showing a bell shape in both the training and test sets. A plot of the
remaining features can be found in the appendix and shows that all features
have the same distribution for training and test sets.

3.5.2 Correlations between features

The correlation of two features refers to the degree of closeness between
them; normally high correlation indicates two features have a linear rela-
tionship. Two features with high correlation have a greater linear relation-
ship, so their impact on a training classifier is almost the same. Therefore,
when a pair of features are highly correlated, one of them can be removed.
Figure 3.20 shows all eleven features correlations with each other.

88 Chapter 3. Methodology

FI
G

U
R

E
3.

20
:V

ar
ia

bl
e

co
rr

el
at

io
ns

3.6. Dataset preparation 89

From figure 3.20, it can be seen that all Speed related features have weak cor-
relations with each other but none greater than 0.59; the same as AngularVelocity
related features. Other than these, the highest correlation is between Clumpsize
and ContactDuration which has a value of 0.57. There is no pair of features
has correlation greater than 0.9, and therefore no features need to be re-
moved.

3.6 Dataset preparation

3.6.1 Cell culture dataset

Each feature vector within the original dataset represents the behaviour of
a cell at a certain time, but the characteristics of the cell culture are also very
interesting and may provide useful information. Celli has a feature vector
of fi

n at time point n, and feature vector of Celli during a period of d fi
d can

be compute by following equation 3.1

fi
d =

n+d

∑
i=n

fi

d
(3.1)

In order to obtain features of each cell culture behaviour, each of the 24
videos was divided into 10 to give 240 short videos in total. Feature ex-
traction was performed on all cells in each of these 240 short videos. The
average value of features for all individual cells in each short video is the
feature vector F, define in equation 3.2 where m is total number of cells in
this video.

F =

m

∑
i=1

fi
d

m
(3.2)

Therefore, there are two datasets, one consists of each individual cell feature
vectors fi and the other consists of feature vector F , which is the average
behaviour of videos with 24 frames.

90 Chapter 3. Methodology

Time Period\Treament Period 1 Period 2 Period 3
Control Vs Control+PPADS Control P1 Control P2 Control P3

10µMATP Vs 10µMATP+PPADS 10µMATP P1 10µMATP P2 10µM ATP P3
50µMATP Vs 50µMATP+PPADS 50µMATP P1 50µMATP P2 50µM ATP P3

TABLE 3.3: Dataset splits into 9 smaller single cell data, each of
them consist cell culture with same time period and ATP con-
centration which including cultures with PPADS and without

PPADS.

3.6.2 Single cell dataset

The cell culture dataset is used to describe the cell movement within each
population. On this basis, an additional dataset is computed, which is
called a single cell dataset. Definition of the features in the single cell data
set is the same as that of cell culture dataset. The difference lies in that the
single cell dataset does not illustrate the average behaviour of all cells in
one cell culture, as it is usually computed from a much smaller number of
frames. Hence, the single cell dataset is primarily for describing single cell
behaviours during 24 frame, which relates to 4 hours of real time behaviour.

The reason why a 24 frames time period is selected is because the time pe-
riod cannot be too small, as otherwise, some features cannot be effectively
calculated, such as the average duration of each contact and number of to-
tal contacts. Keeping tracking long enough is required to measure cell be-
haviours for the average contact duration and the number of total contacts,
since the average contact duration is greater than 10 frames, while average
contact is greater than one if the tracking window is larger than 24 frames.

The tracking windows cannot be too large either, given the features are typi-
cally described in the form of average behaviour over this time. If the track-
ing window is too large, there will be certain information lost during av-
eraging process. Therefore, the tracking window is set as 24 frames in the
dataset, and three time periods within the video are specified, which are
the beginning 24 frames, the middle 24 frames and the last 24 frames of the
video.

In summary, there are primarily two types of datasets. The first is a cell cul-
ture dataset, which can be used to characterize the cell culture behaviours.
The second one is a single cell dataset, which can be used to characterize
single cell behaviour and possibly identify sub-populations. During further
experiments, all experiments will be based on both types of dataset.

3.7. Application of PCA 91

FIGURE 3.21: Left hand side showing feature distribution be-
fore standardization and right hand side after standardization

3.7 Application of PCA

The large number of features extracted from the data results in a high di-
mensionality, which can be visualized individually, as considered in the pre-
vious section, but difficult to assess in combination. By using an orthogonal
transformation such as Principal Component Analysis (PCA) the dimen-
sionality of the data can be reduced and the correlation between features
can be assessed using the two or three principle components.

Before applying PCA to the data, one important issue to resolve is that PCA
is affected by the numerical scales used to represent the data. In this case,
the scales used are considerably different for some of the features. For ex-
ample, the range of values for speed is between 0 and 10, but angular velocity
is always less than 6.28 (2π). Figure 3.21 shows data before and after stan-
dardization. Following standardization, all feature have a mean of zero and
a variance of one, which help optimise the performance of PCA.

After standardization of all features, 80% of the total data was used as a
training set and remaining 20% used for a test set. A python open source
package called scikit-learn was used for data processing and performing
PCA.

Figure 3.22 shows visualization of two principle components; it is important
to note that component one and two are abstract, they are a transformation
of the original 11 features. From the figure it can be seen that the two classes

92 Chapter 3. Methodology

are not separated. The related accuracy is shown in Table 3.4; standardiza-
tion improves the result by 3% , but is still only 56.3%.

3.7. Application of PCA 93

FI
G

U
R

E
3.

22
:P

C
A

ou
tp

ut
vi

su
al

iz
at

io
n

94 Chapter 3. Methodology

Prediction accuracy PCA without standardization PCA with standardization
Training dataset 53.44% 56.83%
Test dataset 53.01% 56.3 %

TABLE 3.4: Accuracy of PCA

3.7.1 Importing necessary libraries

The first step in the implementation of PCA using Python is declaring all
libraries needed, the first one is pandas which is used for manipulating the
dataset, the next one is sci-kit learning packages which provides data pre-
processing and a PCA implementation. The classifier following PCA is also
provided by sci-kit learning library. The following code shows which pack-
ages are imported:

#import nesscery libarys, including data manipulation liabries pandas and numpy and data visualization libary Matplotlib and machine learning libary scikit learn

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

3.7.2 Pre-processing

In machine learning and other techniques it is necessary to avoid classifier
overfitting on the training data. A common solution to this problem is to
retain some of the available data and use it as a test set. Scikit-learn provides
a function named traintestsplit that can randomly split the dataset into two
parts that are used for training and testing. Therefore, a dataset can be easily
created retaining 30% of the whole data to test the classifier and the rest
for training , The script below imports the datasets and then takes the first
eleven columns of data as features which is Xdf and the last column as labels
which is Ydf. Next, the dataset is divided into training and test sets:

df = pd.read_csv('TotalDataset.csv')

df.describe()

X_df = df.values[:,0:11]

Y_df = df.values[:,11]

x = StandardScaler().fit_transform(X_df)

3.8. Application of SVM 95

X_train, X_test, y_train, y_test = train_test_split(X_df, Y_df,

test_size=0.30)

3.7.3 Feature transform by using PCA

The original feature vector has eleven dimensions; in this step PCA is used
to project these features onto two dimensional Cartesian coordinates. The
remaining two dimension of features are have no great relevance as they
are a projection of the original features that have the least variance between
classes. The purpose of PCA is in reducing the dimensionality of the feature
vectors; as a result, the number of principal components retained is defined
accordingly as detailed in the following code:

pca = PCA(n_components=2)

principalComponents = pca.fit_transform(x)

3.7.4 Training classifier

As described above PCA is used to reduce the dimensionality of feature
vectors, but it does not perform the subsequent classification of data. In this
implementation a standard decision tree classifier is used as shown in the
following code.

classifier = DecisionTreeClassifier()

classifier.fit(principalComponents, y_train)

Test_transformed = pca.transform(X_test)

pred_labels = classifier.predict(Test_transformed)

3.8 Application of SVM

Support Vector Machine (SVM) is a supervised machine learning algorithm
that is used in many classification problems. The python package scikit-
learn implementation of SVM has also been used for this work.

3.8.1 Importing libraries

The following lines of code detail the implementation of SVM by first im-
porting the required libraries which including Sci-kit learning and pandas.

96 Chapter 3. Methodology

Scikit-learn provides an implementation of SVM and pandas allows algo-
rithm to manipulate data. To read data in the csv file, there is a function
called read csv that can read files separated by comma and store as matrix.
The script below details the importing of the data set which is stored as a
data frame so that it is easy to process in later steps.

#import SVM function in Sci-kit learn libary

from sklearn.svm import SVC

import pandas as pd

#import dataset

3.8.2 Pre-processing

The same data preprocessing is performed as for PCA; the data is split into
two parts, of which 30% of the whole data is retained for testing and the rest
(70%) for training.

df = pd.read_csv('TotalDataset.csv')

df.describe()

X_df = df.values[:,0:11]

Y_df = df.values[:,11]

x = StandardScaler().fit_transform(X_df)

X_train, X_test, y_train, y_test = train_test_split(X_df, Y_df,

test_size=0.30)

3.8.3 Training the algorithm

As previously stated, the data has been partitioned into testing and training
sets. The training of the SVM is achieved by using Scikit-Learn which con-
sists of the SVM library including built-in classes for various types of SVM
algorithms. Given that tasks will be classified for execution, Support Vector
Classifier (SVC) classes from the Scikit-Learn SVM library will be used. The
SVC function requires a parameter specifying the kernel type. The funda-
mental kernel type is a linear one, but for some classification tasks the data
is not linearly separable, so different types of kernels are available for SVM
that are able to classifies more complex data set such as that considered in

3.9. Application of evolutionary algorithms 97

this thesis where there are eleven dimensions of feature vectors. Scripts be-
low only shows SVM with a linear kernel but other type of kernels have also
been utilised including polynomial and gaussian.

The fit method of the SVC class is used to train the algorithm by applying
the training dataset, passed as a parameter to the fit method as illustrated
in the following code:

#Define kernal type

svclassifier = SVC(kernel='rbf')

#Train classifier

svclassifier.fit(X_train, y_train)

3.8.4 Making predictions

In terms of making predictions on test set, the predict method of the SVC
class can be utilized. The following code is used to obtain the predicted
output of the test set:

#Prediction of trained classifier

y_pred = svclassifier.predict(X_test)

3.8.5 Evaluating the trained algorithm

The most usually adopted metrics for classification tasks encompasses re-
call, Confusion matrix, precision, and F1 measures. Scikit-Learn’s metrics
library provides classification report and confusion matrix methods. Here
is the code for obtaining these metrics:

#Use output report libary to evaluate output results

from sklearn.metrics import classification_report, confusion_matrix

print(confusion_matrix(y_test,y_pred))

print(classification_report(y_test,y_pred))

3.9 Application of evolutionary algorithms

Cartesian Genetic programming (CGP) is the evolutionary algorithm adopted
for the work described in this thesis. A non-cyclic directed graph, CGP is a

98 Chapter 3. Methodology

FIGURE 3.23: CGP flow chart

arrangement of processing nodes which may be reconfigured in the course
of the evolutionary cycle by two basic means. These are the selection of a
new node function from a predefined list and, stipulating the connection
to other nodes through each input and output. CGP is advantageous over
other categorisation methods in two ways. Firstly, it has been demonstrated
that CGP develops high-performance classifiers for highly non-linear com-
plex data [128]. Secondly, when a high-performance classifier has been
evolved, it can be easily and fully defined as a mathematical expression
by decoding the respective CGP network. This process is dissimilar to most
other machine learning methods. As aforementioned, this is able to supply
a helpful awareness of the biological behaviors acquired from cell-culture
dynamics which occupy a defining function in its categorisation.

3.9.1 Dataset

As previously mentioned, the dataset which is used as input to CGP is as
depicted in figure 3.2 with the exception of average contacts per cell. The av-
erage number of contacts per cell feature is omitted from 24 frames because
this it is too short to obtain a meaningful value.

LISTING 3.1: Example Dataset

9 , 1 , 1 7 8 ,
3 . 3 5 , 3 . 5 6 , 3 . 5 9 , 1 . 3 2 , 1 . 2 1 , 1 . 5 0 , 6 . 2 9 , 8 . 5 8 , 2 2 7 2 , 0 ,
3 . 3 0 , 3 . 7 9 , 3 . 8 2 , 1 . 3 8 , 2 . 8 0 , 1 . 5 5 , 6 . 8 6 , 9 . 0 3 , 2 1 9 4 , 0 ,
2 . 4 6 , 2 . 3 9 , 3 . 1 4 , 1 . 7 3 , 2 . 2 6 , 2 . 1 7 , 9 . 6 5 , 1 1 . 1 3 2998 ,1 ,
2 . 5 8 , 2 . 2 1 , 3 . 2 3 , 1 . 8 0 , 1 . 6 8 , 2 . 2 1 , 9 . 3 5 , 1 0 . 6 8 2624 ,1 ,

3.9. Application of evolutionary algorithms 99

The data set output is either ‘1‘ or ‘0‘, thereby giving the expected clas-
sification outcome. An output of ‘1‘ shows that the training example is
with PPADS and an output of ‘0‘ shows the training example to be with-
out PPADS.

The input and output number is shown by the first data line, in this example
there are nine inputs and one output. The number of examples utilised as
training data is shown by the last number, and there are 178 such examples
in this data set.

A further 57 examples were utilised as test data to assess the CGP output
performance, such data being unseen for CGP during the training stage.

3.9.2 Fitness function

The fitness function evaluates the performance of each individual classifier
evolved. From a technical aspect, this process or function allocates a qual-
ity evaluation of the genotype. This function is normally produced from a
quality evaluation in the inverse representation and the phenotype space.

The objective of this study is to successfully classify two groups of cell cul-
tures. The selection scheme and the fitness function are set to select the
greatest-precision chromosome from the population.

3.9.3 Parameters

The Table below shows the example parameters which are utilised in a
CGP run, where Evolutionary Strategy is the number of chromosomes in
the population and the number of chromosomes which are required to be
kept for the next generation. Inputs and Outputs are dependent upon data
types. The Node is the number of function nodes in each chromosome, in-
cluding both active and inactive nodes. The Node Arity is the number of
connections for each function node. The Mutation rate is the percentage of
node mutation. In this example, there are 500 nodes and five per cent of the
mutation rate; therefore, 25 nodes will be mutated.

−−−
Parameters

−−−
Evolut ionary S t r a t e g y : (1+4)−ES
Inputs : 9

100 Chapter 3. Methodology

Nodes : 500
Outputs : 1
Node Arity : 3
Mutation r a t e : 0 .050000
Function Set : add sub mul div s i n and nand or

nor not abs pow 1 0 (1 4)
−−−

3.10 Conclusion

This chapter presents the methodology used to classify and characterize cell
cultures by using CGP, PCA and SVM. First of all, acquisition of time-lapsed
video of cell cultures was described, followed by cell tracking which pro-
vided cell position data. The next section in this chapter presents the results
of extracting features from the cell tracking data, including individual cell
movement and cell-cell behaviours.

101

Chapter 4

Results and analysis

Contents

3.1 Introduction . 64

3.2 Data acquisition . 64

3.2.1 Video acquisition . 64

3.2.2 Cell tracking software 65

3.3 Data Preprocessing . 72

3.4 Feature extraction . 73

3.4.1 Feature consideration 74

3.5 Data Visualization . 82

3.5.1 Comparing training and test sets 85

3.5.2 Correlations between features 87

3.6 Dataset preparation . 89

3.6.1 Cell culture dataset 89

3.6.2 Single cell dataset . 90

3.7 Application of PCA . 91

3.7.1 Importing necessary libraries 94

3.7.2 Pre-processing . 94

3.7.3 Feature transform by using PCA 95

3.7.4 Training classifier . 95

3.8 Application of SVM . 95

102 Chapter 4. Results and analysis

3.8.1 Importing libraries 95

3.8.2 Pre-processing . 96

3.8.3 Training the algorithm 96

3.8.4 Making predictions 97

3.8.5 Evaluating the trained algorithm 97

3.9 Application of evolutionary algorithms 97

3.9.1 Dataset . 98

3.9.2 Fitness function . 99

3.9.3 Parameters . 99

3.10 Conclusion . 100

4.1 Introduction

This chapter presents the experimental results and their analysis. Section
4.2 presents the statistical analysis of the extracted features where data have
been averaged for the whole population over a 24 hour period. Section, 4.5,
presents results for the evolutionary algorithm used, CGP, including results
and analysis for CGP with different parameters. The following section intro-
duces model evaluation, comparing features extracted using the algorithm
presented in chapter 3 with features of real cell culture.

4.2 Statistical analysis of results

The work presented in this thesis considers the analysis of three main cell
cultures: (i) a control culture without ATP; (ii) a culture having 10µM ATP;
and (iii) a culture having 50µM ATP. Each video’s average angular velocity
and average cell migration speeds were computed and subsequently shown
in Table 4.1. The utilisation of analysis of variance (ANOVA), as depicted
in figure4.1 shows that the separation between the three migration speed
classifications was statistically significant. These outcomes were verified by
comparison with the manual tracking of 15 random cells for each experi-
mental setup as depicted in figure 4.2. Similarly, angular velocity results are
depicted in figure 4.5, and good separation between the three sets of culture
conditions is also shown.

4.2. Statistical analysis of results 103

FIGURE 4.1: Automated calculation of cell migration persis-
tence. Average migration speeds are shown in F-distribution
form for Control ,10/muM ATP and 50/muM Videos: small
circles mark the mean of the group and the bars the 95% con-

fidence interval.

104 Chapter 4. Results and analysis

Cell Culture
Video

Average Migra-
tion Speed (pix-
els/frame)

Average An-
gular Velocity
(rads/frame)

Control1 3.52 1.31
Control2 3.75 1.35
Control3 3.45 1.37
Control4 3.56 1.36
10uM ATP1 3.04 1.52
10uM ATP2 3.09 1.39
10uM ATP3 3.08 1.52
10uMATP4 3.01 1.46
50uMATP1 2.00 1.79
50uMATP2 2.22 1.74
50uMATP3 2.06 1.77
50uMATP4 1.83 1.85

TABLE 4.1: Average migration speed and average angular ve-
locity values for a control culture with no ATP, a culture with

10uM ATP and a culture with 50uM ATP.

4.2.1 Additional features

The characteristics of connections between the cells are of special interest as
well as the migratory persistence and cell migration speeds. This is associ-
ated with the physical extent of the contact which develops between them
and the extent to which interacting cells make transient or more highly-
maintained contacts. The features, previously considered in Chapter 3, demon-
strate the behaviour of cells whilst in contact and post-contact in each of the
videos shown in figures 4.4 4.8 4.3 4.6 4.9 4.7.

Furthermore, the aspects which define the general population behaviour
such as Cell growth are depicted in figure 4.11.

4.3 PCA results

PCA can provide a meaningful reduced dimensional distribution of data
points. The following section provides results for the use of PCA with a
classifier, as previously described in Chapter 3, for both datasets.

4.3.1 Single cell dataset

Table 4.2 shows predictive results for the single cell dataset, where the data
has been divided into 80% for training and 20% for testing.

4.3. PCA results 105

FIGURE 4.2: Calculation of cell migration persistence using
manual tracking

Cell Culture\Accuracy Period 1 Period 2 Period 3
Control 64% 62% 59%
10µM 54% 61% 63%
50µM 50% 56% 57%

TABLE 4.2: PCA classification result for single cell data

106 Chapter 4. Results and analysis

FIGURE 4.3: Post contact speed

4.3. PCA results 107

FIGURE 4.4: In-contact speed

108 Chapter 4. Results and analysis

FIGURE 4.5: Angular velocity

4.3. PCA results 109

FIGURE 4.6: Post contact angular velocity

110 Chapter 4. Results and analysis

FIGURE 4.7: Average clump size

4.3. PCA results 111

FIGURE 4.8: In-contact angular velocity

112 Chapter 4. Results and analysis

FIGURE 4.9: Average contact duration

4.3. PCA results 113

FIGURE 4.10: Cohesivity

114 Chapter 4. Results and analysis

FIGURE 4.11: Cell count

4.4. SVM results 115

FIGURE 4.12: PCA result visualization of Cell culture dataset

4.3.2 Cell culture dataset

Figure 4.12 shows result of PCA and classification applied to cell culture
dataset with inhibitor PPADS. The predictive accuracy for the training dataset
is 75.35% and for the test dataset, 69.38%.

4.4 SVM results

Different kernel functions were evaluated to determine which is best for the
target classification problem. Because the SVM classifier is black box and
dataset is almost balanced between the two classes, the resulting metrics
can be used to evaluate different kernel functions.

116 Chapter 4. Results and analysis

Cell Culture\Accuracy Period 1 Period 2 Period 3
Control 68% 67% 65%
10µM 57% 64% 63%
50µM 60% 59% 59%

TABLE 4.3: SVM classification results for single cell data

Kernal Function Linear Quadratic Cubic Fine Gaussian Medium Gaussian
Prediction Accuracy 85.3% 86.0% 86.9% 83.0% 87.8%

TABLE 4.4: SVM classification result for cell culture dataset
with different kernel functions

4.4.1 Single cell dataset

Table 4.3 shows results for all nine single cell datasets, even though all avail-
able kernel functions were tested, the results are similar and SVM with
medium Gaussian gives highest accuracy. Consequently, all following re-
sults for SVM employ the medium Gaussian kernel SVM.

4.4.2 Cell culture dataset

Table 4.4 shows SVM results for the cell culture dataset; five different kernel
functions were used SVM, but again, the medium Gaussian SVM kernel
gives the best predictive accuracy.

4.5 CGP results

Experiments were run to investigate parameterisation of CGP classifiers
with respect to the following areas:

• Number of Generation: number of generations specified for evolution
of the classifier.

• Number of Nodes : Number of nodes in each chromosome.

This section discusses the results of each of these in turn, each factor with
three different configurations of parameters and each experiment repeated
twenty times. Performance of the classifier is evaluated in each case by clas-
sification accuracy with unseen test data set.

4.5. CGP results 117

FIGURE 4.13: Box Plot of accuracy for classifiers with different
Generation numbers

10000 Generations 50000 Generations 100000 Generations
Mean Accuracy(%) 75.30 87.62 84.79
Standard Deviation 16.38 15.71 19.35

TABLE 4.5: Mean and standard deviation of accuracy of clas-
sifiers with different CGP generation

4.5.1 Choice of generation

In order to determine the best generation number for CGP, three different
choices of generation numbers are considered, which are ten thousand, five
thousand and one hundred thousand. For each choice of generation number
CGP is run twenty times, and the classification accuracy of unseen test data
recorded for each.

Table 4.2 shows average classification accuracy and standard deviation for
three generation parameters; classifiers using a number of generations pa-
rameter of 50,000 generations has highest accuracy and lowest standard de-
viation.

The evolutionary nature of CGP suggests that with increasing number of

118 Chapter 4. Results and analysis

generations, the training set accuracy should continue to improve. How-
ever, higher training accuracy does not always mean a better classifier, be-
cause there is the possibility that the classifier has learnt the specific pat-
terns which are evident in the limited training data rather than any overall
relationships evident in the wider population. By increasing the number of
generations to 100,000 , it can be seen that some classifiers have an accuracy
of 98% or more but their corresponding test classification accuracy is much
lower than the average value, which is a typical sign of overfitting. So in
terms of experiment generation number choice, it is not always the larger
number that generates the best overall result.

4.5.2 Preventing overfitting

In the process of creating classification networks, the most important issue is
the performance of their response to unseen sets of data. There is effectively
minimal benefit if a classifier is able to make a precise recognition without
forecasting any new data accurately. The expression “overfitting” is given
to this phenomenon which happens when the classifier has learnt particular
patterns which are observable within the training data, which will not effec-
tively generalise to unseen data. The separation of the data set into a test set
and a training set is a basic and efficient technique of evaluating overfitting,
with a typical performance of the test set being less than that of the training
set as it evolves. Furthermore, it has the ability to attain a close precision on
this unobserved data, thereby generalizing to a good standard. Neverthe-
less, since this system is unable to ensure that the test accurately represents
that with unseen data, a basic, random assignment of the data into test and
training sets may lead to a further bias factor in the outcome. The appli-
cation of k-fold cross-validation is one technique of obtaining a reduction
in this selection bias. The technique employs k equally-sized “folds” which
represent portions of the dataset which are used to form the training and
validation sets. Typically, one fold is used as the validation set and also
the remaining k – 1 folds as the training set. The folds are then rotated for
different runs of the evolutionary algorithm so that ultimately, each of the
folds is used in both the training and validation sets. The final step is to
average the validation fold scores of the fitness function, thereby enabling
more comprehensive evaluations of the evolved classifiers.

4.5. CGP results 119

FIGURE 4.14: Box Plot of classifier accuracy with different
number of Nodes

500 Nodes 1000 Nodes 1500 Nodes
Mean Accuracy(%) 87.61 85.23 85.8
Standard Deviation 15.71 5.54 10.82

TABLE 4.6: Mean classification accuracy and standard devia-
tion of classifiers with differing number of nodes.

4.5.3 Choice of number of nodes

Figure 4.14 shows the classification rate of classifiers with differing number
of nodes. There is no big difference between three choice of node numbers
because on average there are 97 active nodes in each evolved network; all
three choices of number of nodes provides enough spare nodes to support
effective mutation within each generation.

4.5.4 Analysis of evolved networks

The use of GCP has an additional benefit that the evolved classifier network
can be easily defined as a conventional mathematical expression, which may

120 Chapter 4. Results and analysis

provide useful understanding of the role of the input data (and hence, ul-
timately, the biological processes) used in the classification procedure. For
instance, in the example depicted in figure 4.15, It can be observe that this
specific classifier depends upon inputs: (5),(6)and(8) which, with reference
to Table 3.2, can be equated to features: in-contact angular velocity, post-
contact angular velocity and average cell clump size, respectively.

4.5. CGP results 121

FI
G

U
R

E
4.

15
:E

xa
m

pl
e

C
G

P

122 Chapter 4. Results and analysis

A
ve

ra
ge

M
ig

ra
-

ti
on

Sp
ee

d

Po
st

-
C

on
ta

ct
M

ig
ra

-
ti

on
Sp

ee
d

In
-

C
on

ta
ct

M
ig

ra
-

ti
on

Sp
ee

d

A
ve

ra
ge

A
ng

ul
ar

Ve
lo

ci
ty

Po
st

-
C

on
ta

ct
A

ng
ul

ar
Ve

lo
ci

ty

In
-

C
on

ta
ct

A
ng

ul
ar

Ve
lo

ci
ty

A
ve

ra
ge

C
el

l
C

lu
m

p
Si

ze

A
ve

ra
ge

C
on

ta
ct

D
ur

at
io

n

C
el

l
C

ou
nt

A
cc

ur
ac

y
of

cl
as

si
-

fie
r

M
ea

n
6.

22
4.

89
4.

37
6.

48
3.

77
5.

30
6.

02
5.

12
3.

78
95

.4
5

St
an

da
rd

D
ev

ia
-

ti
on

3.
08

2.
35

2.
62

3.
53

1.
86

2.
37

3.
60

2.
69

2.
24

3.
32

TA
B

L
E

4.
7:

Pe
rc

en
ta

ge
of

co
nn

ec
ti

on
s

be
tw

ee
n

in
pu

tn
od

es
an

d
ot

he
r

no
de

s
ou

to
ft

he
to

ta
ln

um
be

r
of

to
ta

ln
od

es
.

4.6. Comparison of different Methods 123

Table 4.7 shows the average and standard deviation of each input nodes as
a percentage of all nodes in 20 classifiers with at least 90% accuracy. As can
be seen in the table Average Migration speed ,Average Angular velocity and
Average cell clump size are connected with at least six percent of total nodes
directly.

4.6 Comparison of different Methods

In this section, the three classification algorithms employed, PCA, SVM and
CGP are compared and contrasted.

When comparing the prediction accuracy, as shown by the respective values
in table 4.8, it can be seen that there are certain close prediction accuracies
between SVM and CGP for all ten datasets, where both of them are higher
than PCA. In comparison, there is no clear difference that can be seen be-
tween SVM and CGP.

Other than the classification results, there is also another advantage of GP.
After training, it can be theoretically inverted to the original functional ex-
pression, which is symbolic regression[129]. Therefore, the GP method can
be used for the extrapolation and prediction of data. While traditional re-
gression techniques such as SVM attempt to optimize the parameters for
pre-specified model structures or kernel tricks, CGP avoids imposing a pri-
ori assumptions, and instead infers the models from the data. In other
words, it aims to discover the model structure and the corresponding pa-
rameters. On the other hand, SVM has limited number of kernels, thus there
is limited information that can be provided other than the classification.

Because of the nature of the two methods, CGP requires more computa-
tional calculations to evolve a network, whereas SVM possesses pre-defined
kernels tricks and structures that requires less computational resources as
compared with CGP.

4.7 Comparison of different datasets

Even though single cell datasets have much more training instances than
the cell culture dataset, the results in section 4.6 shows that the cell culture
dataset can achieve better classification results among all three methods,
where the difference between two types of dataset lies in a relatively large

124 Chapter 4. Results and analysis

Dataset\Algorithm PCA SVM CGP
Control P1 64% 68% 67%
Control P2 62% 67% 66%
Control P3 69% 65% 67%
10uM P1 54% 57% 59%
10uM P2 61% 64% 64%
10uM P3 63% 63% 63%
50uM P1 50% 60% 61%
50uM P2 56% 59% 61%
50uM P3 57% 59% 62%

Cell Culture 69% 87% 95%

TABLE 4.8: Overall results from each Machine learning algo-
rithm where CGP result is average of 10 runs in order to get

average performance.

margin. The reason behind this is that E-Catherin acts as both receptor and
ligands during the cell development cycle[130]. Furthermore, E-Catherin
can only be expressed through specific functions. In the cell, different cells
may be deferentially expressed within the cell culture [131]. Therefore, the
cells may undertake different roles and result in correspondingly different
behaviours, simultaneously, even within the same cell culture, which means
there are subcultures within a cell culture. While on the other hand, the cell
culture dataset can characterize the whole cell behaviour.

4.8 Discussion

One major advantage of GP, and therefore CGP, is that only evolutionary
parameters, such as the size of population, number of generations and the
geometry of the network, are required to generate effective classifiers with-
out a priori information regarding the feature space, other parameters of
the objective function, human bias or missing input data. There is also the
flexibility for new features to evolve through intrinsic connections between
network nodes that is easy to specify mathematically open to human in-
terpretation. Section 4.6 presents a close prediction performance between
SVM and CGP, but CGP possesses the advantage of providing a white box
classifier, as compared to the black box classifier of SVM. The goal of this
research is not only focused on the classification, but also to understand the
underlying characteristics of cell cultures. In summary, CGP can help es-
tablish a mathematics relationship among different features. These features

4.9. Conclusion 125

are not abstract as they have their own biological motivations and mean-
ings. Therefore, CGP can provide more information for the characterization
of urothelium cell cultures.

4.9 Conclusion

This chapter has presented the experimental results of the thesis, specifi-
cally, statistical analysis of extracted features from time-lapse spectroscopy,
verified by manual tracking. Subsequent application of a classifier, CGP,
demonstrated how evolutionary algorithms can be applied with a high clas-
sification rates for the cell culture dataset under investigation. This classifi-
cation network consisted of nine inputs which are fed by features describing
cellular physical attributes. The advantage of this type of network is it can
be defined as mathematical equation which can help with understanding
classification process and underlying biological behaviours.

127

Chapter 5

Conclusions and Further Work

Contents

4.1 Introduction . 102

4.2 Statistical analysis of results 102

4.2.1 Additional features 104

4.3 PCA results . 104

4.3.1 Single cell dataset . 104

4.3.2 Cell culture dataset 115

4.4 SVM results . 115

4.4.1 Single cell dataset . 116

4.4.2 Cell culture dataset 116

4.5 CGP results . 116

4.5.1 Choice of generation 117

4.5.2 Preventing overfitting 118

4.5.3 Choice of number of nodes 119

4.5.4 Analysis of evolved networks 119

4.6 Comparison of different Methods 123

4.7 Comparison of different datasets 123

4.8 Discussion . 124

4.9 Conclusion . 125

128 Chapter 5. Conclusions and Further Work

5.1 Conclusion

In this dissertation, a new technique for the classification and the character-
ization of cell cultures has been presented by applying cell tracking to time-
lapse videos. This thesis presents a method of describing cell behaviour in
relation to extracted features such as migration persistence and migration
speed, both in isolation and in the context of interaction with other cells,
pre-contact, in-contact and post-contact. The methods developed provide
a unique opportunity to deduce behaviour related to cell interactions by
a totally automated means. Furthermore, the thesis has demonstrated how
evolutionary algorithms may be utilised to successfully classify cell cultures
, even if this is not clearly demonstrated by consideration of the extracted
features themselves.

Through the consideration of normal human urothelial (NHU) cells which
were studied in this thesis, it was mentioned that in the case of scratch as-
says, in which the repair of the injury caused to a confluent cell popula-
tion is observed regarding the wound closure, the impact of the exogenous
Adenosine triphosphate (ATP) was to improve the repair of the wound. It
was demonstrated, in support of such observations, that the restraint of ATP
breakdown improved the repair rate, but PPADs, being a selective antago-
nist of the P2X receptor, which was ATP-activated was preventative [25].
Such observations result in a prediction of the positive effect of ATP upon
cell migration. Furthermore, this thesis did not anticipate that in sparse cell
cultures, the impacts of exogenous ATP would cause a reduction in the mi-
gration speed. Such observations, together with the P2X’s equivocal impact
antagonist, PPADS, implies that the NHU cells’ response to ATP could be
more dependent upon context than was previously thought; furthermore,
that other urothelial- expressed ATP-modulated receptors like the P2YG
protein-coupled receptors [25] may have some relevance. The new ana-
lytical technique offered in this dissertation supplies the method by which
by which predominantly influenced parameters as well as the responsible
mechanisms may be totally analysed objectively and automatically.

5.2. Contributions 129

5.2 Contributions

5.2.1 Feature Extraction

This thesis proposes feature extraction from time-lapsed spectroscopy based
on biological motivation, including migration speed, angular velocity and
population growth. in order to investigate the function of E-cadherin in
urothelium cell cultures the thesis also proposed extracting dynamic fea-
tures of cells particularly with respect to cell clumping and following con-
tact with a cell clumping. Features were also extracted to describe the size
of cell clumping and frequency of cells forming a clump.

The extracted average migration speed (figure 4.1) successfully separated
cell culture classes with different concentration of Calcium. Other features
extracted provide motivation for future research.

5.2.2 Application of CGP

The application of CGP in this work generated high accuracy classifiers
(average accuracy of 95.45% from 20 networks). Unlike the other machine
learning algorithms, CGP not only provides high performing classifiers, but
can define the underlying network as discrete mathematical expressions.
This means this approach not only classifies cell culture but also provides a
means to characterise and understand the cell culture’s physical properties.

5.3 Hypothesis Revisited

The hypothesis presented at the beginning of this thesis stated the follow-
ing:

“ Evolutionary Computation is an effective means of characterising and
classifying urothelium cell cultures through time-lapse spectroscopy.”

This work presented in thesis has provided the theoretical and experimental
evidence to support the hypothesis and, particularly, the specific benefits of
CGP to provide insight to the underlying biological mechanisms which will
benefit future research.

130 Chapter 5. Conclusions and Further Work

5.4 Further work

The majority mathematical models of biochemical pathways take either sig-
naling events that occur within isolated individual cells, or average cells
that are thought to represent a population of cells. Similarly, experimental
measurements are usually averaged over populations made up of hundreds
of thousands of cells. This approach overtakes the fact that even within a
genetically-homogeneous population, local conditions can affect cell signal-
ing and result in phenotypic heterogeneity. Previous studies demonstrate
that modeling of mixed cell populations can provide an insight into biolog-
ical processes that may be non-intuitive. Eventually, it is excepted that un-
derstanding diverse cellular interactions will enhance our knowledge and
understanding of the development of neoplasia in epithelial tissues and pro-
vide new insight into the design of treatment regimens.

Future work based on techniques presented in thesis, along with additional
morphological and dynamic features provides the opportunity of building a
model that can accurately characterise and describe cell culture behaviours
and therefore help understand the biology behind those behaviours.

131

Appendix A

Appendix I

A.1 Model Evalution results

132 Appendix A. Appendix I

FIGURE A.1: Distrobuction of Pre-contact Speed in dataset
where blue is training set and red is test set

FIGURE A.2: Distrobuction of Post-contact Speed in dataset
where blue is training set and red is test set

A.1. Model Evalution results 133

FIGURE A.3: Distrobuction of In-contact Speed in dataset
where blue is training set and red is test set

FIGURE A.4: Distrobuction of Average Angular Velocity in
dataset where blue is training set and red is test set

134 Appendix A. Appendix I

FIGURE A.5: Distrobuction of In-contact Angular Velocity in
dataset where blue is training set and red is test set

FIGURE A.6: Distrobuction of Pre-contact Angular Velocity in
dataset where blue is training set and red is test set

A.1. Model Evalution results 135

FIGURE A.7: Distrobuction of Post-contact Angular Velocity
in dataset where blue is training set and red is test set

FIGURE A.8: Distrobuction of Contact Duration in dataset
where blue is training set and red is test set

136 Appendix A. Appendix I

FIGURE A.9: Distrobuction of Clump Size in dataset where
blue is training set and red is test set

FIGURE A.10: Distrobuction of Number of Contacts Speed in
dataset where blue is training set and red is test set

137

List of Abbreviations

LAH List Abbreviations Here

WSF What (it) Stands For

MATLAB MATrix LABoratory

NHU Normal Human Urothelial

ATP Adenosine TriPhosphate

CGP Cartesian Genetic Programming

PPADS PyridoxalPhosphate− 6−Azophenyl − 2′, 4′ −Disulphonicacid

CCD Charge Coupled Device

ANOVA ANalysis Of VAriance

DNA DeoxyriboNucleic Acid

AKT Protein kinase B

ANN Artificial Neural Network

RNN Recurrent Neural Network

LTSM Long Short-term Memory

EA Evolutionary Algorithms

GP genetic Programming

GPTP Genetic Programming Theory and Practice

139

Reference

[1] M. Burkitt, D Walker, D. M. Romano, and A. Fazeli, “Modelling sperm

behaviour in a 3d environment”, in Proceedings of the 9th International

Conference on Computational Methods in Systems Biology, ACM, 2011,

pp. 141–149.

[2] M Scianna and L Preziosi, Cellular potts models: Multiscale develop-

ments and biological applications, 2013.

[3] A. Deutsch and S. Dormann, “Cellular automaton modeling of bio-

logical pattern formation”, FASEB, vol. 23, p. 12, 2005.

[4] J. A. Walker, K. Völk, S. L. Smith, and J. F. Miller, “Parallel evolu-

tion using multi-chromosome cartesian genetic programming”, Ge-

netic Programming and Evolvable Machines, vol. 10, no. 4, p. 417, 2009.

[5] R. Chatterjee, M. Ghosh, A. S. Chowdhury, and N. Ray, “Cell track-

ing in microscopic video using matching and linking of bipartite

graphs”, Computer methods and programs in biomedicine, vol. 112, no. 3,

pp. 422–431, 2013.

[6] Z. Zhang, M. Bedder, S. L. Smith, D. Walker, S. Shabir, and J. South-

gate, “Characterization and classification of adherent cells in mono-

layer culture using automated tracking and evolutionary algorithms”,

Biosystems, vol. 146, pp. 110–121, 2016.

[7] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter,

“Cell movements and the shaping of the vertebrate body”, 2002.

[8] A. Bruce. (). What is a cell, [Online]. Available: https://web.archive.

org/web/20130507094245/http://www.ncbi.nlm.nih.gov:80/

About/primer/genetics_cell.html.

[9] G. Karp, Cell and molecular biology: concepts and experiments. John Wi-

ley & Sons, 2009.

https://web.archive.org/web/20130507094245/http://www.ncbi.nlm.nih.gov:80/About/primer/genetics_cell.html
https://web.archive.org/web/20130507094245/http://www.ncbi.nlm.nih.gov:80/About/primer/genetics_cell.html
https://web.archive.org/web/20130507094245/http://www.ncbi.nlm.nih.gov:80/About/primer/genetics_cell.html

140 Reference

[10] A. Maton, D. Lahart, J. Hopkins, M. Q. Warner, S. Johnson, and J. D.

Wright, Cells: Building blocks of life. Pearson Prentice Hall, 1997.

[11] W. Commons, File:celltypes.svg — wikimedia, [Online; accessed 24-September-

2018], 2018. [Online]. Available: https://commons.wikimedia.org/

w/index.php?title=File:Celltypes.svg&oldid=314722701.

[12] Wikipedia contributors, Cell (biology) — Wikipedia, the free encyclo-

pedia, https://en.wikipedia.org/w/index.php?title=Cell_

(biology)&oldid=849739515, [Online; accessed 11-July-2018], 2018.

[13] ——, Cell culture - Wikipedia, the free encyclopedia, https://en.wikipedia.

org/w/index.php?title=Cell_culture&oldid=847497293, [Online;

accessed 11-July-2018], 2018.

[14] L. Qian and W. M. Saltzman, “Improving the expansion and neu-

ronal differentiation of mesenchymal stem cells through culture sur-

face modification”, Biomaterials, vol. 25, no. 7-8, pp. 1331–1337, 2004.

[15] G. Maguire, Therapeutics from adult stem cells and the hype curve, 2016.

[16] M. Cao, B. Liu, G. Cunha, and L. Baskin, “Urothelium patterns blad-

der smooth muscle location”, Pediatric research, vol. 64, no. 4, p. 352,

2008.

[17] S. N. Nabili, Kidney infection (pyelonephritis) signs, symptoms & home

remedies. [Online]. Available: https://www.emedicinehealth.com/

kidney_infection/article_em.htm#what_is_kidney_a_infection_

pyelonephritis.

[18] D. St-Onge, Analyse de la valeur pronostique du contexte immunologique

du cancer superficiel de la vessie. [Online]. Available: https://corpus.

ulaval.ca/jspui/bitstream/20.500.11794/27009/1/32491.pdf.

[19] P. Kreft and K. Jezernik, “Urothelial injuries and the early wound

healing response: Tight junctions and urothelial cytodifferentiation”,

Histochemistry and cell biology, vol. 123, no. 4-5, pp. 529–539, 2005.

[20] X.-R. Wu, X.-P. Kong, A. Pellicer, G. Kreibich, and T.-T. Sun, “Uro-

plakins in urothelial biology, function, and disease”, Kidney interna-

tional, vol. 75, no. 11, pp. 1153–1165, 2009.

https://commons.wikimedia.org/w/index.php?title=File:Celltypes.svg&oldid=314722701
https://commons.wikimedia.org/w/index.php?title=File:Celltypes.svg&oldid=314722701
https://en.wikipedia.org/w/index.php?title=Cell_(biology)&oldid=849739515
https://en.wikipedia.org/w/index.php?title=Cell_(biology)&oldid=849739515
https://en.wikipedia.org/w/index.php?title=Cell_culture&oldid=847497293
https://en.wikipedia.org/w/index.php?title=Cell_culture&oldid=847497293
https://www.emedicinehealth.com/kidney_infection/article_em.htm#what_is_kidney_a_infection_pyelonephritis
https://www.emedicinehealth.com/kidney_infection/article_em.htm#what_is_kidney_a_infection_pyelonephritis
https://www.emedicinehealth.com/kidney_infection/article_em.htm#what_is_kidney_a_infection_pyelonephritis
https://corpus.ulaval.ca/jspui/bitstream/20.500.11794/27009/1/32491.pdf
https://corpus.ulaval.ca/jspui/bitstream/20.500.11794/27009/1/32491.pdf

Reference 141

[21] M. Nguyen, D. Lieu, L. Degraffenried, R. Isseroff, and E. Kurzrock,

“Urothelial progenitor cells: Regional differences in the rat bladder”,

Cell proliferation, vol. 40, no. 2, pp. 157–165, 2007.

[22] M. Erman and K. Jezernik, “Superficial cell differentiation during

embryonic and postnatal development of mouse urothelium”, Tissue

and Cell, vol. 38, no. 5, pp. 293–301, 2006.

[23] W. Commons, File:illu bladder.jpg — wikimedia, [Online; accessed 24-

September-2018], 2016. [Online]. Available: \url{https://commons.

wikimedia.org/w/index.php?title=File:Illu_bladder.jpg&

oldid=226940891}.

[24] L. A. Birder, “Urothelial signaling”, in Urinary Tract, Springer, 2011,

pp. 207–231.

[25] S. Shabir, W. Cross, L. A. Kirkwood, J. F. Pearson, P. A. Appleby,

D. Walker, I. Eardley, and J. Southgate, “Functional expression of

purinergic p2 receptors and transient receptor potential channels by

the human urothelium”, American Journal of Physiology-Renal Physiol-

ogy, vol. 305, no. 3, F396–F406, 2013.

[26] L. A. Birder and W. C. De Groat, “Mechanisms of disease: Involve-

ment of the urothelium in bladder dysfunction”, Nature Reviews Urol-

ogy, vol. 4, no. 1, p. 46, 2007.

[27] W. Yu and W. G. Hill, “Defining protein expression in the urothe-

lium: A problem of more than transitional interest”, American Journal

of Physiology-Renal Physiology, vol. 301, no. 5, F932–F942, 2011.

[28] N. T. Georgopoulos, L. A. Kirkwood, and J. Southgate, “A novel bidi-

rectional positive-feedback loop between wnt–catenin and egfr–erk

plays a role in context-specific modulation of epithelial tissue regen-

eration”, J Cell Sci, jcs–150 888, 2014.

[29] P. Hu, S. Meyers, F.-X. Liang, F.-M. Deng, B. Kachar, M. L. Zeidel, and

T.-T. Sun, “Role of membrane proteins in permeability barrier func-

tion: Uroplakin ablation elevates urothelial permeability”, American

Journal of Physiology-Renal Physiology, vol. 283, no. 6, F1200–F1207,

2002.

\url{https://commons.wikimedia.org/w/index.php?title=File:Illu_bladder.jpg&oldid=226940891}
\url{https://commons.wikimedia.org/w/index.php?title=File:Illu_bladder.jpg&oldid=226940891}
\url{https://commons.wikimedia.org/w/index.php?title=File:Illu_bladder.jpg&oldid=226940891}

142 Reference

[30] N. J. Smith, J. Hinley, C. L. Varley, I. Eardley, L. K. Trejdosiewicz, and

J. Southgate, “The human urothelial tight junction: Claudin 3 and the

switch”, Bladder, vol. 2, no. 1, e9, 2015.

[31] C. Varley, G. Hill, S. Pellegrin, N. J. Shaw, P. J. Selby, L. K. Trej-

dosiewicz, and J. Southgate, “Autocrine regulation of human urothe-

lial cell proliferation and migration during regenerative responses in

vitro”, Experimental cell research, vol. 306, no. 1, pp. 216–229, 2005.

[32] S. C. Baker, S. Shabir, and J. Southgate, “Biomimetic urothelial tissue

models for the in vitro evaluation of barrier physiology and bladder

drug efficacy”, Molecular pharmaceutics, vol. 11, no. 7, pp. 1964–1970,

2014.

[33] J. Southgate, K. Hutton, D. Thomas, and L. K. Trejdosiewicz, “Nor-

mal human urothelial cells in vitro: Proliferation and induction of

stratification.”, Laboratory investigation; a journal of technical methods

and pathology, vol. 71, no. 4, pp. 583–594, 1994.

[34] N. T. Georgopoulos, L. A. Kirkwood, D. C. Walker, and J. South-

gate, “Differential regulation of growth-promoting signalling path-

ways by e-cadherin”, PLoS One, vol. 5, no. 10, e13621, 2010.

[35] P. Friedl and D. Gilmour, “Collective cell migration in morphogen-

esis, regeneration and cancer”, Nature reviews Molecular cell biology,

vol. 10, no. 7, p. 445, 2009.

[36] S. Ripke, A. R. Sanders, K. S. Kendler, D. F. Levinson, P. Sklar, P. A.

Holmans, D.-Y. Lin, J. Duan, R. A. Ophoff, O. A. Andreassen, et al.,

“Genome-wide association study identifies five new schizophrenia

loci”, Nature genetics, vol. 43, no. 10, p. 969, 2011.

[37] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the

OpenCV library. " O’Reilly Media, Inc.", 2008.

[38] S. Gay, S. Soliman, and F. Fages, “A graphical method for reduc-

ing and relating models in systems biology”, Bioinformatics, vol. 26,

no. 18, pp. i575–i581, 2010.

[39] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal,

L. Xu, P. Mendes, and U. Kummer, “Copasi—a complex pathway

simulator”, Bioinformatics, vol. 22, no. 24, pp. 3067–3074, 2006.

Reference 143

[40] S. Sahle, R. Gauges, J. Pahle, N. Simus, U. Kummer, S. Hoops, C.

Lee, M. Singhal, L. Xu, and P. Mendes, “Simulation of biochemical

networks using copasi-a complex pathway simulator”, in Simula-

tion Conference, 2006. WSC 06. Proceedings of the Winter, IEEE, 2006,

pp. 1698–1706.

[41] A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro,

“Bioambients: An abstraction for biological compartments”, Theoret-

ical Computer Science, vol. 325, no. 1, pp. 141–167, 2004.

[42] G. Păun and G. Rozenberg, “A guide to membrane computing”, The-

oretical Computer Science, vol. 287, no. 1, pp. 73–100, 2002.

[43] V. A. Muganthan, A. Phillips, and M. G. Vigliotti, “Bam: Bioambient

machine.”, in ACSD, Citeseer, 2008, pp. 45–49.

[44] H. Pilegaard, F. Nielson, and H. R. Nielson, “Pathway analysis for

bioambients”, The Journal of Logic and Algebraic Programming, vol. 77,

no. 1-2, pp. 92–130, 2008.

[45] L. Cardelli, “Abstract machines of systems biology”, in Transactions

on Computational Systems Biology III, Springer, 2005, pp. 145–168.

[46] E. Merelli, G. Armano, N. Cannata, F. Corradini, M. d’Inverno, A.

Doms, P. Lord, A. Martin, L. Milanesi, S. Möller, et al., “Agents in

bioinformatics, computational and systems biology”, Briefings in bioin-

formatics, vol. 8, no. 1, pp. 45–59, 2006.

[47] E. Bartocci, D. Cacciagrano, N. Cannata, F. Corradini, E. Merelli, L.

Milanesi, and P. Romano, “An agent-based multilayer architecture

for bioinformatics grids”, IEEE transactions on Nanobioscience, vol. 6,

no. 2, pp. 142–148, 2007.

[48] P. Richmond, D. Walker, S. Coakley, and D. Romano, “High perfor-

mance cellular level agent-based simulation with flame for the gpu”,

Briefings in bioinformatics, vol. 11, no. 3, pp. 334–347, 2010.

[49] N. Paoletti, P. Lio, E. Merelli, and M. Viceconti, “Multilevel compu-

tational modeling and quantitative analysis of bone remodeling”,

IEEE/ACM Transactions on Computational Biology and Bioinformatics

(TCBB), vol. 9, no. 5, pp. 1366–1378, 2012.

144 Reference

[50] M. J. North, N. T. Collier, and J. R. Vos, “Experiences creating three

implementations of the repast agent modeling toolkit”, ACM Trans-

actions on Modeling and Computer Simulation (TOMACS), vol. 16, no. 1,

pp. 1–25, 2006.

[51] H. A. Bethe, “Statistical theory of superlattices”, Proc. R. Soc. Lond. A,

vol. 150, no. 871, pp. 552–575, 1935.

[52] J. A. Izaguirre, R. Chaturvedi, C. Huang, T. Cickovski, J Coffland,

G Thomas, G. Forgacs, M Alber, G Hentschel, S. A. Newman, et al.,

“Compucell, a multi-model framework for simulation of morpho-

genesis”, Bioinformatics, vol. 20, no. 7, pp. 1129–1137, 2004.

[53] S. D. Hester, J. M. Belmonte, J. S. Gens, S. G. Clendenon, and J. A.

Glazier, “A multi-cell, multi-scale model of vertebrate segmentation

and somite formation”, PLoS computational biology, vol. 7, no. 10, e1002155,

2011.

[54] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited, 2016.

[55] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine

learning. MIT press, 2012.

[56] M. van Gerven and S. Bohte, Artificial neural networks as models of neu-

ral information processing. Frontiers Media SA, 2018.

[57] Techsmosh, A digestible overview of neural networks, 1970. [Online].

Available: https://dev.to/techsmosh/a-digestible-overview-

of-neural-networks-2mg9.

[58] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas imma-

nent in nervous activity”, The bulletin of mathematical biophysics, vol. 5,

no. 4, pp. 115–133, 1943.

[59] D. O. Hebb, The organization of behavior: A neurophysiological approach,

1949.

[60] B. Farley and W Clark, “Simulation of self-organizing systems by

digital computer”, Transactions of the IRE Professional Group on Infor-

mation Theory, vol. 4, no. 4, pp. 76–84, 1954.

https://dev.to/techsmosh/a-digestible-overview-of-neural-networks-2mg9
https://dev.to/techsmosh/a-digestible-overview-of-neural-networks-2mg9

Reference 145

[61] N. Rochester, J Holland, L Haibt, and W Duda, “Tests on a cell as-

sembly theory of the action of the brain, using a large digital com-

puter”, IRE Transactions on information Theory, vol. 2, no. 3, pp. 80–93,

1956.

[62] F. Rosenblatt, “The perceptron: A probabilistic model for information

storage and organization in the brain.”, Psychological review, vol. 65,

no. 6, p. 386, 1958.

[63] P. Werbos, “Beyond regression:" new tools for prediction and analy-

sis in the behavioral sciences”, Ph. D. dissertation, Harvard University,

1974.

[64] D. H. Hubel and T. N. Wiesel, Brain and visual perception: the story of a

25-year collaboration. Oxford University Press, 2004.

[65] J. Schmidhuber, “Deep learning in neural networks: An overview”,

Neural networks, vol. 61, pp. 85–117, 2015.

[66] M. Minsky and S. Papert, Perceptron expanded edition, 1969.

[67] D. E. Rumelhart and J. L. McClelland, “Parallel distributed process-

ing: Explorations in the microstructure of cognition. volume 1. foun-

dations”, 1986.

[68] B. Rost and C. Sander, “Prediction of protein secondary structure at

better than 70% accuracy”, Journal of molecular biology, vol. 232, no. 2,

pp. 584–599, 1993.

[69] J. J. Weng, N. Ahuja, and T. S. Huang, “Learning recognition and seg-

mentation using the cresceptron”, International Journal of Computer

Vision, vol. 25, no. 2, pp. 109–143, 1997.

[70] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling opera-

tions in convolutional architectures for object recognition”, in Artifi-

cial Neural Networks–ICANN 2010, Springer, 2010, pp. 92–101.

[71] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al., Gradient

flow in recurrent nets: The difficulty of learning long-term dependencies,

2001.

[72] J. Schmidhuber, “Learning complex, extended sequences using the

principle of history compression”, Neural Computation, vol. 4, no. 2,

pp. 234–242, 1992.

146 Reference

[73] S. Behnke, Hierarchical neural networks for image interpretation. Springer,

2003, vol. 2766.

[74] G. E. Hinton, “Deep belief networks”, Scholarpedia, vol. 4, no. 5, p. 5947,

2009.

[75] Q. V. Le, “Building high-level features using large scale unsuper-

vised learning”, in Acoustics, Speech and Signal Processing (ICASSP),

2013 IEEE International Conference on, IEEE, 2013, pp. 8595–8598.

[76] Recurrent neural networks, 2018. [Online]. Available: https://machinelearning-

blog.com/2018/02/21/recurrent-neural-networks/.

[77] K. Pearson, “Liii. on lines and planes of closest fit to systems of points

in space”, The London, Edinburgh, and Dublin Philosophical Magazine

and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[78] C. Cortes and V. Vapnik, “Support-vector networks”, Machine learn-

ing, vol. 20, no. 3, pp. 273–297, 1995.

[79] T. Joachims, “Making large-scale svm learning practical”, Technical

report, SFB 475: Komplexitätsreduktion in Multivariaten . . ., Tech.

Rep., 1998.

[80] J. Qin and Z.-S. He, “A svm face recognition method based on gabor-

featured key points”, in 2005 international conference on machine learn-

ing and cybernetics, IEEE, vol. 8, 2005, pp. 5144–5149.

[81] A. Sun, E.-P. Lim, and W.-K. Ng, “Web classification using support

vector machine”, in Proceedings of the 4th international workshop on Web

information and data management, ACM, 2002, pp. 96–99.

[82] A. M. Turing, “Computing machinery and intelligence”, in Parsing

the Turing Test, Springer, 2009, pp. 23–65.

[83] R. Forsyth, “Beagle—a darwinian approach to pattern recognition”,

Kybernetes, vol. 10, no. 3, pp. 159–166, 1981.

[84] J. R. Koza, Non-linear genetic algorithms for solving problems, US Patent

4,935,877, 1990.

[85] ——, “Hierarchical genetic algorithms operating on populations of

computer programs.”, in IJCAI, vol. 89, 1989, pp. 768–774.

[86] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine

learning”, Machine learning, vol. 3, no. 2, pp. 95–99, 1988.

https://machinelearning-blog.com/2018/02/21/recurrent-neural-networks/
https://machinelearning-blog.com/2018/02/21/recurrent-neural-networks/

Reference 147

[87] D. E. Goldberg et al., “Computer-aided gas pipeline operation using

genetic algorithms and rule learning part ii: Rule learning control of

a pipeline under normal and abnormal conditions”, 1985.

[88] J. R. Koza, “Genetic programming as a means for programming com-

puters by natural selection”, Statistics and computing, vol. 4, no. 2,

pp. 87–112, 1994.

[89] J. R. Koza and J. P. Rice, Genetic Programming:The Movie. Cambridge,

MA, USA: MIT Press, 1992.

[90] T. Hu, W. Banzhaf, and J. H. Moore, “The effects of recombination on

phenotypic exploration and robustness in evolution”, Artificial Life,

vol. 20, no. 4, pp. 457–470, Oct. 2014, Ten thousandth GP entry in

the genetic programming bibliography, ISSN: 1064-5462. DOI: doi:

10.1162/ARTL_a_00145.

[91] J. R. Koza, “Human-competitive results produced by genetic pro-

gramming”, Genetic Programming and Evolvable Machines, vol. 11, no. 3/4,

pp. 251–284, Sep. 2010, Tenth Anniversary Issue: Progress in Ge-

netic Programming and Evolvable Machines, ISSN: 1389-2576. DOI:

doi:10.1007/s10710- 010- 9112- 3. [Online]. Available: http://

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.297.6227.

[92] J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds., Genetic

Programming 1996: Proceedings of the First Annual Conference, Stanford

University, CA, USA: MIT Press, 1996. [Online]. Available: http://

www.genetic-programming.org/gp96proceedings.html.

[93] W. B. Langdon, Genetic Programming and Data Structures: Genetic Pro-

gramming + Data Structures = Automatic Programming!, ser. Genetic

Programming. Boston: Kluwer, 1998, vol. 1, ISBN: 0-7923-8135-1. DOI:

doi:10.1007/978-1-4615-5731-9. [Online]. Available: http://www.

cs.ucl.ac.uk/staff/W.Langdon/gpdata.

[94] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic Pro-

gramming – An Introduction; On the Automatic Evolution of Computer

Programs and its Applications. San Francisco, CA, USA: Morgan Kauf-

mann, Jan. 1998, ISBN: 1-55860-510-X. [Online]. Available: http://

https://doi.org/doi:10.1162/ARTL_a_00145
https://doi.org/doi:10.1162/ARTL_a_00145
https://doi.org/doi:10.1007/s10710-010-9112-3
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.297.6227
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.297.6227
http://www.genetic-programming.org/gp96proceedings.html
http://www.genetic-programming.org/gp96proceedings.html
https://doi.org/doi:10.1007/978-1-4615-5731-9
http://www.cs.ucl.ac.uk/staff/W.Langdon/gpdata
http://www.cs.ucl.ac.uk/staff/W.Langdon/gpdata
http://www.elsevier.com/wps/find/bookdescription.cws_home/677869/description#description
http://www.elsevier.com/wps/find/bookdescription.cws_home/677869/description#description

148 Reference

www.elsevier.com/wps/find/bookdescription.cws_home/677869/

description#description.

[95] J. F. Miller, D. Job, and V. K. Vassilev, “Principles in the evolutionary

design of digital circuits—part i”, Genetic programming and evolvable

machines, vol. 1, no. 1-2, pp. 7–35, 2000.

[96] R. L. Riolo and B. Worzel, Eds., Genetic Programming Theory and Prac-

tice, vol. 6, Genetic Programming, Series Editor - John Koza, Boston,

MA, USA: Kluwer, 2003, ISBN: 1-4020-7581-2. DOI: doi:10.1007/

978-1-4419-8983-3. [Online]. Available: http://www.wkap.nl/

prod/b/1-4020-7581-2.

[97] P. J. Angeline, “Subtree crossover: Building block engine or macro-

mutation”, Genetic Programming, vol. 97, pp. 9–17, 1997.

[98] S. Smith, Biologically inspired computation.

[99] J. F. Miller, P. Thomson, and T. Fogarty, Designing electronic circuits

using evolutionary algorithms. arithmetic circuits: A case study, 1997.

[100] J. F. Miller, “An empirical study of the efficiency of learning boolean

functions using a cartesian genetic programming approach”, in Pro-

ceedings of the 1st Annual Conference on Genetic and Evolutionary Computation-

Volume 2, Morgan Kaufmann Publishers Inc., 1999, pp. 1135–1142.

[101] J. F. Miller and P. Thomson, “Cartesian genetic programming”, in

European Conference on Genetic Programming, Springer, 2000, pp. 121–

132.

[102] D. R. White, J. Mcdermott, M. Castelli, L. Manzoni, B. W. Goldman,

G. Kronberger, W. Jaśkowski, U.-M. O’Reilly, and S. Luke, “Better

gp benchmarks: Community survey results and proposals”, Genetic

Programming and Evolvable Machines, vol. 14, no. 1, pp. 3–29, 2013.

[103] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to

genetic programming. Lulu. com, 2008.

[104] S. Silva and E. Costa, “Dynamic limits for bloat control in genetic

programming and a review of past and current bloat theories”, Ge-

netic Programming and Evolvable Machines, vol. 10, no. 2, pp. 141–179,

2009.

http://www.elsevier.com/wps/find/bookdescription.cws_home/677869/description#description
http://www.elsevier.com/wps/find/bookdescription.cws_home/677869/description#description
http://www.elsevier.com/wps/find/bookdescription.cws_home/677869/description#description
https://doi.org/doi:10.1007/978-1-4419-8983-3
https://doi.org/doi:10.1007/978-1-4419-8983-3
http://www.wkap.nl/prod/b/1-4020-7581-2
http://www.wkap.nl/prod/b/1-4020-7581-2

Reference 149

[105] J. Miller, “What bloat? cartesian genetic programming on boolean

problems”, in 2001 Genetic and Evolutionary Computation Conference

Late Breaking Papers, San Francisco, California, USA, 2001, pp. 295–

302.

[106] J. F. Miller and S. L. Smith, “Redundancy and computational effi-

ciency in cartesian genetic programming”, IEEE Transactions on Evo-

lutionary Computation, vol. 10, no. 2, pp. 167–174, 2006.

[107] V. K. Vassilev and J. F. Miller, “The advantages of landscape neutral-

ity in digital circuit evolution”, in International Conference on Evolvable

Systems, Springer, 2000, pp. 252–263.

[108] T. Yu and J. Miller, “Neutrality and the evolvability of boolean func-

tion landscape”, in European Conference on Genetic Programming, Springer,

2001, pp. 204–217.

[109] S. L. Smith, J. A. Walker, and J. F. Miller, “Medical applications of

cartesian genetic programming”, in Cartesian Genetic Programming,

Springer, 2011, pp. 309–336.

[110] J. F. Miller, D. Job, and V. K. Vassilev, “Principles in the evolutionary

design of digital circuits—part ii”, Genetic programming and evolvable

machines, vol. 1, no. 3, pp. 259–288, 2000.

[111] S. Harding, J. Leitner, and J. Schmidhuber, “Cartesian genetic pro-

gramming for image processing”, in Genetic programming theory and

practice X, Springer, 2013, pp. 31–44.

[112] L. Sekanina, “Image filter design with evolvable hardware”, in Work-

shops on Applications of Evolutionary Computation, Springer, 2002, pp. 255–

266.

[113] D. Hope, E Munday, and S. Smith, “Evolutionary algorithms in the

classification of mammograms”, in Computational Intelligence in Im-

age and Signal Processing, 2007. CIISP 2007. IEEE Symposium on, IEEE,

2007, pp. 258–265.

[114] K. Völk, J. F. Miller, and S. L. Smith, “Multiple network cgp for the

classification of mammograms”, in Workshops on Applications of Evo-

lutionary Computation, Springer, 2009, pp. 405–413.

150 Reference

[115] Z. Zhang, M. Bedder, S. L. Smith, D. Walker, S. Shabir, and J. South-

gate, “Automated motion analysis of adherent cells in monolayer

culture”, in International Conference on Information Processing in Cells

and Tissues, Springer, 2015, pp. 185–194.

[116] P. L. Townes and J. Holtfreter, “Directed movements and selective

adhesion of embryonic amphibian cells”, Journal of experimental zool-

ogy, vol. 128, no. 1, pp. 53–120, 1955.

[117] M. Takeichi, “Cadherin cell adhesion receptors as a morphogenetic

regulator”, Science, vol. 251, no. 5000, pp. 1451–1455, 1991.

[118] H. O. Steinberg, H. Chaker, R. Leaming, A. Johnson, G. Brechtel,

and A. D. Baron, “Obesity/insulin resistance is associated with en-

dothelial dysfunction. implications for the syndrome of insulin resis-

tance.”, The Journal of clinical investigation, vol. 97, no. 11, pp. 2601–

2610, 1996.

[119] A. Nose, K. Tsuji, and M. Takeichi, “Localization of specificity deter-

mining sites in cadherin cell adhesion molecules”, Cell, vol. 61, no. 1,

pp. 147–155, 1990.

[120] M. S. Steinberg and M. Takeichi, “Experimental specification of cell

sorting, tissue spreading, and specific spatial patterning by quanti-

tative differences in cadherin expression”, Proceedings of the National

Academy of Sciences, vol. 91, no. 1, pp. 206–209, 1994.

[121] A. M. Fannon and D. R. Colman, “A model for central synaptic junc-

tional complex formation based on the differential adhesive speci-

ficities of the cadherins”, Neuron, vol. 17, no. 3, pp. 423–434, 1996.

[122] N. Uchida, Y. Honjo, K. R. Johnson, M. J. Wheelock, and M. Takeichi,

“The catenin/cadherin adhesion system is localized in synaptic junc-

tions bordering transmitter release zones.”, The Journal of cell biology,

vol. 135, no. 3, pp. 767–779, 1996.

[123] S. Martinek and U. Gaul, “Neural development: How cadherins zip-

per up neural circuits”, Current Biology, vol. 7, no. 11, R712–R715,

1997.

Reference 151

[124] A. Nagafuchi, Y. Shirayoshi, K. Okazaki, K. Yasuda, and M. Takeichi,

“Transformation of cell adhesion properties by exogenously intro-

duced e-cadherin cdna”, Nature, vol. 329, no. 6137, p. 341, 1987.

[125] W. M. Brieher, A. S. Yap, and B. M. Gumbiner, “Lateral dimerization

is required for the homophilic binding activity of c-cadherin.”, The

Journal of cell biology, vol. 135, no. 2, pp. 487–496, 1996.

[126] A. S. Yap, W. M. Brieher, M. Pruschy, and B. M. Gumbiner, “Lateral

clustering of the adhesive ectodomain: A fundamental determinant

of cadherin function”, Current Biology, vol. 7, no. 5, pp. 308–315, 1997.

[127] C. L. Adams, Y.-T. Chen, S. J. Smith, and W. J. Nelson, “Mechanisms

of epithelial cell–cell adhesion and cell compaction revealed by high-

resolution tracking of e-cadherin–green fluorescent protein”, The Jour-

nal of cell biology, vol. 142, no. 4, pp. 1105–1119, 1998.

[128] M. A. Lones, S. L. Smith, J. E. Alty, S. E. Lacy, K. L. Possin, D. S.

Jamieson, and A. M. Tyrrell, “Evolving classifiers to recognize the

movement characteristics of parkinson’s disease patients”, IEEE Trans-

actions on Evolutionary Computation, vol. 18, no. 4, pp. 559–576, 2014.

[129] D. A. Augusto and H. J. Barbosa, “Symbolic regression via genetic

programming”, in Proceedings. Vol. 1. Sixth Brazilian Symposium on

Neural Networks, IEEE, 2000, pp. 173–178.

[130] B. M. Gumbiner, “Regulation of cadherin-mediated adhesion in mor-

phogenesis”, Nature reviews Molecular cell biology, vol. 6, no. 8, p. 622,

2005.

[131] L. A. Taneyhill and A. T. Schiffmacher, “Should i stay or should i go?

cadherin function and regulation in the neural crest”, genesis, vol. 55,

no. 6, e23028, 2017.

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	Declaration of Authorship
	Introduction
	Classification and characterization of cell cultures
	Opportunitiess for machine learning
	Hypothesis
	Thesis outline

	Literature Review
	Introduction
	Cell culture and characterization
	The Cell
	Cell Types

	Cell culture
	Application of cell culture

	Urothelium
	Structure and functions
	Significance

	Technologies in cell characterization
	Cell tracking
	Ctracker

	Modeling
	Compartment-based models
	Agent-based models
	Lattice-based models

	Machine Learning
	Machine learning tasks
	Supervised Learning
	Unsupervised Learning

	Artificial neural network
	Overview
	History

	Principal component analysis
	Support Vector Machines
	Evolutionary algorithms
	Typical EAs in pseudo-code

	Genetic Programming
	Overview
	History
	Implementation

	Cartesian Genetic Programming
	Overview
	Implemention

	Advantages of Cartesian Genetic Programming
	No bloat
	Heightened Neutral Genetic Drift
	Multiple-Input Multiple Output
	Reuse of Internally Created Sub-Structures
	Applications

	Conclusion

	Methodology
	Introduction
	Data acquisition
	Video acquisition
	Cell tracking software
	Parameters for tracking software
	Line Length
	Invert
	Number of points
	Output Data

	Data Preprocessing
	Feature extraction
	Feature consideration
	Average migration speed
	Average angular velocity (or migratory persistence)
	Clump definition
	Post and Pre Contact Behaviour
	Cell Growth
	Contact Duration and size

	Data Visualization
	Comparing training and test sets
	Correlations between features

	Dataset preparation
	Cell culture dataset
	Single cell dataset

	Application of PCA
	Importing necessary libraries
	Pre-processing
	Feature transform by using PCA
	Training classifier

	Application of SVM
	Importing libraries
	Pre-processing
	Training the algorithm
	Making predictions
	Evaluating the trained algorithm

	Application of evolutionary algorithms
	Dataset
	Fitness function
	Parameters

	Conclusion

	Results and analysis
	Introduction
	Statistical analysis of results
	Additional features

	PCA results
	Single cell dataset
	Cell culture dataset

	SVM results
	Single cell dataset
	Cell culture dataset

	CGP results
	Choice of generation
	Preventing overfitting
	Choice of number of nodes
	Analysis of evolved networks

	Comparison of different Methods
	Comparison of different datasets
	Discussion
	Conclusion

	Conclusions and Further Work
	Conclusion
	Contributions
	Feature Extraction
	Application of CGP

	Hypothesis Revisited
	Further work

	Appendix I
	Model Evalution results

	List of Abbreviations
	Reference

