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Since John von Neumann’s seminal work on developing cellular automata mod-

els of self-replication, there have been numerous computational studies that have

sought to create self-replicating structures or “machines”. Cellular automata (CA)

has been the most widely used method in these studies, with manual designs yield-

ing a number of specific self-replicating structures. However, it has been found to

be very difficult, in general, to design local state-transition rules that, when they

operate concurrently in each cell of the cellular space, produce a desired global

behavior such as self-replication. This has greatly limited the number of different

self-replicating structures designed and studied to date.

In this dissertation, I explore the feasibility of overcoming this difficulty by us-

ing genetic programming (GP) to evolve novel CA self-replication models. I first for-

mulate an approach to representing structures and rules in cellular automata spaces

that is amenable to manipulation by the genetic operations used in GP. Then, using

this representation, I demonstrate that it is possible to create a “replicator factory”

that provides an unprecedented ability to automatically generate whole families



of self-replicating structures and that allows one to systematically investigate the

properties of replicating structures as one varies the initial configuration, its size,

shape, symmetry, and allowable states. This approach is then extended to incorpo-

rate multi-objective fitness criteria, resulting in production of diversified replicators.

For example, this allows generation of target structures whose complexity greatly

exceeds that of the seed structure itself. Finally, the extended multi-objective repli-

cator factory is further generalized into a structure/rule co-evolution model, such

that replicators with unspecified seed structures can also be concurrently evolved,

resulting in different structure/rule combinations and having the capability of not

only replicating but also carrying out a secondary pre-specified task with different

strategies. I conclude that GP provides a powerful method for creating CA models

of self-replication.
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Chapter 1

Introduction

1.1 Motivations

Self-replication is a process by which an entity may make a copy of itself. Self-

replicating systems are systems that are capable of producing copies of themselves.

The mathematician John von Neumann is credited with being the first to conduct

a formal investigation of artificial self-replicating machines. He believed that self-

replicating biological organisms could be viewed as very sophisticated machines,

but machines nevertheless. He argued that the important thing about a replicating

organism was not the matter from which it is made, but rather the information

and the complexity of the interactions between parts of the organism. In particular

he asked whether we can use purely mathematical-logical considerations to discover

the specific features of biological automata that make them self-replicate. Much

subsequent work on artificial self-replicating machines has continued in this spirit,

being motivated by the desire to understand the fundamental information processing

principles and algorithms involved in self-replication, independent of how they might

be physically realized.

It has also been argued that a better understanding of these principles could

be useful in atomic-scale manufacturing (nanotechnology), in creating robust elec-

tronic systems, in facilitating future planetary exploration, and in gaining a better
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understanding of the origins of life. For example, nanotechnology is concerned in

part with making nano meter scale assemblers. Without self-replication, capital and

assembly costs of molecular machines may be impossibly large. On the other hand,

the goal of self-replication in space exploration systems is to exploit large amounts

of matter with a low launch mass. Once in place, machinery that replicates itself

could achieve this goal and could also produce other manufactured objects. Since

self-replication is generally seen as a fundamental property of life, the study of self-

replicating systems is generally viewed as having a critical role in advancing artificial

life research.

Following von Neumann’s seminal work [47, 48], much research over the past

several decades has focused on the difficult issue of creating models of self-replicating

structures in cellular automata (CA) [65]. Past work on this topic has involved at

least two major different approaches. The earliest work examined large, complex

universal constructors like von Neumann’s that are marginally realizable. This work

established the feasibility of artificial self-replication, examined many important the-

oretical issues, and gradually created progressively simpler self-replicating universal

systems [11, 63, 71, 72]. A second and more recent approach has involved the man-

ual design of much simpler self-replicating loops [34]. Subsequent work produced

simpler and smaller loops [57], and embedded instruction sequences in them so that

they performed other tasks as they replicate [10, 53, 68].

However, it has been found to be very difficult and time consuming, in general,

to design the local state-transition rules that, when they operate concurrently in each

cell of the cellular space, produce a desired global behavior such as self-replication.
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This has greatly limited the number of different self-replicating structures designed

and studied to date, and has contributed to the lack of systematic study of their

properties. Further, implemented past self-replication CA models do not allow ar-

bitrary structures; instead, they mostly assume the restriction that replicas must

have a specific loop-like structure. Further, those models that have the capability of

performing a secondary function all rely on embedding pre-written manual instruc-

tions in the specific seed structures, i.e., at the cost of altering the complexity of the

seed structure itself.

In this dissertation, I focus on a third approach that merits investigation:

the automated evolution of self-replicators from arbitrary, initially non-replicating

systems. Initial work using genetic algorithms showed the potential value of this ap-

proach [36, 37, 38], but the effectiveness of this approach to discovering state-change

rules for self-replication proved to be quite limited, mainly due to the inherently large

linearly-encoded chromosome required to accommodate the use of a genetic algo-

rithm. This initial work led to some pessimism about the viability of evolutionary

discovery of novel self-replicating structures.

This study re-visits the issue of using evolutionary methods to discover new

self-replicating structures, and suggests that this earlier pessimism is not warranted.

The central goal of this study is to formulate an approach to representing structures

and rules in cellular automata spaces that are amenable to manipulation by the

genetic operations used in genetic programming (rather than genetic algorithms).

This representation is used to examine if it is possible to automatically generate a

broad range of arbitrary self-replicating structures, and to systematically investigate
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the properties of such novel discovered self-replicators.

1.2 Contributions

The main contributions of this dissertation are as follows:

1. This is the first work to adopt genetic programming into self-replicating cellu-

lar automata models, and to demonstrate that genetic programming provides

a powerful method for creating CA models of self-replication. More specifi-

cally, this work is the first study to introduce an unambiguous and universal

tree encoding for arbitrary replicating structures in CA spaces, as well as a

more efficient tree encoding to replace the linear rule table. The structure tree

can be viewed as a representation of a desired global configuration, and the

rule tree can be viewed as the representation of local state-transition rules.

Local rules can now efficiently evolve in the form of trees, and receive fitness

measures simply evaluated in terms of how well, when they are simulated in

CA spaces, express the desired global configuration. The structure tree makes

it possible to convert an arbitrary structure into a common tree-like represen-

tation which can be fully exploited by an existing evolutionary system built

without requiring any knowledge of the structure a priori. This creates a new

paradigm which can be applied to arbitrary future structures. As a result,

(a) not only the application of genetic programming becomes feasible, but

also this paradigm removes the restriction which is often assumed in past

CA models that replicas must have a specific loop-like structure;
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(b) the paradigm represents a significant step forward in creating self-replicating

structures, because it qualitatively reduces the time cost of replicator con-

struction compared to past manual methods;

(c) the replicators created in this fashion are qualitatively different from those

generated in past studies (universal constructors and loops); here auto-

matically discovered replicators can construct themselves very quickly, in

a fission-like, rotational, and/or spiral process; some of these discovered

replicators can self-replicate with only one time step, representing a speed

which was not known to even be possible;

(d) the results demonstrate an unprecedented ability to automatically gen-

erate whole families of self-replicating structures, so that now it even be-

comes possible for one to systematically investigate the properties of repli-

cating structures as one varies the initial configuration, its size, shape,

symmetry, and allowable states;

(e) this led to statistical results suggesting that the number of GP genera-

tions, computation time, and number of resulted rules required by an ar-

bitrary structure to self-replicate are positively and jointly correlated with

the number of components, configuration shape, and allowable states in

the initial configuration, but inversely correlated with the presence of re-

peated components or sub-structures, seed symmetry, and self-replicating

sub-structures.

2. This is also the first work to introduce multi-objective evolution into self-
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replicating cellular automata models, and shows that the new paradigm can

incorporate multiple optimization criteria and produce replicators capable of

carrying out secondary tasks. In contrast to previous models having similar

secondary functionality, the new approach:

(a) automatically programs the CA to support both self-replication and sec-

ondary task performing at the same time;

(b) requires no manual design of the seed structure and rules;

(c) requires no pre-writing of manual programs;

(d) requires no instruction-embedding (altering the seed complexity itself);

(e) can add secondary capability to arbitrary given structures, assuming no

specific knowledge about seed structures a priori;

(f) can yield multiple diversified self-replicators in a single run, with each

providing alternative strategies carrying out the secondary computation;

(g) demonstrates the generation of target structures whose complexity greatly

exceeds that of the seed structures.

3. Finally, this is also the first work to create a structure/rule co-evolution sys-

tem, on top of the multi-objective genetic programming paradigm, to discover

replicators without being given seed structures, toward the performing of a

pre-specified secondary task. Now structures and rules can evolve concur-

rently and cooperatively, and multiple diversified seed/rule combinations can
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be created in a single run, with each providing alternative strategies for car-

rying out the given task.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows. An overview of past

work and recent developments involving artificial self-replication implemented as

cellular automata (CA) is first given in Chapter 2. Subsequent chapters present the

results of my research efforts. Chapter 3 describes how a CA can be automatically

programmed using GP to support self-replication of arbitrary structures. Chapter 4

demonstrates the unprecedented ability of this approach to create a whole family of

self-replicators, and undertakes the systematic study of their properties. Chapter 5

further shows how this new paradigm can incorporate multi-objective optimization

criteria and thereby produce diversified replicators capable of carrying out secondary

pre-specified tasks. Chapter 6 shows how a seed structure itself can concurrently

and cooperatively evolve along with the rules, yielding a structure/rule co-evolution

system that can search for self-replicators without pre-specified seed structures that

carry out a given task. Finally, Chapter 7 concludes with a summary, anticipated

impact of the results presented in this dissertation, and some ideas about future

work.
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Chapter 2

Background and Previous Work

Self replicating systems are systems that are capable of producing copies of

themselves. The terms of replication and reproduction are often considered synony-

mous. However, replication is an ontogenetic, developmental process, potentially

involving no genetic operators, resulting in an exact duplicate of the parent or-

ganism. Reproduction, on the other hand, is an evolutionary process, involving

genetic operators such as crossover and mutation, thereby giving rise to variety and

ultimately to evolution [21].

The mathematician von Neumann is the first who asked whether we can use

purely mathematical-logical considerations to discover the specific features of bio-

logical automata that make them self-replicating [65]. Much subsequent work was

also motivated by the desire to understand the fundamental information process-

ing principles and algorithms involved in self-replication, independent of how they

might be physically realized. As noted in the preceding chapter, it has also been ar-

gued that a better understanding of these principles could be useful in atomic-scale

manufacturing (nanotechnology) [93, 94, 95], in creating robust electronic systems

[99, 98], in facilitating future planetary exploration [97], and in gaining a better

understanding of the origins of life [96].

To establish the context of this study, in the following, I give an overview of
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past work and recent developments involving artificial self-replication implemented

as cellular automata (CA).

2.1 Cellular Automata (CA)

Von Neumann’s discussions with Polish mathematician Stanislaw Ulam led to

the idea of cellular automata, which they invented as a simplified and mathemati-

cally tractable model of the physics of our universe [47, 48]. With cellular automata,

an artificial self replicating machine could be simply represented as a configuration

of contiguous active cells, each of which represents a component of the machine, and

each cell only interacts exclusively with its adjacent neighbors. The “physics” of the

universe is encoded in the interaction rules which govern the state transition of each

cell. In this way, an artificial self replicating machine could be studied purely on

the fundamental, informational, and logical level, without considering its physical

implementation details.

CA models are dynamical systems in which space and time are discrete. A

cellular automaton consists of a regular grid of cells, each of which can be in one of a

finite number of k possible states, updated synchronously in discrete time steps ac-

cording to a local, identical interaction rule. The state of a cell is determined by the

previous states of surrounding neighborhood of cells. Hence, cellular automata have

three characteristics: 1) parallelism — individual cells are updated simultaneously

and synchronously; 2) locality — the new state of a cell is exclusively based on its

old state and the old states of its neighboring cells; and 3) homogeneity — all cells
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in the space use the same set of rules for updating their states [11, 47, 48, 75, 76].

Figure 2.1: Neighborhood in 1-D Cellular Automata space.

Figure 2.2: Neighborhood in 2-D Cellular Automata space.

In practice, the infinite or finite cellular array (grid) is n-dimensional, where

n=1,2,3 is generally used. The identical rule contained in each cell is essentially a

finite state machine, usually specified in the form of a rule table (also known as the

transition function), with an entry for every possible neighborhood configuration

of states. A one-dimensional example rule table and its meaning is illustrated in

Figure 2.1. For two-dimensional CAs, von Neumann defined the neighborhood of
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a cell as the 5 cells consisting of itself along with its four immediate non-diagonal

neighbors (Figure 2.2(a)). Moore defined neighborhoods in a different way. The

Moore or 9 neighborhood includes both non-diagonal and diagonal immediately

adjacent neighbors (Figure 2.2(b)).

The CA rule table is a complete list of transition rules that specify the next

state for every possible neighborhood combination. With the von Neumann neigh-

borhood, each rule can be encoded as a string CTRBL→ C
′

, where each letter

specifies respectively the current states of the Center, Top, Right, Bottom, and Left

cells, and the next state C
′

of the Center cell.

The underlying cellular space can be isotropic or non-isotropic. In a non-

isotropic space, one direction may be specially distinguished and this is known to

all automata. In an isotropic space, the absolute directions are indistinguishable.

In addition, each of the k possible states of a cell is either directionally oriented

or directionally non-oriented. If a state is designated as oriented, then a cell which

takes the state would designate specific neighbors as being its top, right, bottom,

and left neighbors. If a state is designated as non-oriented, then each neighbor

to a cell which takes the state has no distinguishable orientation. For example,

the quiescent state (0) is always non-oriented. The cell state denoted as ↑ in von

Neumann’s work, on the other hand, is directionally oriented and thus permutes

to different cell states ←, ↓, and → under successive 90◦ rotations. It represents

one oriented component that can exists in four orientations, with each orientation

specifying different neighbor cells as its top, right, bottom, and left neighbors. For a

specific CA model, if each of the k possible cell states is non-oriented, then the CA
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model is said to have strong rotational symmetry. If at least one of the k possible

states is directionally oriented, then the CA model has weak rotational symmetry.

Finally, when considering a finite-sized grid, spatially periodic boundary con-

ditions are frequently applied, resulting in a circular grid for the one-dimensional

case, and a toroidal one for the two-dimensional case. For instance, in the one-

dimensional case, the leftmost cell is viewed as the right neighbor of the rightmost

cell, and vice versa. In two-dimensional case, the leftmost cell on each row is viewed

as the right neighbor of the rightmost cell, and the topmost cell on each column

is viewed as the bottom neighbor of the bottommost cell, etc. One of the states

is always designated the quiescent or inactive state (0 or a blank cell). When a

quiescent cell has an entirely quiescent neighborhood, a widely accepted convention

is that it will remain quiescent at the next time step. This can be represented by

the following entry in the rule table: 00000→0.

Despite the simple construction of cellular automata, they are capable of highly

complex behavior. The general method to determine the qualitative (average) dy-

namics of cellular automata models is to run simulations on a computer for vari-

ous initial global configurations [28, 77]. The analysis of CA dynamics studies the

emergent behavior and computational capacity of the system [13, 22]. Borrowing

concepts from the field of continuous dynamical systems, Wolfram first classified CA

into four broad categories - (i) Class 1: CA which evolve to a homogeneous state;

(ii) Class 2: displaying simple separated periodic structures; (iii) Class 3: which

exhibit chaotic or pseudo-random behavior, and (iv) Class 4: which yield complex

patterns of localized structures and are capable of universal computation [77, 78].
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There has been a widespread application of cellular automata in a large number

of application domains [79]. Researchers from diverse fields have exploited cellular

automata dynamics with problems in their own fields. Cellular automata have been

used to model highly complex systems [2, 4, 23, 74, 79], games [6, 14, 18, 19], parallel

computing machines [10, 39, 49, 5, 69], physical and biological systems [50, 15, 41],

behavioral and social problems [20, 25, 17, 73], VLSI design and testing [40, 64],

and pattern recognition [45, 70], etc.

2.2 Embedding Self-Replicating Systems in CA

While a variety of approaches have been taken in the past to studying self-

replicating systems, including mechanical [51], biochemical [56], artificial chemistry

[90, 89], and replicators with which users can interact [91, 92], a central and enduring

approach has focused on embedding abstract self-replicating structures in cellular

spaces. In CA, a structure can simply be viewed as a configuration of contiguous

active cells. Note that such a structure can also enclose empty (quiescent) cells,

as long as all the active cells in the structure remain contiguous. The number of

active cells in the structure is called its size. An active cell in a structure is also

called a component of the structure. A structure is called an isolated structure if no

active cells which are not in it are adjacent, i.e., no active cells are in the immediate

neighborhood of any active cell in the structure.

An isolated structure at time t = 0 is called a seed. A structure at time t ≥ 1

is called a seed replica, or just replica, if the structure inherits all properties of the
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seed, that is, 1) it has the same configuration as the seed; 2) all of its active cells are

contiguous with one another; and 3) it is isolated from other active cells. Note that

the replica can be displaced and perhaps rotated relative to the original. Defining a

self replicating system embedded in a CA consists of specifying all of the following:

1) a seed and its environment; 2) a rule table; and 3) a time t ≥ 1, such that after the

rule table has been applied to the seed and recursively to subsequent configurations,

n replicas are constructed in the infinite cellular space, for some positive integer n.

Past work on self-replicating systems in CA is best viewed as having involved

two main approaches: universal constructors, and much simpler non-universal struc-

tures such as replicating loops, described as follows.

2.2.1 Universal Constructors in CA Space

To embed a hypothetical self-replicating system machine in CA space, von

Neumann envisioned that the following characteristics should be present in a self-

replicating system model: 1) constructional universal, that is the ability to construct

any kind of configuration in the CA space from a given description; self-replication

is then only a particular case of universal construction; and 2) computational uni-

versity, that is the ability to operate as a universal Turing machine, and thus to

execute any computational task [27].

To implement his idea, von Neumann developed his theoretical model in CA

space with tens of thousands of components in 29-state cells and using a 5-cell

neighborhood [48]. His model consists of a configuration of states which can be

14



Figure 2.3: von Neumann’s theoretical model: a universal constructor

grouped into two functional units: a constructing unit, which constructs the new

automaton, and a tape unit, which stores and reads the information needed to

construct the automaton, as illustrated in Figure 2.3. The tape unit consists of

a “tape” and a tape control. The tape is a linear array of cells that contains

the information about the automaton to be constructed. The construction of the

automaton is carried out by sending of signals (in the form of propagating cell states)

between the tape unit and the construction unit. The construction unit consists of

a construction arm and construction control. The construction arm is an array of

cells through which cell states to be constructed can be sent from the construction

control to the designated area places in the construction area.

Von Neumann’s universal constructor model employs a complex transition rule

set, with the total number of cells composing the universal constructor estimated to

be ranging from 50,000 to 200,000 [65]. In late 1960s Codd demonstrated that if the
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component or cell states meet certain symmetry requirements, the von Neumann’s

model could be reduced to a sheathed loop structure embedded in an 8-state, 5-

neighbor CA, over 4000 cells in the 2-D CA [11]. Vitanyi described a sexually

reproducing cellular automata model and showed that the recombination of the

parents’ characteristics in the offspring closely conforms to recombination in nature.

Similarities and differences with biological systems are discussed [71, 72].

A number of researchers also have considered the implementation of universal

constructor. Signorini discussed the implementation of the 29-state transition rule

and three organs (pulser, decoder, and periodic pulser) on a SIMD (single-instruction

multiple-data) computer [63]. Pesavento provides a closer simulation of von Neu-

mann’s model, but self replication is not demonstrated since the tape required to

describe the universal constructor is too large to simulate [54]. Beuchat and Haenni

implemented a hardware module of a 25-cell pulser using field-programmable gate

arrays (FPGAs) [7]. Buckley and Mukherjee described the constructibility of a

signal-crossing solution in von Neumann’s 29-state CA [8].

2.2.2 Self-Replicating Loops

In 1984, Langton observed that biological self-replicating systems are not capa-

ble of universal construction, and concluded that while universal construction may

be a sufficient condition for self replication, it is not a necessity. He successfully

took a loop structure from Codd’s self-replicating model involving only 86 cells, in

a 2-dimensional, 8-state, von Neumann neighborhood CA space, and showed that
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Figure 2.4: Langton’s structure is a sheathed square loop. First self replication

takes 151 time steps.

Figure 2.5: A self-replicating loop in a 2D cellular automata space. Read clockwise

starting at the lower right, there are a series of signals (+-) embedded in the loop

structure, each indicating that the arm on the bottom right should grow out one

step. These are followed by two signals indicating a left turn (L- L-). These signals

circulate counterclockwise around the loop, advancing one cell per time step. As

they do, copies of the signals pass out the arm at the lower right, causing it to

extend and turn so that a second “child” loop is constructed.
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it could be modified to replicate [34, 35]. As shown in Figure 2.4, the resulting self-

replicating structure is essentially a square loop, with internal and external sheaths,

where the data encoding the instructions to construct a duplicated loop circulate

counterclockwise. A duplicated loop is formed after 151 time steps.

Langton’s self replicating loop is strikingly simple, and can be easily simulated

on computers. Further, Byl eliminated the internal sheath of Langton’s loop and

discovered a smaller loop, which is composed of only 12 cells embedded in a six

state cellular space [9]. Reggia et al. removed the external sheath, and constructed

a family of yet smaller self-replicating loops, with the smallest comprising only 5

cells, embedded in a 6 state cellular space [57]. An unsheathed loop that is capable

of replicating, given an appropriate set of rules, is shown in Figure 2.5. The self-

replication process is illustrated in Figure 2.6. Loops without sheaths can be made

very small, replicating in less than a dozen steps, as illustrated in Figure 2.7.

2.2.3 Self-Replicating Loops Expanding Problem Solutions

The self-replicating models described up to this point all involved a manual

design process and a trend toward producing smaller and simpler structures: from

von Neumann’s model which has the power of universal computation and univer-

sal construction to the simplest self-replicating loops which can do nothing but self

replicate [65]. However, very soon it was realized that, a system capable of self repli-

cation but not much of anything else would not be very useful. In 1995, Tempesti

asked whether it is possible to add additional computation capabilities to the simple
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Figure 2.6: Successive states of a self-replicating loop that started at time t=0 as

illustrated in Figure 2.5 [57]. The instruction sequence repeatedly circulates coun-

terclockwise around the loop with a copy periodically passing onto the construction

arm. At t=3 (a) the sequence of instructions has circulated three positions coun-

terclockwise with a copy also entering the construction arm. At t=6 (b) the arrival

of the first + state at the end of the construction arm produces a growth cap of

X’s. This growth cap, which is carried forward as the arm subsequently extends

to produce the replica, is what makes a sheath unnecessary by enabling directional

growth and right-left discrimination. Successive arrival at the growth tip of +’s

extends the emerging structure and arrival of paired L’s causes left turns, resulting

in eventual formation of a new loop. Intermediate states are shown at t=80 (c) and

t=115 (d). By t=150 (e) a duplicate of the initial loop has formed and separated

(on the right); the original loop (on the left, construction arm having moved to the

top) is beginning another cycle of self-directed replication.
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Figure 2.7: A self replicating loop using only five unique components [57]. Shown

here are eleven immediately successive configurations. Starting at t = 0, the initial

state (shown at the upper left) passes through a sequence of steps until at t = 10

(last structure shown) an identical but rotated replica has been created.

self replicating loops, and hence attain complex machines that are nevertheless com-

pletely realizable. He devised a self-replicating loop which resembles Langton’s, but

with the added capability of attaching an executable program, that writes out LSL,

the acronym of the Logic Systems Laboratory, while it is duplicated and executed

in each of the loops [68]. See Figure 2.8. Perrier et al. further demonstrated the ca-

pability of constructing a self-replicating loop which could implement any program,

written in a simple yet universal language. Their self replicating machine includes

three parts-loop, program, and data-all of which are self replicating, followed by

the execution of the program on the given data [53]. In the models of Tempesti

and Perrier et al., the program embedded in each loop is copied from parent to

child unchanged, so that all replicating loops carry out the same program. Chou

and Reggia reported a different approach in which each replica receives a distinct

partial solution that is modified during replication [10]. Replicas with failed so-

lutions are not allowed to continue replicating while the replicas with promising

solutions will further replicate and explore finer solutions. This work demonstrated
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Figure 2.8: Self-replicating loop with secondary capability: it can writes out LSL

after embedding a pre-written computer program in the seed structure [68, 65].

how a self-replicating machine could be used as a truly massively parallel machine to

solve the NP-complete problem known as SAT. These works demonstrated that the

simple manually designed self-replicating loops are capable of providing some lim-

ited “secondary” function beyond simple self replication. However, such secondary

constructional or computational capability is all implemented as a pre-written exe-

cutable program, which is attached to the loop itself, that is, at the cost of changing

and increasing the complexity of the loop structure itself.
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2.2.4 Other Self-Replicating Structures in CA Space

The structures outlined above all share the same restriction inherited from

Langton’s self-replicating loop: requiring the structure to be a simple, square (or

rectangular) shape to enable their replication [61]. The structures differ in size

more than complexity. Morita and Imai showed that the replication of simple non-

loop structures could be realized with a “reversible” cellular space [43, 44, 88]. A

reversible cellular automaton is a special, backward-deterministic type of CA in

which every grid configuration of states has at most one predecessor. As a result,

they created self replicating structures like worms as well as loops. Sayama further

created self-replicating worms that are capable of increasing structure complexity

in terms of the length and branching frequency of the worm [61]. Chou and Reg-

gia took a new direction and, demonstrated that self-replicating loop can come

about spontaneously and emerge from an initial random configuration of compo-

nents. Replication occurs in a milieu of free-floating components, and replicas grow

or change their sizes over the time, and the transition function is based on a func-

tional division of data fields [57]. The cellular state is divided into four distinct

bit fields, thus facilitating the emergence of self-replication. Salzberg et al. further

studied the evolutionary dynamics and diversity in a model called Evo-loops [59],

a modified version of structurally dissolvable self-replicating loops [60]. Nehaniv

implemented the Evo-loop model asynchronously, and studied the evolution and

self-replication in asynchronous cellular automata, where each cell can be updated

randomly and asynchronously [46].
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2.3 Evolutionary Computation, Cellular Automata, and Self-Replication

2.3.1 Evolutionary Computation

Evolutionary computation is a computational search method inspired by Dar-

winian evolution in biological organisms. A canonical evolutionary computation

algorithm is shown in Figure 2.9. It maintains a population of structures, each

of which represents a solution to a search problem and evolves according to rules

of selection and other operators, that are referred to as genetic operators, such as

crossover and mutation. Each individual in the population receives a measure of

its fitness in the environment. Reproduction focuses attention on high fitness indi-

viduals, thus exploiting the available fitness information. Crossover and mutation

perturb those individuals, providing general heuristics for exploration. Although

simplistic from a biologist’s viewpoint, these algorithms are sufficiently complex to

provide robust and powerful adaptive search mechanisms.

A variety of evolutionary computation algorithms has been proposed, two

prominent ones being genetic algorithms (GA) [26, 21, 42, 24] and genetic program-

ming (GP) [3, 12, 29, 30, 31, 32, 33]. In GA, one creates a population of individuals,

each represented by a linear chromosome (a collection of genes) appropriate for en-

coding a solution to the problem one is trying to investigate. A GA chromosome

is usually implemented as binary strings, enough to cover all available alternative

values. The value of each representation is initially assigned randomly, within the

available parameter space. The population is then evaluated to determine how well

each individual resolves the problem.
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Figure 2.9: A canonical evolutionary computation algorithm.

The best chromosomes in the population then are favored to become the par-

ents for the next generation. The genes of the offspring chromosomes are created

by selecting two parents and recombining part of the chromosome of each, so parent

gene combinations 1111 mated with 0000 may become two offspring 1110 and 0001,

for example. This mimics the crossover or recombination of sexual reproduction in

nature and is repeated for further pairs until a desired percentage of the population

members is replaced. Random changes to individual bits are then made mimick-

ing the natural role of mutation, at some desired rate. The resultant population is

then evaluated as before, and the process is repeated as many times as desired until

the required performance level has been achieved (or no further improvement seems

possible).

Genetic programming is an extension of GA for evolving computer programs.

In GP, each chromosome is an executable program encoded typically as a tree struc-
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Figure 2.10: GA (left) vs. GP (right).

ture of dynamic shape and size, rather than, as in GA, a fixed-length linear binary

string. The GP chromosomes evolve by swapping sub-trees between the parent trees,

or random change to an individual tree. The fitness of a chromosome is measured

by executing the represented program against a set of training data.

Since John Holland’s seminal work in the mid seventies and his well known

schema theory [26], schemata are often used to explain why and how GAs work.

Schemata are similarity templates representing entire groups of chromosomes. The

schema theorem describes how schemata are expected to propagate generation after

generation under the effects of selection, crossover, and mutation. Poli et al. derived

an improved schema theorem for GP which is a natural counterpart for GP of the

schema theorem for GAs, with the introduction of one-point crossover and point

mutation operator in GP [55]. The differences between GA and GP are illustrated
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in Figure 2.10.

2.3.2 Evolutionary Multi-Objective Optimization

Evolutionary computation (both GA and GP) has also been used to solve

multi-objective optimization problems, defined by a function f which maps a vector

of decision variables, the so-called decision vector, x̄ = [x1, x2, ..., xn]T , to a vector of

objectives, f̄(x̄) = [f1(x̄), f2(x̄), ..., fm(x̄)]T , the so-called objective vector. In other

words, the particular set, x∗1, x
∗
2, ..., x

∗
n, is sought which yields the optimum values of

all the objectives, according to function f. In this kind of problem, there is usually a

set of solutions better than all other solutions in the search space [81, 85]. This so-

lution set is called the Pareto optimum or non-dominated solutions. Multi-objective

evolutionary methods try to find this solution set by using each objective separately,

without aggregating them as an unique objective [105]. A number of evolutionary

algorithms have been proposed to solve this type of problems, such as the Non-

dominated Sorting Genetic Algorithm (NSGA) and NSGA2 by Srinivas and Deb

et al. [81, 82], the Strength Pareto Evolutionary Algorithm (SPEA) and SPEA2

by Zitler et al. [83, 84], the Pareto Archived Evolution Strategy (PAES) and the

memetic PAES (M-PAES) by Knowles and Corne [85, 86], etc. Although all of these

algorithms share a common purpose — searching for a near-optimal, well diversified

solution set to a given multi-objective optimization, they differ mainly in the strate-

gies handling fitness assignment, diversity preservation, and elitism. Fitness assign-

ment strategies in multi-objective evolution can be classified as aggregation-based,
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criterion-based, and Pareto-dominance based. Aggregation-based strategy typically

uses weighted-sum aggregation where the weights can be systematically varied dur-

ing the optimization process. Criterion-based methods switch between the objectives

during the selection phase, which decides which member of the population will be

copied into the mating pool. The last strategy calculates an individual’s fitness based

on the basis of Pareto-dominance, taking into account of dominance rank, dominance

depth, and dominance count, or any combination, etc. More recent studies focus on

incorporating in addition a niching concept in order to address the diversity issue,

and recognize the importance of elitism with various implementations and exper-

iments. These variations have received good surveys with reported strengths and

weaknesses as well as performance metrics [107, 108, 109, 110, 106, 104]. Especially,

SPEA2 has been used in genetic programming to solve a parity problem and it was

reported SPEA2 outperforms four other strategies to reduce bloat with regard to

both convergence speed and size of the produced programs [111].

2.3.3 Evolution of CA Rules

Given the local concurrent computations in CA, it is generally difficult to

program their transition function when the desired computation requires global

communication, global integration, and global behavior [1]. Evolutionary computa-

tion algorithms, both GA and GP, have been used to automatically evolve cellular

automata rules for computation problems in cellular automata space, other than self-

replication. For example, various human-written algorithms have appeared for the

27



difficult majority classification task in one-dimensional two-state cellular automata,

prior to the introduction of genetic programming to evolve a rule for this task [1].

It was demonstrated that the rules evolved by genetic programming achieved an ac-

curacy resolving the majority classification task exceeding all known human written

rules, and that the GP produced rules are qualitatively different from all previous

rules in that they employ a larger and more intricate repertoire of domains and par-

ticles to represent and communicate information across the cellular space (Figure

2.11). On the other hand, Richards et al outline a method for extracting two-

dimensional cellular automaton rules directly from experimental data by employing

genetic algorithms (GA), to search efficiently through a space of probabilistic CA

rules for a local rule that best reproduces the observed behavior of the data [58].

2.3.4 Evolution of CA Rules for Self-Replication

Inspired by the successful use of evolutionary computation methods to dis-

cover novel rule sets for other types of CA problems, as outlined in the previous

section, Lohn et al. used a genetic algorithm to evolve rules that would support

self-replication [38, 36, 37]. This study showed that, given small but arbitrary ini-

tial configurations of non-quiescent cells (“seed structures”) in a two-dimensional

CA space, it is possible to automatically discover a set of rules that make the given

structure replicate, and in ways quite different from self-replicating structures man-

ually designed by investigators in the past. An example is shown in Figure 2.12.

The seed is a structure of 4 oriented components (Figure 2.12, left), and it is not a
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Figure 2.11: The behavior of the best rule evolved by genetic programming on one

set of initial states for the majority classification task.
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Figure 2.12: An example self-replicating structure discovered by genetic algorithm.

loop, worm, or any other previously studied structures. A rule table was generated

using a GA. When it is used to guide each cell in the cellular automata to transit

its state for certain number of time steps, we can see in Figure 2.12 (right) that

multiple instances of the seed structures have formed.

However, some clear barriers clearly limited the effectiveness of this approach

to discovering state-change rules for self-replication. First, to accommodate the

use of a genetic algorithm, the rules governing state changes were linearly encoded,

forming a large chromosome that led to enormous computational costs during the

evolutionary process. As shown in Figure 2.13, the rule table to be evolved include

a linear listing of every possible combination of every state required for a given

structure. For example, a 4-component structure shown in Figure 2.12(a) would

require a rule table containing more than 1.4 million rules (175 = 1,419,857). In

addition, it creates the problem that when the size of the seed structure moder-

ately increased, the computation cost becomes prohibitive for the rule table to be
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Figure 2.13: A rule table is a linear listing of every possible combination of every

state required for a given structure.

effectively evolved, and the yield (fraction of evolutionary runs that successfully

discovered self-replication) decreased dramatically.

As a result, it only proved possible to evolve rule sets using GA for self-

replicating structures having no more than 4 components, even with the use of

a supercomputer, leading to some pessimism about the viability of evolutionary

discovery of novel self-replicating structures.
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Chapter 3

Evolution of Self-Replicating Structures Using Genetic Programming

3.1 Overview

This chapter describes how cellular automata (CA) can be automatically pro-

grammed, through the evolution of local rules, to support the self-replication of

arbitrary pre-specified structures.

3.2 S-tree Encoding and General Structure Representation

I establish in the following that a tree encoding provides an effective and

efficient mechanism for representing arbitrary structures in a CA space that can

be used by genetic programming (GP). While this approach is quite general (ar-

bitrary neighborhoods and space dimensions), for concreteness it is developed for

two-dimensional CA’s and uses the 8-cell Moore neighborhood, which provides suf-

ficient information to tell if a structure is fully isolated from its surroundings. The

tree used to represent a seed structure is referred to as its structure tree or S-tree.

3.2.1 Moore Graph

An arbitrary structure can be viewed as a configuration of active cells in a

CA space, with the conditions that the active cells inside the configuration are
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Figure 3.1: An example structure, its Moore graph, and its S-tree graph.

contiguous but isolated from all active cells outside of the configuration. However,

a structure can enclose inactive cells in the quiescent state as long as active cells in

the structure remain contiguous to each other. It follows that an arbitrary structure

can be modeled as a connected, undirected graph, as shown in the following. The

problem of structure encoding can then be converted to searching for a minimum

spanning tree (MST) in order to most efficiently traverse the graph and encode its

vertices (components). Figure 3.1(left) shows a simple structure in a 2-D CA space,

composed of 4 oriented components. The structure is converted into a graph simply

by adding an edge between each component and its 8 Moore neighbors, as shown

in Figure 3.1(middle). The quiescent cells, shown empty in Figure 3.1(left), are

visualized with symbol ∗ in Figure 3.1(middle).

From this example one can see such a graph has the following properties: 1)

it connects every component in the structure; 2) it also includes every quiescent

cell immediately adjacent to the structure (which isolates the structure from its

surroundings); and 3) no other cells are included in the graph. Such a graph is
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named as the Moore graph of the CA structure.

3.2.2 MST and S-tree Generation

Having the Moore graph for an arbitrary structure, one can then further con-

vert the graph into a MST (Minimum Spanning Tree) that is called as the S-tree.

The essential idea is as follows. After assigning a distance of 1 to every edge on

the Moore graph, one can pick an arbitrary component of the structure as the root,

and perform a breadth-first-search of the graph. The resultant example tree for the

structure shown in Figure 3.1(left) is depicted in Figure 3.1(right). Starting from

the root (A, in this example), explore all vertices of distance 1 (immediate Moore

neighbors of the root itself); mark every vertex visited; then explore all vertices of

distance 2; and so on, until all vertices are marked. The S-tree therefore is essentially

a sub-graph of the initial Moore graph. It has the following desirable properties as

a structural encoding mechanism: 1) it is acyclic and unambiguous, since each node

has a unique path to the root; 2) it is efficient, since each node appears on the tree

precisely once, and takes the shortest path from the root; 3) it is universal, since it

works for arbitrary Moore graphs and arbitrary CA spaces; 4) quiescent cells can

only be leaf nodes; 5) active cells may have a maximum of 8 child nodes, which can

be another active cell or a quiescent cell (note the root always has 8 child nodes); 6)

it is based on MST algorithms, which have been well studied and run in near-linear

time; and 7) its size (the total number of nodes in the tree), denoted as λ), has an

upper limit, which can be calculated from the size of the encoded structure (the
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total number of components), denoted as γ):

λmax(S-tree) = γ(encoded structure)× 8 + 1 (3.1)

With a specific component selected as the root, is the S-tree unique for a given

structure? The MST algorithm only guarantees the vertices of distance d to the

root will be explored earlier than those of distance d+1. However, each Moore

neighbor of a visited component lies the same distance from the root (such as B and

D in Figure 3.1(middle)), which may potentially be explored by the MST algorithm

in any order and therefore generate different trees. This problem may be resolved

by regulating the way each active cell explores its Moore neighbors, without loss of

generality. For instance, let the exploration be always in a clock-wise order starting

at a specific position (for instance, the left). As a result, it is guaranteed that a

specific structure always yields the same S-tree. The resulting S-tree is said to be in

phase I, II, III, or IV, respectively, if the selected position is top, right, bottom, or

left. The S-tree shown in Figure 3.1(right) is in phase I. Figure 3.2(a)-(c) shows the

other phases. As clarified later, the concept of S-tree phase is important in encoding

or detecting structures in rotated orientations.

Note that the Moore graph is only to illustrate the concept and properties

of the S-tree encoding. In the actual implementation, however, one can directly

generate the S-tree encoding from the seed structure by recursively exploring its

components in the order controlled by a first-in-first-out (FIFO) queue. In the

beginning, a component in the seed is selected as the root, which is first deposited
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Figure 3.2: S-trees at different phases vs. rotated structures.

to the queue. When each cell is retrieved from the queue and explored, its un-visited

active Moore neighbors are deposited to the queue, in the order of the specified phase

as defined above. A pseudo C++ code of S-tree generation from the seed structure

described above is as follows:

void deriveStree (STree stree, unsigned phase) {

// first, find the first component in the seed structure

Cell root = CA.findSeedRootComponent();

// now, insert this root component into the S-tree

stree.insert(root);

// next define a FIFO queue to track those components for which

// we need to explore its Moore neighbors
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Queue cellQ;

// the root cell needs first to be explored for its Moore neighbors,

// so deposit into the FIFO queue

cellQ.push(root);

// all what left to be done is to recursively explore Moore

// neighbors for each component retrieved from the queue

traverseMooreNeighbors(cellQ, stree, phase);

}

void traverseMooreNeighbors(cellQ, stree, phase) {

// if there is no more cells in the queue, we are done,

// exit the recursion by returning

if(cellQ.size() == 0) return;

// otherwise, pick next one in the queue, and attempt

// to traverse its Moore neighbors

Cell nextComponent = cellQ.front(); cellQ.pop();

// get an active cell that has 8 Moore neighbors to be traversed

unsigned nbrIndex;

Cell nbr;

// for each of its Moore neighbors

for(nbrIndex = 1; nbrIndex <= 8; nbrIndex++) {

// get next Moore neighbor, note the phase value determines

// the first neighbor to be traversed
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nbr = nextComponent.getMooreNB(nbrIndex, phase);

// first, append the traversed cells to the S-tree

stree.appendChild(nbr);

if(nbrState != QUIESCENT) {

// if this recovered cell is not quiescent,

// also explore its own Moore neighbors,

// so also put it in the queue

cellQ.push(nbr);

}

}

// we are done traversing this cell, go to

// next one in the current FIFO queue

traverseMooreNeighbors(cellQ, stree, phase);

}

3.2.3 S-Tree Encoding for Arbitrary Structures

Section 3.2.2 effectively yields an unambiguous and efficient way to represent

an arbitrary CA structure with a tree structure. This makes it possible to repre-

sent arbitrary CA structures with a uniform data structure, and more importantly,

enable an evolutionary model or rule learning system to be built and function with-

out having knowledge of any details of the involved structures a priori. When it

is desired, an S-tree can be used to fully reconstruct the structure it represents by
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recursively reconstructing each Moore neighbor from the root component as guided

by the S-tree. Further, in a CA space, a structure may be translated, rotated,

and/or permuted during processing. The S-tree encoding can handle each of these

conditions. First, independent of absolute position, it can be used to detect a struc-

ture arbitrarily translated independent of absolute position. Second, the S-trees at

4 different phases are equivalent to the same structure rotated to 4 different orien-

tations. Therefore, by detecting the way the S-tree phase has been shifted, one can

determine how the structure has been rotated. Further, if the structure’s compo-

nents have weak symmetry, the rotation of the structure will also cause the state of

its individual components to be permuted. This can be handled by permuting each

state by 90◦ every time the S-tree encoding shifts its phase. For instance, S-tree at

phase II of the structure shown in Figure 3.2(d) is identical to the S-tree at phase I

of the structure shown in Figure 3.1(left).

3.3 R-tree Encoding and Rule Set Representation

Just as the seed structure can be represented by an S-tree, the rules that

govern state transitions of individual cells can be represented as a rule tree or R-tree.

This section introduces R-tree encoding, which is much more efficient and largely

resolves the limitations of an exhaustive (all rule) linear encoding previously used

with genetic algorithms evolving self-replicating [38, 36, 37]. Even though both von

Neumann or Moore neighborhood can be used, the R-tree formulation considered

here is based on the 5-neighborhood (or von Neumann neighborhood). In other
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Figure 3.3: An example state-transition using a rule in an R-tree: a cell with state

A at T=t becomes state B at T=t+1, after firing a rule in the R-tree based on the

states of its von Neumann neighbors as shown.

words, just as with the case of evolving self-replication with a genetic algorithm, the

rules evolved are of the form CTRBL → C’.

3.3.1 R-tree Encoding

An R-tree is essentially a rooted and ordered tree that encodes every rule

needed to direct the state transition of a given structure, and only those rules. The

root is a dummy node. Each node at level 1 represents the state of a cell at time t

(i.e., C in CTRBL → C’). Each node at level 2, 3, 4, and 5 respectively, represents

the state of each von Neumann neighbor of the cell (without specifying which is

top, left, bottom, and right). Each node at level 6 (the leaf nodes) represents the

state of the cells at time t+1 (i.e., state C’ ). Therefore, the R-tree may also be
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Figure 3.4: A list of 16 rules encoded by the sample R-tree shown in Figure 3.3.

Note each path from the root node to a leaf represents a rule in the table, while

each state shown in the table is its state index number rather than its symbolic

representation shown in the tree.
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viewed as similar to a decision tree, where each cell can find a unique path to a

leaf by selecting each sub-branch based on the states of itself and its von Neumann

neighbors. Figure 3.3 (left) shows a sample cell with a state A at T=t transits to

state B at T=t+1, as a result of firing a specific rule in the R-tree shown in Figure

3.3 (right), after matching the states of its von Neumann neighbors to the nodes in

the rule path highlighted in blue dot line. Note each path from the root to a leaf

node corresponds to one rule. In the R-tree, the actual symbol in correct orientation

is displayed for each state. Figure 3.4 shows the corresponding table containing 16

rules encoded by the sample R-tree shown in Figure 3.3(right). Note each state in

the table is shown with its index number rather than its symbol representation used

in the R-tree.

The R-tree has the following properties: 1) it is a height balanced and parsi-

monious tree, since each branch has precisely a depth of 6; 2) taking Ns = number

of possible cell states, the root and each node at level 1, 2, 3, and 4 may have a

maximum of Ns child nodes, which are distinct and sorted by the state index; 3)

each node at level 5 has precisely one child, which is a leaf; 4) it handles arbitrarily

rotated cells with a single branch and therefore guarantees that there always exists

at most one path that applies to any cell at any time. Due to the R-tree properties

described above, the worst search cost for a single state transition is reduced to

5ln(Ns) (5 nodes on each path to leaf, each has maximum Ns child nodes, ordered

for quicksort search).
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3.3.2 R-tree Genetic Operators

The R-tree encoding and genetic operators used allow CA rules to be con-

structed and evolved under a non-standard schema theorem similar to one proposed

for genetic programming [55], even though R-trees do not represent conventional

sequential programs.

3.3.2.1 R-tree Crossover

R-trees also allow efficient genetic operations that manipulate sub-trees. As

with regular genetic programming, the R-tree crossover operator, for instance, swaps

sub-trees between the parents to form two new R-trees. However, the challenge is

to ensure that the crossover operator results in new trees that remain valid R-trees.

If one simply picks an arbitrary edge E1 from R-tree1 and edge E2 from R-tree2,

randomly, and then swap the sub-trees under E1 and E2, the resulting trees may no

longer be height balanced.

This problem can be resolved by restricting R-tree crossover to be a version of

homologous one-point crossover, an alternative to the “standard” crossover operator

in GP [55]. The essential idea is as follows. After selecting the parent R-trees,

traverse both trees (in a breadth-first order) jointly in parallel. Compare the states

of each visited node in the two different trees. If the states match, mark the edge

above that node as a potential crossover point. As soon as a mismatch is seen,

stop the traversal. Next, pick an edge from the ones marked as potential crossover

points, with uniform probability, and swap the sub-trees under that edge between
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Figure 3.5: One-point homologous crossover between parent R-trees. A crossover

point is selected at the same location in both parent trees, ensuring that the child

trees are valid R-trees. The children R-trees are formed by swapping the shaded

sub-trees.

both parent R-trees. An example is shown in Figure 3.5.

R-tree crossover as defined above has clear advantages over linear represen-

tation crossover. First, R-tree crossover is potentially equivalent to a large set of

linear crossovers. Second, linear crossover randomly selects the crossover point and

hence is not context preserving. R-tree crossover selects a crossover point only in the

common upper part of the trees. This means that until a common upper structure

emerges, R-tree crossover is effectively searching a much smaller space and there-

fore the algorithm quickly converges toward a common (and good) upper part of

the tree, which cannot be modified again without the mutation operator. Search

incrementally concentrates on a slightly lower part of the tree, until level after level

the entire set of trees converges.
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Figure 3.6: The R-tree point mutation simply deletes a sub-tree (here, the one

indicated by shading), allowing the CA simulation to fill it in with a new randomly-

generated subtree when needed.

3.3.2.2 R-tree Mutation

The R-tree mutation operator simply picks an edge from the entire tree with

uniform probability, and then eliminates the sub-tree below the edge. An example

is shown in Figure 3.6. The R-tree pruning operator is an explicit mutation operator

that is applied when the R-tree is used to run the CA to assess the R-trees fitness.

The CA monitors the R-tree and marks inactive edges (through which no rules has

been activated by any CA cell), and then the entire sub-trees below the inactive

edges will be eliminated. This helps to always keep each R-tree as parsimonious as

possible. New paths in the R-tree are generated as needed, as explained in the next
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section.

3.4 Genetic Programming with S-tree and R-tree Encoding

The introduction of S-tree/R-tree encodings and the obtained capability for

representing arbitrary structures and cellular rules with a universal and uniform

data structure makes it possible to build a genetic programming system that can be

used to program the CA to support self-replication. To do that, the seed structure

is first encoded with an S-tree. Then, an R-tree population is randomly initialized

and starts to evolve as guided by a fitness function. The fitness function evaluates

how well intermediate structures produced at evaluation time steps by each R-tree

match the S-tree. The R-tree reproduction focuses on high fitness individuals, thus

exploiting the available fitness information. This process repeats, from generation

to generation, until an R-tree forms which produces a desired number of isolated

structures that perfectly match the S-tree encoding, in other words, copies of the

seed structure itself.

3.4.1 Problem Formulation

Let r represent an evolving R-tree, s represent an S-tree for a given structure,

p represent an infinite cellular space, t represent a time step applying r on s in p.

Define function δ(r,s,p,t) to be, after applying r on s in p recursively for t time

steps, the number of instances of isolated structures found in p that match s.

With the definitions above, we can now formally state the problem as follows:
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Given an infinite cellular space p and a seed structure s, the goal is to find an

R-tree r, which will satisfy the following goal:

there exists a time step Tj, for any positive integer j, such that

δ(r, s, p, tj) ≥ j (3.2)

Note this equation requires that, given enough time steps, one shall be able to

obtain any desirable number of replicated seed structures.

3.4.2 R-tree Initialization

In the beginning, a population of R-trees is initialized, with each having only

one default branch, corresponding to the well accepted default rule that a quiescent

cell surrounded by only quiescent cells will remain quiescent in the following time

step. Therefore, at GP generation g=0, every R-tree in the population is identi-

cal, each only containing one rule. However, as described in next sub-section, as

soon as an R-tree is used in the CA simulation, it is expanded and acquires new,

randomly generated rules. Naturally, each R-rtree will generally grow into different

sizes containing different rules.

Denote the initialized population as L. Note that the population size, denoted

as M = |L|, is a configurable model parameter, such as M = 100.
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3.4.3 CA Simulation with R-tree

To evaluate the fitness of each R-tree in the evolving population, first one

needs to simulate the R-tree in the CA space and measure how well it expresses the

S-tree. This means that one needs to execute the R-tree against the S-tree inside

the given cellular space for a certain number of time steps, and measure how well

the configurations it generates during the considered time steps match the structure

encoded by the S-tree. The range of the time steps during which the simulation is

performed is referred the Simulation Time Steps (T s), such as T s = (1,2,...,12), and

the collection of time steps during which the configurations are considered for fitness

evaluation is referred as the Evaluation Time Steps (T v), such as T v = (6,7,...,12).

Note that T v can be equal, or a subset of T s, i.e., T v ⊆ T s. Obviously in real

simulations neither the cellular space p nor the simulation time steps T s can be

infinite.

Before a simulation starts (t=0), every cell in the entire CA space is quiescent,

except those cells containing the active components of a single seed structure. At

each subsequent time step, t ∈ T s, each cell c∈p attempts to transit its state ct to

next time step ct+1 by identifying and firing a specific rule in the R-tree based on

the states of its von Neumann neighbors. If such a rule is not found from the current

R-tree, a new rule is inserted into the R-tree with its target state (the leaf node)

randomly generated. This operation is referred as R-tree expansion. On the other

hand, at the end of simulation, those branches in the R-tree which represent a rule or

rules that were never fired by any cells at any time step are explicitly removed with
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the pruner operator (Section 3.3.2.2), in order to prevent R-trees from becoming

bloated. This operation is referred as R-tree pruning.

On a conventional computation platform, the cellular space is re-initialized to

the seed state after an R-tree completes its simulation and fitness evaluation, before

another R-tree starts the same process. In a parallel computation platform, each

R-tree could be simulated and evaluated concurrently.

It is undesirable for T s to be either too small or too large. If it is too small,

it may be insufficient for the seed structures to reach enough cells to sample and

capture the self-replication phenomenon. If it is too big, it may lead to a significant

decrease of evolution efficiency due to over-sized R-trees with initial random rules.

To address this problem, a strategy allowing T s to adaptively and gradually increase

is designed and introduced as follows. First, introduce a new concept called hesita-

tion, which is defined as the current accumulated continuous number of generations

during which the fitness of the best R-tree fails to further improve. In other words,

at any GP generation, if the current elite R-tree is not better than the elite R-tree

in the previous generation, the current hesitation value is increased by 1. Likewise,

at any GP generation, if the current elite R-tree is found to be better than the

elite R-tree in the previous generation, the hesitation is reset to zero. Typically,

during the early phase of an evolutionary searching process, there is very little or

low hesitation, as the algorithm finds it relatively easy to climb in the broader area

of the fitness landscape. In the later phases, evolutionary searching is more focused

on seeking of a peak in the fitness landscape, and it usually takes more and more

hesitation before a new improvement can be made. Thus, hesitation can be viewed
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as the effort at any GP generation the evolutionary algorithm has taken to make

a new ascent of the fitness landscape. As described above, hesitation, ξ, can be

determined by the following pseudo code:

at each GP generation, g, {

if

currentEliteRTree.fitness ≤ previousEliteRTree.fitness

then

ξ = ξ +1;

else

ξ = 0;

}

Now with the introduction of the hesitation concept, we can design a control

mechanism as follows. First, as configurable items, define three input (model) pa-

rameters, namely minimum simulation time step T s
min (such as T s

min = 1), maximum

simulation time step T s
max (such as T s

max = 12), and maximum hesitation ξmax (such

as ξmax = 200). Then, launch the GP evolution with T s = (1,2,..., T s
min), and mon-

itor the hesitation at each generation. When and only when hesitation, ξ, reaches

ξmax, increase T s with increment of 1, until it reaches T s
max. This is illustrated by

the following pseudo code:

at each GP generation, {

if

ξ ≥ ξmax

and

T s < T s
max

then
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T s = T s +1;

ξ = 0;

}

This means the simulation will start with a small number of time steps, and

the evolution and searching for an optimal R-tree will start from ones with small

sizes. Only when GP evolution has made enough effort (by reaching the maximum

hesitation) to climb to the currently possible fitness peak with current range of simu-

lation time steps and R-tree sizes, it will adaptively add more simulation time steps

and allow the currently optimized R-trees to introduce more rules and gradually

expand itself. This keeps the R-trees parsimonious, avoiding GP bloating problem

[111], and maintains effective evolutionary searching for optimal rules in a paced

fashion.

Further, we can make ξmax itself to be adaptive, allowing it to grow with the

fitness. This means we can allow the evolutionary algorithm to take relatively more

effort to climb when it gets closer to the global peak. On the other hand, if T s
max

is already reached, and ξ still keeps increasing, define a maximum value ξexit, so

that when ξ reaches ξexit, the GP algorithm will terminate itself and optionally re-

start, as it has been determined that the GP search has been stuck in pre-mature

convergence. Even ξexit can also be adaptive to the fitness, meaning the search is

allowed to take more effort to get out of a local minimum when it gets closer to the

peak, instead of dropping immaturely.
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3.4.4 R-tree Fitness Assignment Based on S-tree

3.4.4.1 S-tree Probing

The purpose of R-tree simulation is to evaluate its fitness in terms of produc-

ing duplicated seed structures. However, since every R-tree in the initial population

is randomly generated, it is extremely unlikely any of them will directly lead to self-

replication. Thus we cannot just run the R-tree against the seed in CA for a certain

number of time steps, and count how many duplicated seed structures it produces.

In fact, fitness measuring for self-replication has been found to be a very difficult

task [37], mainly because self-replication is a dynamic and complex process. When

evolution begins, randomly generated R-trees produce a set of configurations during

the given simulation time steps. These configurations very likely also appear as ran-

dom components and lack any clear patterns (see a sample configuration in Figure

3.7). However, presumably configurations produced from one R-tree may be slightly

more promising for leading to self-replication than those from another R-tree, and

it is the purpose of fitness assignment to capture such slight differences in the very

early stage, before any full or partial seed structure appears. An essential part of any

evolutionary algorithm is to reproduce more promising candidates and discard less

promising candidates, as indicated by the fitness measures. A past study applying

genetic algorithms in self-replication developed a set of fitness functions [37], which

provide distilled values based on the numbers of each type of active component,

relative positions of the active components, and number of isolated replica, respec-

tively. These early fitness assignment mechanisms were found useful for discovering
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self-replication of very simple and concrete structures. However, these fitness func-

tions were not satisfactory for adoption into the genetic programming paradigm

introduced here, mainly because of the following drawbacks:

1. These are not precise measures exploiting the complete structural information

provided by the seed structure itself, but a collection of heuristic measures

based on partial information, such as the number of active components in the

configuration and their average number of neighbors, etc.

2. The values produced from these fitness function components may provide

a good indication of evolutionary progress for very small and simple struc-

tures. However, since they only exploit partial information in the seed struc-

ture, when the size and complexity of the structure increases, especially when

the structure contains repeated components with distinct neighborhoods, the

meaning of the results becomes very unclear.

3. More importantly, these heuristic methods assume the specific knowledge of

a concrete structure. These methods do not allow an evolutionary system to

be established that can be applied to future arbitrary structures without any

knowledge of the structure a priori.

Fortunately, the introduction of the S-tree as a universal encoding mechanism

of arbitrary structures gives us an unprecedented ability to perform precise fitness

assignment for full or partial matching structures at any GP stage. More impor-

tantly, such an S-tree based fitness measuring approach can be universally applied
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Figure 3.7: The same cell can be probed by the same S-tree in 4 phases, to evaluate

a potential match in 4 different orientations. Note such probing can be done with

any cell in the configuration.

to arbitrary, future structures without requiring any knowledge about the structure

a priori. This is because S-tree encoding has the capability of converting an arbi-

trary structure into a common tree-based structure, which can be fully exploited

by an existing evolutionary system to retrieve the complete structural information

provided by the structure itself, such as details about every Moore neighbor of ev-

ery component in the structure. By retrieving such complete structural information

from the S-tree, in an efficient way as allowed by the structure representation as a

MST (minimum spanning tree), and comparing them to a given configuration, we

can precisely tell how well they are matched. Figure 3.7 illustrates conceptually how

this can be done. From a given configuration produced at any time step simulating

a candidate R-tree, pick any active cell as the root cell (such as the cell circled in
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purple in Figure 3.7). Conceptually we can pretend using the S-tree and recovering

the entire encoded structure from the root (by recursively recovering every Moore

neighborhood of every component from the root, as guided by the S-tree), such as

the structure shown on the top in Figure 3.7. Now we can pretend we have the

recovered structure overlapping on top of the cells aligned with the root in the con-

figuration and the root in the structure (both circled in purple in Figure 3.7). We

can now compare the state of every component in the structure with the state of the

overlapped cell in the current configuration, and count the total number of compo-

nents that matches. If we then divide the result by the total number of components

in the structure, we get a precise scalar measure in range of [0, 1], indicating a com-

plete mis-match, partial match, or a perfect match. In a real implementation, we do

not need actually to recover the encoded structure as conceptually illustrated above.

We only need to, starting from the root cell, recursively traverse the needed number

of neighboring cells as guided by the S-tree, and compare the state in a traversed

neighbor cell to the state in a corresponding node in the S-tree. Since the S-tree

by its nature is a minimum spanning tree (see Section 3.2.2), it allows traversing

every component precisely once after traveling the shortest distance. This process

is hereafter referred as S-tree probing. Thus, S-tree probing is a process that can be

used to test every cell in a given configuration, and measure how much a structure

can be matched if we align the structure with that cell.

As described in Section 3.2.2, an S-tree can have 4 different phases, corre-

sponding to 4 different orientations of the encoded structure. Likewise, each cell in

the current configuration can be probed in 4 different ways with the same S-tree,
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Figure 3.8: An actual S-tree (any phase) contains the immediate quiescent neighbors

surrounding the structure. These quiescent cells are also traversed and inspected

during the probing (in every orientations), and thus help to detect how much the

structure is isolated in the current configuration.
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and thus help to detect possible structures located from that cell in 4 orientations.

Figure 3.7 shows each of these 4 probes from the same cell. On the other hand, also

as described in Section 3.2.2, the actual S-tree contains not only the active com-

ponents from a structure, but also the immediate quiescent cells surrounding the

active cells. Therefore, an actual probing also traverses those surrounding cells in

the current configuration, such as those circled in green in Figure 3.8. By inspecting

how many of these surrounding cells also match the states of corresponding nodes

in the S-tree (which, of course, are all quiescent), we can also precisely measure if

the currently probed structure is completely non-isolated, partially isolated, or fully

isolated from its surrounding. The same can be said for probes in other orientations,

even though Figure 3.8 illustrates only one orientation.

Now let r represent a simulated (evaluated) R-tree, s represent an S-tree for

a given structure, p represent an infinite cellular space, c̄ ∈ p represent a root cell

being probed, h ∈ (1,2,3,4) represent the phase of the current probe, t represent a

time step applying r on s in p. Define function κ(r,s,p,t,c̄,h) to be, after applying

r on s in p recursively for t time steps, then probing s from c̄ in phase h, the

number of traversed cells which matches the state of the corresponding node (active

or quiescent) as guided by s. Then, we can define a probing function as follows:

fκ(r, s, p, t, c̄) = max
h∈(1,2,3,4)

κ(r, s, p, t, c̄, h)

λ(s)
(3.3)

Recall λ(s) represents the size of the S-tree, or the number of nodes in the S-

tree, or the number the active components in the encoded structure plus the number
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of immediate quiescent neighbors. Therefore, when κ(r, s, p, t, c̄, h) = λ(s), it means

every traversed cell perfectly match the encoded structure, and also means the

detected structure is also completely isolated (because all of the immediate neighbors

are obviously also quiescent if κ(r, s, p, t, c̄, h) = λ(s)). Since κ(r, s, p, t, c̄, h) cannot

exceed λ(s), fκ(r, s, p, t, c̄) must get a value in range of [0, 1]. Note Equation 3.3

above indicates fκ(r, s, p, t, c̄) returns a best probing value after testing the encoded

structure in 4 orientations at location of c̄.

Note that any cell in the current configuration can be used as the root cell, c̄

in Equation 3.3 above, for probing. When c̄ is different, the result of fκ(r, s, p, t, c̄)

will very likely be different too. Since our goal is to find the best matched structure,

we can sequentially perform a probing on every cell, c ∈ p, and then pick the one

that yields the highest value, i.e., we can revise Equation 3.3 as follows:

fκ(r, s, p, t) = max
c∈p

fκ(r, s, p, t, c), (3.4)

or,

fκ(r, s, p, t) = max
c∈p

( max
h∈(1,2,3,4)

κ(r, s, p, t, c, h)

λ(s)
). (3.5)

Thus, fκ(r, s, p, t) in Equation 3.5 can probe every possible root cell and every

possible orientation with the given S-tree, identify the best probe among all these

possibilities, and return the best (matching) result. However, our goal is not just

to produce one instance of the seed structure at time t. For self-replication to take

place at this time step, we need at least 2 instances of the duplicated seed structure.
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The value fκ(r, s, p, t) in Equation 3.5 finds the first best match in the current

configuration (among all possible locations and orientations), so let’s now denote

it as f 1
κ(r, s, p, t), and see how we can find the second best match in the current

configuration f 2
κ(r, s, p, t). Before further discussion, let’s first recognize the fact

that two distinct seed structures cannot occupy a common active cell, while they

can perfectly share a common immediate quiescent neighbor which helps to isolate

them from each other. Note that whether a cell is active or quiescent is defined with

respect to its state in the S-tree (or the aligned seed structure in Figure 3.7 and

3.8), not the state in the probed configuration. It means before we start probing for

a second instance of a matching structure, we need to first “accept” the previously

identified best probe and mark all of the active cells traversed by the accepted

probe as “UNAVAILABLE”, so that these active cells, which are already counted

by a previously accepted probe, will not be counted again and contribute incorrectly

to fitness measures of subsequent probes.

Hence, to clarify the concepts, a probe means a test on a certain location

and orientation to see how well a matched structure can be found in that way;

probing means a process in which many probes are tested at various locations and

orientations; accepting a probe means an action in which one of the probes are

identified as producing the best result, with its result recorded and the active cells

it traversed marked “UNAVAILABLE”; and an accepted probe means one of probes

with which the acceptance action has taken place.

In summary, let p̆1 represent the set of cells marked as “UNAVAILABLE” by a

previously accepted probe f 1
κ(r, s, p, t), we can now find and accept two best probes
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from the configuration at time t, as follows:

f 1
κ(r, s, p, t) = max

c∈p
( max
h∈(1,2,3,4)

(
κ(r, s, p, t, c, h)

λ(s)
)) (3.6)

f 2
κ(r, s, p, t) = max

c∈p, c¬∈p̆1

( max
h∈(1,2,3,4)

(
κ(r, s, p, t, c, h)

λ(s)
)) (3.7)

If we use these probing functions at one time step for each R-tree, and compare

the candidate R-trees in terms of their accepted probes, we can effectively identify

which R-trees are more likely to generate a pair of perfectly matching structures, i.e.,

self-replication. However, our goal is to allow self-replication to carry on sustainably.

Given more time steps, the initial seed structure can reach more and more active

cells, eventually making enough rooms for more than two duplicated structures.

Thus, ultimately we will want to accept more probes so that we can reward those

R-trees which are more likely to generate a maximum number of replicas. But the

question is, how do we know how many probes we shall accept at each time step?

One might ask, why don’t we accept as many probes as possible? If we accept

too many probes in a given time, it may have the effect of promoting the trend

of forming many partially matching structures, but few would have enough room

and potential to grow into full replicas, with the constraint of limited time and

space, and ultimately degrade the performance of the evolution. This problem is

hereafter referred as over-probing. Over-probing can adversely impact the evolution

performance due to the following reasons: 1) The seed structure can reach more

cells without exceeding light speed. This means that within certain number of time
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steps, there will not be sufficient active cells for the excessive number of replicas

to appear. Normally, a bigger seed would need more time steps to reach enough

space for the first pair of replicas. 2) During the early phase of GP evolution, the

fitness level of most R-trees in the population is still very low, so accepting many

probes pre-maturely means distributing the focus on a much larger searching space,

causing R-trees to become bloated, and hindering the population from converging.

Thus, we need to develop an appropriate approach to determine the number

of acceptable probes adaptively, in order to avoid the over-probing problem. The

following section describes such an approach.

3.4.4.2 Determining the Number of Acceptable Probes

As described in Section 3.4.3, R-tree simulation starts with a small number of

time steps, which adaptively and gradually increase. When evolution starts, each R-

tree is automatically allowed to accept two probes at each time step. After some R-

trees become more and more successful at generating 2 perfect probes (i.e., perfectly

matched replicas), and also consequently simulations reach a higher number of time

steps, we can allow these R-trees to incrementally increase the number of acceptable

probes (and so become more aggressive in working on additional replicas). Denote

the number of acceptable probes at evaluation time t ∈ T v for R-tree r as πt
δ(r),

then summarize a strategy as follows:

Probing Strategy 3.1: An evolving R-tree starts with an initial goal that

probes and finds the starting evaluation time step when enough cells are reached to
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form the first pair of duplicated structures, and that only when an R-tree succeeds

in forming the first pair can it start to become more aggressive in attempting to

form more seed structures. The better it performs in previous evaluation time steps,

the faster it can be allowed to accept more probes.

This strategy says an evolving R-tree can start with a basic goal, programing

itself to find a minimum CA space just to produce 2 isolated seed structures. Not

until this is achieved can it accept more probes. On the other hand, once the current

goal is achieved, it can gradually raise its goal by adaptively adjusting the number

of acceptable probes (πt
δ) at a controlled and adaptive pace. This strategy can be

implemented as in the following pseudo-code:

for R-tree r, seed S-tree s, and cellular space p {

π0

δ = 2;

at each time step t > 0 {

if (δ(r, s, p, t− 1) = πt−1

δ ) {

πt
δ = πt−1

δ + 1;

}

}

This pseudo-code says that, at t=0, the number of acceptable probes is 2. At

any subsequent time step, if each of these accepted probes finds a perfectly matching

structure (e.g., initially, finding 2 isolated seed replicas), the number of acceptable

probes can be increased by 1. Otherwise, it remain the same. Whenever the number

is adjusted, the new number has to be realized, before it can be adjusted again.
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3.4.4.3 Overall Fitness Function

Based on Sections 3.4.4.1 and 3.4.4.2, an R-tree r at evaluation time t is

allowed to accept πt
δ(r) probes. Each accepted probe identifies a best probe from the

cells not yet marked as “UNAVAILABLE” by previously accepted probes. Hence,

we can write a fitness function at time t as follows:

f(r, t) =

n=πt
δ
(r)

∑

n=1

fn
κ (r, s, p, t), (3.8)

or, according to Equation 3.5 and 3.7,

f(r, t) =

n=πt
δ
(r)

∑

n=1

( max
c∈p, c¬∈

⋃m=n−1

m=1
p̆m

( max
h∈(1,2,3,4)

(
κ(r, s, p, t, c, h)

λ(s)
))). (3.9)

Then, considering all evaluation time steps, t ∈ T v, we get the overall fitness

function for R-tree r :

f(r) =
∑

t∈T v

(

n=πt
δ
(r)

∑

n=1

( max
c∈p, c¬∈

⋃m=n−1

m=1
p̆m

( max
h∈(1,2,3,4)

(
κ(r, s, p, t, c, h)

λ(s)
)))). (3.10)

Here, Equation 3.10 indicates the overall fitness measure for a candidate R-

tree at a given GP generation is its accumulated result of every accepted probe at

every evaluation time step. Every accepted probe finds a best probe among tested

probes at every location and every orientation, given the remaining cells that are

not marked as “UNAVAILABLE”. Note the number of evaluated time steps at a

given generation, T v, is common among all R-trees in the population, however, at

any specific evaluation time step, the allowable number of accepted probes varies
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from R-tree to R-tree. Obviously an R-tree can gain higher fitness value by either

earning higher number of accepted probes, or better results produced from individual

accepted probes, or both.

3.4.5 R-tree Fitness Sharing

It is possible that at the end of R-tree simulation and fitness evaluation, certain

R-trees are found to be identical to each other. This is un-desirable because it may

cause duplicated R-trees to be picked in the tournament selection, increase the

chance of pre-mature convergence, and reduce the probability of other diversified

R-trees to be selected. Fitness Sharing is adopted to address this problem [21]. The

idea is to punish an R-tree by adjusting its fitness according to how many existing

R-trees are identical to it. For example, if an R-tree is found identical to two of

the previously evaluated R-trees, its fitness value will be adjusted by 4÷(4+n)=

4÷(4+2 ) = 0.66, or 66%, of its original fitness value.

3.4.6 R-tree Tournament Selection

At each GP generation, each R-tree r̄ in the population is simulated in T s

(as described in Section 3.4.3) and evaluated in T v (as described in Section 3.4.4),

resulting in a scalar fitness measure in range of [0, 1]. After fitness sharing adjust-

ment (as described in Section 3.4.5), the final fitness values fδ(r̄) of each R-tree

essentially makes the entire population fully ordered. Accordingly, a tournament

selection algorithm can be designed [112]. As a configurable model parameter, a
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tournament size, ζ, is given. To select an R-tree from the current population and

copy it into the mating pool, ζ R-trees are randomly picked, but only the one of

highest fδ wins the tournament and get selected. Hence, the tournament selection

algorithm gives higher probability to those better R-trees to enter the mating pool,

and hopefully produce better offspring in the evolution. Note that, if ζ is too big, the

population will be under too much selection pressure, which may lead to pre-mature

convergence. If ζ is too small, such as 1, evolution will act like random searching.

So, ζ needs to be appropriately selected. For example, for a population size of 100,

typically ζ = 2 is selected.

3.4.7 R-tree Evolution

After a pair of parent R-trees are selected from the current R-tree population

using the tournament selection algorithm (as described in Section 3.4.6), this pair

of parents can be directly copied into the mating pool, or first execute an R-tree

crossover operation (detailed in Section 3.3.2.1), controlled by the R-tree crossover

probability brc, another configurable model parameter. This is done as shown in the

following pseudo code:

for each pair of R-tree parents {

//get a random value in range of [0,1]

newRandomValue = RANDOM.generate(0,1);

if

newRandomValue ≤ br
c

then

pair.performCrossover();
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else

pair.performCopyToMatingPool();

}

Even though it is perfectly fine for a common R-tree to be selected in multiple

crossover operations, it does not make sense for the same parent R-tree to be directly

copied into the mating pool multiple times. Therefore, if such a situation happens,

normally tournament selection will be repeated until a different parent R-tree is

yielded.

After the crossover operation is completed as described above, every R-tree

in the mating pool is subject to a mutation operation (detailed in Section 3.3.2.2),

controlled by the R-tree mutation probability brm, another configurable model pa-

rameter. This is done as shown in the following pseudo code:

for each rtree in the mating pool {

//get a random value in range of [0,1]

newRandomValue = RANDOM.generate(0,1);

if

newRandomValue ≤ br
m

then

rtree.performMutation(); //execute the mutation operator

else

// do nothing;

}

After the evolution operations are completed, the R-trees in the mating pool

are copied and become the population of a new generation.
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3.4.8 R-tree Elitism

Elitism means that the very best or “elite” R-tree cannot be expelled from

the population in favor of worse individuals. This also means that in an elitistic

evolutionary system the fitness of the elite R-tree at the current generation has to

be at least as good as, if not better, than the elite R-tree in the previous generation.

However, the tournament selection and R-tree evolution operations described above

do not prevent an elite R-tree from being lost. The problem is addressed as follows.

After fitness evaluation and fitness sharing after performed, the current elite R-tree

is compared to the stored elite R-tree from the previous generation. If the current

elite R-tree is not worse than the previous one, store the new elite and nothing else

is to be done. Otherwise, the previous elite R-tree will be re-inserted back into the

new population and replace a randomly chosen member.

3.4.9 The Resulting Overall GP Model

The schematic view of the resulting S-tree/R-tree based GP model toward

self-replication is illustrated in Figure 3.9. First, S-tree s is derived from the pre-

specified seed structure (Section 3.2.2). Then, an R-tree population of size M is

initialized (Section 3.4.2). Each R-tree is simulated in the given cellular space within

the current T s, while each R-tree may potentially expand or prune itself as needed

(Section 3.4.3). Next, based on the simulation results, fitness is measured for each

R-tree within the current T v (Section 3.4.4). If the desired fitness level is reached,

the algorithm has produced the best R-tree and stops. Otherwise, the fitness values
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Figure 3.9: A schematic view of the S-tree/R-tree based GP model toward self-

replication
68



are adjusted due to fitness sharing (Section 3.4.5). The R-tree elitism is performed

so that it is ensured the elite R-rtree in the new population will be at least as good

as before (Section 3.4.8). However, if the elite R-rtree did not improve in the current

generation, the hesitation is increased. The entire population is fully ordered based

on the final fitness value of each R-tree. Tournament selection is performed and

M/2 pairs of parents are selected (Section 3.4.6). Each pair may perform an R-tree

crossover before entering the mating pool, as controlled by brc (Section 3.3.2.1 and

3.4.7). Each R-tree in the mating pool may be further mutated, as controlled by

brm (Section 3.3.2.2 and 3.4.7). If current hesitation has exceeded the specified ξmax,

T s and T v is incrementally increased (Section 3.4.3). Then, the R-tree population

enter a new GP generation, and the same process repeats as above.

3.5 Initial Experimental Results

The model described above has been tested in a number of experiments [101,

102], and two examples are presented here. Typically, model parameters like the fol-

lowing are chosen: Population Size = 100, R-tree Mutate Probability = 0.45, R-tree

Crossover Probability = 0.85, R-tree GP Tournament Size = 2, and Max Hesitation

= 200. Success is achieved with structures of arbitrary shape and varying numbers

of components. The largest seed structure for which it was previously possible to

evolve rules with over a week’s computation on a high performance computer system

has 4 components [38]. Figure 3.10(t=0) shows one of the seed structures, consisting

of 7 oriented components (29 states), for which the new approach using GP finds
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Figure 3.10: Self-replication, example 3.1: the seed, a 7-oriented-component struc-

ture, is programed to self replicate in only 2 time steps. In subsequent time steps,

each replica attempts to repeat the same action, when collisions result. However,

eventually, when enough space is reached, more replicas can be isolated from each

other. More details of such a process is illustrated in the next example, shown in

Figure 3.12.

70



Figure 3.11: Self-replication, example 3.1: the R-tree automatically evolved from

the given seed structure with the method established in this chapter. This example

R-tree uses the von Neumann neighborhood.
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a rule set that allowed the structure to self-replicate. With the resultant R-tree,

shown in Figure 3.11, at time t=1 (Figure 3.10), the structure starts splitting (the

original seed structure translates to the left while a rotated replica is being born to

the right). At time t=2 (Figure 3.10), the splitting completes and the original and

replica structures become isolated. Thus, the seed structure has replicated after

only 2 time steps, a remarkably fast replication time that has not been reported

before.

Example 3.1 illustrates using the von Neumann neighborhood in the R-tree.

All other examples hereafter use the Moore neighborhood instead. To make it easy

to visualize the produced structures at each evaluation time step, color codes are

used in these figures. A non-isolated seed structure is marked in yellow and isolated

seed structure in blue. Also, to provide location correlation, the cells covered by

the initial seed structure are always highlighted by red edges at any time step.

For example, a second structure of 6 oriented components (25 states) is shown

in Figure 3.12 (t=0), and the cells covered by this seed are highlighted at every

subsequent time step. As illustrated in Figure 3.12, at t=1, the seed expands to

the right, top, and bottom, at light speed (1 cell/each time step), but not to the

left. Two contiguous seed replicas are formed. At t=2, the replicas move apart and

get isolated. At t=3, each of these isolated replicas repeats the same self-replication

action done by the initial seed, and forms 2 sets of contiguous replicas. At t=4, each

set attempts to split like at t=2, but the middle ones run into collision and both

get nullified. Each of the two replicas found at t=4, which are now more apart than

at t=2, repeats the same self-replication action and successfully forms 4 isolated

72



Figure 3.12: Self-replication, example 3.2-1: executing the automatically pro-

grammed R-tree against a 6-oriented-component seed structure, from t=0 to t=6.

For illustrative purpose, non-isolated seed structures are marked in yellow and iso-

lated seed structures in blue. Also, to provide location correlation, the cells covered

by the initial seed structure are always highlighted by red edges at any time step.
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Figure 3.13: Continuation of Figure 3.12 from t=7 to t=10.
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Figure 3.14: Continuation of Figure 3.13 from t=11 to t=14.
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Figure 3.15: Self-replication, example 3.2-2: executing a separately generated R-

tree against the same 6-oriented-component seed structure, from t=0 to t=5. For

illustrative purpose, non-isolated seed structures are marked in yellow and isolated

seed structures in blue. Also, to provide location correlation, the cells covered by

the initial seed structure are always highlighted by red edges at any time step.
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Figure 3.16: Self-replication, example 3.3: executing an automatically generated

R-tree against a very large, irregular and arbitrary seed structure, from t=0 to

t=4. For illustrative purpose, non-isolated seed structures are marked in yellow

and isolated seed structures in blue. Also, to provide location correlation, the cells

covered by the initial seed structure are always highlighted by red edges at any time

step.
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Figure 3.17: Continuation of Figure 3.16 from t=4 to t=5.

replicas at t=6. In the subsequent time steps, as shown in Figure 3.13 and Figure

3.14, each replica attempts to repeat the same self-replication process, interrupted

by more collisions, but eventually reaches enough space at t=12, when each of the 4

seed replicas successfully replicates without collision and forms 8 (or 4 pairs) replicas

at t=14.

Figure 3.15 shows that it is possible for the same seed structure to self replicate

in different ways. A different R-tree is evolved in a separate GP run. Here, very

surprisingly, the algorithm found a way to replicate the seed in only one (1) time

step. In example 3.2-1 (Figure 3.12), when the active cells already translate at light

speed, it took a minimum of 2 time steps to self-replicate. It appears that the result

in example 3.2-2 (Figure 3.15) already exceeds light speed, which is not expected. A

closer inspection of how the computer discovered strategy manages to do something

seemingly impossible reveals that light speed has not been exceeded. Instead, the
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Figure 3.18: Continuation of Figure 3.17 at t=12.
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Figure 3.19: Continuation of Figure 3.18 at t=13.
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Figure 3.20: Continuation of Figure 3.19 at t=14.
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seed structure is rotated before translation, so that the space originally occupied by

the seed itself can be more efficiently used, yielding enough space to form a pair of

replicas within only one time step.

The third structure to be presented here contains 13 components having an

exceptionally large number of states (10 x 4 + 1 = 41 states/cell). It spells like

“SELF REPLICATE” and is in purposely made very irregular and arbitrary, as

shown in Figure 3.16 (t=0). It is demonstrated from Figure 3.16 to 3.20 that the

GP model can nevertheless automatically program such an exceptionally large and

irregular structure to self replicate, producing 8 replicas in 14 time steps, in a very

consistent pattern.

3.6 Conclusions

This chapter established the S-tree, its properties, and how to generate it, and

why it can unambiguously encode/decode arbitrary structures. Further, it intro-

duced the R-tree, its properties, its genetic operators, and why it is more efficient

than a linear rule table in evolution and simulation. Then, from these tree-based uni-

versal representations, a general genetic programming model for self-replication was

established. Given a pre-specified arbitrary structure, it was shown how the S-tree is

derived, how the R-tree population is initialized, how each R-tree is simulated, eval-

uated, and then fitness adjusted, tournament selection is used, and finally evolved,

all guided by the goal of programming the R-trees to become better and better ex-

pressing the S-tree. Such a model represents a new genetic-programming based CA
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discovery paradigm, where the S-tree can be viewed as a representation of a global

target, the R-tree can be viewed as a representation of local state-transition rules,

and thus the CA can be automatically programmed to let the local state-transition

rules produce desired global results when they are concurrently executed in each

cell. This addresses the difficult issues of CA programming, especially involving

self-replication.

Fitness evaluation of local state transition rules in terms of dynamic global be-

havior in CA, such as self replication, is a very difficult task [37]. Heuristic measures

which only exploit partial information (such as component density) in the CA struc-

ture were found only useful for very small and simple structures. These heuristic

measures assume the specific knowledge of a concrete structure, due to the lack of

a universal structure representation which is capable of encoding the full structural

information of an arbitrary structure that can be retrieved and exploited by an ex-

isting evolutionary system. The introduction of the S-tree and R-tree as a universal

encoding mechanism of arbitrary structures/rules gives us an unprecedented ability

to perform precise fitness assignment for full or partial matching structures at any

stage. More importantly, such an S-tree based fitness measuring approach can be

universally applied to arbitrary, future structures without requiring any knowledge

about the structure a priori. This is because S-tree encoding has the capability of

converting an arbitrary structure into a common tree-based structure, which can be

fully exploited by an existing evolutionary system, built prior to any knowledge of

the structure, to retrieve the complete structural information encoded in the S-tree,

such as details about every Moore neighbor of every component in the structure. By
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retrieving such complete structural information from the S-tree and comparing it to

a given configuration, we can precisely tell how well the current configuration sat-

isfies the expected global computation. This represents a general evolutionary CA

programming approach which could be readily applied to solve many other complex

problems in CA [79, 4, 2, 74, 23], such as games [6, 14, 18, 19], and behavioral and

social problems [20, 25, 17, 73]. Despite the local concurrent computations in CA,

this approach provides a feasible genetic programming paradigm to automatically

program the CA, even when the desired computation requires global communication

and global integration of information across great distances in the cellular space, as

in these other applications.

The limited experimental results presented in this chapter show not only that

the application of evolutionary methods becomes feasible with this GP approach,

but also that a whole new class of self-replicators can be discovered, with larger

and arbitrary structures. These structures can be automatically programmed to

self-replicate, without the use of a supercomputer. This approach also removes the

restriction, often assumed in past CA models, that replicas must have a specific

loop-like structure. It represents a significant step forward and a new level of ability

in creating self-replicating structures because it qualitatively reduces the time cost

of replicator construction compared to past manual methods. Further, replicators

created in this fashion are qualitatively different and resemble biological cell mitosis

more than do these generated in past studies (universal constructors and loops).

Here, automatically discovered replicators can duplicate themselves very quickly, in

a fission-like or rotational process. The computer model surprisingly discovered a
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strategy to allow a large structure to self-replicate within only one time step, repre-

senting a speed which was not known previously to be possible. The development

of such a novel and time-effective method for generating self-replicating structures

opens up the possibility of studying replicator configuration properties in a system-

atic way. It is to this task that we now turn.
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Chapter 4

The Replicator Factory and Properties of Discovered Self-Replicating

Cellular Automata Systems

4.1 Overview

In this chapter, I use the encoding mechanisms and GP algorithm presented

in the previous chapter as a replicator factory to produce a wide range of arbitrary

self-replicating structures. Using this approach, one has the ability to automatically

generate whole families of self-replicating structures, and to systematically investi-

gate how their properties vary as one systematically varies their features, such as

the initial configuration size, shape, symmetry, and allowable states [103]. I then

further study how variations of the initial configuration alter the effectiveness of the

replicator factory itself in terms of evolutionary cost in synthesizing the replicas as

well as removing the debris produced during the self-replication process.

4.2 The Replicator Factory and Debris Cleaning with Multi-Staged

GP

Typically, after the desired number of replicas have formed, there exist in the

CA space extraneous components which do not belong to any replica. See Figure 4.1

(a) for an example. These extraneous components are called debris. If desired, the
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Figure 4.1: An example of the self-replication process, without (a) and with (b)

debris removal. The seeds, number of time steps, and resulting replicators in (a) and

(b) are identical, but the R-tree used in (a) is produced without encouraging debris

removal while the R-tree used in (b) is produced with debris removal encouraged in

the fitness function.

replicator factory can also use multi-stage evolution to enable debris removal, where

the artificial evolutionary process is performed in two stages, namely a replication

stage and a debris removal stage. In the first stage, the focus is on creating replicas

and no attempt is made to depreciate extraneous components and partial structures.

When the desired number of replica structures are formed, the process enters the

second stage. Now the initial fitness evaluation functions are still enforced, but the

overall fitness value is lowered an amount proportional to the amount of debris found

at the end of self-replication. For example, Figure 4.1 depicts the replication process

using an R-tree produced at the end of the first stage and the second stage. The

replicators used in this study can be produced in isotropic CA space. However, in

simulation done here it was found that debris cannot always be completely removed
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unless one gives up isotropy, so this requirement is relaxed in the results presented

here to permit comparison of replication with and without debris. At the top level,

the evolutionary process discontinues if the final hesitation exceeds a pre-specified

number of generations (this number adaptively increases as fitness increases), and

automatically restarts from a new random population of R-trees (more details in

Section 3.4.3). Under these conditions, all seed structures described here successfully

result in a fixed set of rules that produce self replication.

4.3 Results: Properties of Evolved Self-Replicating Structures

The replicator factory gives us an unprecedented ability to automatically gen-

erate a variety of self-replicating CA structures. In this section I aim to gain a deeper

understanding of how variation of evolved self-replicators impacts the effectiveness

of my model in terms of both evolution and self-replication. The broad plan is to

vary parameters one at a time, perform computational experiments to obtain perfor-

mance measures of groups of replicators, and inspect if there is a trend between the

performance measures and each respective parameter. The performance measures

from each experiment are collected as observations, which are then used as sampling

data for subsequent linear regression analysis and data visualization. To enhance

the compatibility of these sampling data across the varying replicators and minimize

the impact of random factors in these observations, the following methods are used.

First, let all experiments share same set of genetic programming parameters in each

group (typically, a population of 200, tournament size of 3, crossover rate of 0.85,
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and mutation rate of 0.45, etc.), such that each self-replication experiment executes

same genetic operators of the same probabilities. In addition, in each group, each

experiment repeats another except for only one replicator property (such as the

seed size) which is incrementally changed, all else held constant. Thirdly, for each

experiment, instead of using a single measure, collect all of the following in a single

observation: 1) stepDup (number of time steps used by the resulting replicator to

form the first pair of replicas), 2) evoDup and timeDup (number of GP generations

and computation time used during evolution to form the first pair of replicas), 3)

evoClean and timeClean (number of GP generations and computation time used in

evolution to form the first pair of replicas with all debris removed), 4) ruleDup (size

of the evolved R-tree which enables the replicator to form the first pair of replicas),

and 5) ruleClean (size of the evolved R-tree that enables the replicator to form the

first pair of replicas with all debris removed). The unit of time in timeDup and

timeClean measurements is one minute.

4.3.1 Seed Size

In CA model, a structure can simply be viewed as a configuration of contiguous

active cells [65, 34]. The number of active cells in the initial replicating structure

is called the seed size. I used the replicator factory to systematically investigate

how seed size influenced replication of 16 structures having 4 to 56 components

(Figure 4.2 shows examples), all else held constant. These structures share the

following properties: 1) The number of allowable states is identically 7. These states
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Figure 4.2: Examples of sixteen structures which vary from 4 to 56 components.

With the rules evolved by the replicator factory, each of these structures replicates

itself within ≤4 steps. See text for details.

Table 4.1: Performance measures for replicators in Figure 4.2.

include the quiescent state, 4 states of an oriented component (〈), and 2 states of

2 non-oriented components (x and o, which are typical states used in manual self-

replicating loops). 2) The shape of the structures is either a square or rectangle,

of size from 2x2 to 7x8. Each structure contains exactly one oriented component,

always in the upper-left position, and then populates alternatively with the two non-

oriented components. 3) The size of the seed structures is gradually varied from 4 to

56 components. 4) Each has a rule set (R-tree) that enables it to self replicate with

no debris within 1∼4 time steps that was discovered by the replicator factory. As
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Figure 4.3: The replicator factory evolved an R-tree causing this 7x8 structure (t

= 0) to replicate in just 4 time steps. The seed structure splits into two isolated

replicators as both of the replicas translate diagonally in opposite directions at light

speed (one cell each time step).
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Figure 4.4: The linear regression chart between the seed size and timeDup pro-

duced from the sample data shown in Table 4.1. This chart shows the observed

values from the table, the regression line and both types of confidence interval. The

determination coefficient value R2 is shown on the chart title [113].
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an example, I illustrate the self replication steps of the 7x8 structure in Figure 4.3.

It can be seen that the seed structure splits into two isolated replicators in a way

when both the parent and child sub-structures translate in opposite directions at

light speed (one cell each time step), and hence reach enough CA space to form and

isolate the replicators in minimum steps of time. The properties and performance

measures of each of these replicating structures are summarized in Table 4.1. The

Size column indicates the number of components in each seed structure. Note the

tables both the 2x4 and 3x5 structures can self-replicate in only one time step.

Even though this seems impossible to human, but this is not error. The R-trees

evolved by the replicator factory manage to do that with the same strategy shown

in experiment example 3.2-2 in Chapter 3 (Figure 3.15).

From Table 4.1 one can determine whether there is a trend indicating seed

size has an effect on the performance vector 〈stepDup, evoDup, evoClean, timeDup,

timeClean, ruleDup, ruleClean〉. Linear regression is used for this analysis with

the results visualized with regression charts. For example, Figure 4.4 plots the

relationship between timeDup and seed size. Such a regression chart shows the

observations (blue points), the regression line (the fitted model), and two confidence

intervals (shown with grey lines): 95% confidence interval around the mean and 95%

confidence interval around the observations. The determination coefficient value R2

is shown on the chart title [113], and is interpreted as the proportion of the variability

of the dependent variable linearly explained by the model. The nearer R2 is to 1,

the better the model. In summary, from the chart we can conclude with reasonable

confidence that there is a positive relationship between size and timeDup. Similar
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charts for other measurements are not included here but give similar results.

4.3.2 Seed Shape

Figure 4.5: When a sample shape is varied from (a) to (d) above, the correspondingly

change in Average Number of Active Moore Neighbors and Moore Graph Coverage

is illustrated in (b) and (e), and (c) and (f) respectively. The numbers in (b) and (e)

reflect the number of active Moore neighbors of that cell. The shaded cells in (c) and

(f) are the cells covered by the Moore Graph of the shown structures. This example

shows that a shape of higher complexity tends to reflect lower average number of

active Moore neighbors and higher number of cells in the Moore Graph.

Presumably a structure of higher complexity in shape would take longer to

evolve toward self-replication. However, to verify this hypothesis through quantitive

analysis, there needs a way to measure shape complexity. Two measures applicable

to arbitrary structures are used. The first is called Average Number of Active Moore
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Figure 4.6: Fourteen structures having identical size and allowable states, but vary-

ing shapes. Rules to make each self-replicate were produced by the replicator factory.
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Neighbors, which can be calculated as follows. First, for each active component in

the seed, count the number of active Moore neighbor cells. Then, sum all of them

up and divide the result by the seed size. The second measure is the S-tree size (the

number of nodes in the S-tree), which is the same as the number of nodes in the

Moore graph, because each node in the Moore graph appears in the S-tree precisely

once. This parameter can be calculated by counting the number of cells of which at

least one of its Moore neighbors is an active component of the seed structure. For

Table 4.2: Performance measures of replicators in Figure 4.6.

example, the seed in Figure 4.5(a) is a 4-component structure which takes a

simple square shape. The seed shown in Figure 4.5(d) is identical except that the

component B is moved from upper right to lower left position. As a result, the

shape becomes irregular and more complex. Correspondingly, Figure 4.5(b) and

4.5e reflect that the Average Number of Active Moore Neighbors has dropped from

3 to 2, indicating that, in more complex shapes, components tend to spread more

apart in various ways. At the same time, Figure 4.5(c) and 4.5f show that the

Moore graph coverage increases from 16 to 20, indicating more complex shapes tend
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Figure 4.7: Sample replication process for one of the 14 structures of Figure 4.6.

Note that the splitting replicators move at light speed toward opposite directions and

get isolated in only 2 time steps. Further, the replicators have aligned themselves

adaptively according to its own shape in a way that they take the minimum cellular

space but nevertheless fully isolate from each other.

to reach more CA space and produce a bigger Moore graph and S-tree. In sum,

a lower Average Number of Active Moore Neighbors and higher S-tree size would

indicate a higher shape complexity.

To quantitively investigate the impact of seed shape on the effectiveness of

the replicator factory, I have chosen 14 structures, shown in Figure 4.6, which share

the following properties: 1) the seed size is identically 9; 2) the number of allow-

able states is identically 7; 3) the shape varies randomly; and 4) each can duplicate

based on an R-tree, evolved by the replicator factory, that enables it to self-replicate

with no debris within 2∼3 time steps, with an example shown in Figure 4.7. Note

that the splitting replicators move at light speed toward opposite directions and get

isolated in only 2 time steps. Further, note that the replicators have aligned them-

selves adaptively according to its own shape in a way that they take the minimum

cellular space but nevertheless fully isolate from each other. The shape complexity
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Figure 4.8: Linear regression chart between evoClean and the S-tree size (one of the

shape complexity measures) derived from Table 4.2. This chart shows the observed

values from the table, the regression line and both types of confidence interval

around the predictions. The R2 value shown on the chart title is interpreted as the

proportion of the variability of the dependent variable (evoClean) linearly explained

by the model (the S-tree size).
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measures (column avMrNbr represents Average Number of Active Moore Neighbors

and column sTSize represents the S-tree size mentioned above) and corresponding

performance measures are summarized in Table 4.2. Pearson correlation coefficients

[100] derived from this table indicate that the increase of S-tree size strongly en-

courages the increase of evolution cost and number of resulting CA rules required

to enable self-replication. On the other hand, the increase of Average Number of

Active Moore Neighbors (indicating more compact structure) moderately decreases

evolution cost and relatively more strongly decreases the number of resulting CA

rules. Linear regression analysis leads to consistent results, with one sample chart

shown in Figure 4.8.

4.3.3 Cell States

Table 4.3: Performance measures of 2 sets of replicators shown in Figure 4.9.

Here I choose two separate sets of structures to study how the number of

allowable states affects the effectiveness of the replicator factory. The first set,

99



Figure 4.9: Samples of 2 sets of replicators: the first set (a) has size of 25, square

shape, and gradually increasing number of allowable cell states (from 6 to 15).

The second set (b) has size of 10, loop shape, and gradually increasing number of

allowable cell states (from 7 to 13).
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for which examples are shown in Figure 4.9(a), includes 10 structures which share

the following properties: 1) the seed size is identically 25; 2) the seed shape is

identically a 5x5 square; and 3) the number of allowable states varies from 6 to

15. Each structure contains exactly one oriented component, all in the upper-left

position, and a different number of non-oriented components corresponding to the

total number of allowable states. Note that each new oriented component (regardless

of its orientation in the seed) introduces 4 new states, while each new non-oriented

component introduces 1 new state. The replicator factory successfully discovered a

rule set (R-tree) for each structure that enables it to self replicate with no debris

within 3 time steps.

Figure 4.10: The loop structures in set 2, as one example shown here, quickly (within

only 2 time steps) reaches enough cellular space to form replicators by moving,

sometimes plus rotating (as shown here), both the parent and child structures at

the same time. A manually designed loop, however, typically replicates itself by

extending a single construction arm while the parent loop itself remains still, and

hence usually takes a lot more time steps to reach enough to form a child replicator.

Motivated by past studies of self-replicating loops [9], the second set of struc-

tures, examples of which are shown in Figure 4.9(b), includes 7 structures which
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share the following properties: 1) the seed size is identically 10; 2) the seed shape

is identically a 10-component loop; and 3) the number of allowable states varies

from 7 to 13. Each structure contains 2 adjacent oriented components, followed

by, repeatedly, a different number of non-oriented components corresponding to the

total number of allowable states. The replicator factory also successfully discovered

a rule set (R-tree) that enables each of these structures to self replicate with no

debris within 2 time steps. Replication takes place in a fashion similar to that of

the other replicating structures in this paper, which is different from the replication

process used in past manually designed self-replicating loops [61, 1, 9]. A manually

designed loop typically replicates itself by extending a single construction arm while

the parent loop itself remains still, and hence usually takes a large number of time

steps to reach enough to form a child replicator. However, the loop structures in

set 2, as one example shows in Figure 4.10, quickly (within only 2 time steps here)

reaches enough cellular space to form replicators by moving, sometimes plus rotat-

ing (as shown here), both the parent and child structures at the same time. The

performance measurements from both sets of structures are listed in Table 4.3. The

numState column indicates the total number of allowable states of each structure in

each set.

A correlation matrix calculated from Table 4.3 suggests the following: 1) the

number of time steps required for a structure to self-replicate, whether it is a square

or a loop, is not dependent on the number of allowable states; 2) however, the

number of allowable states has a strong and positive influence on the evolution cost,

computation time, and size of rule set required to enable self-replication. Linear
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regression analysis done in the same fashion as previously described gives similar

results.

4.3.4 Repeated Components

Figure 4.11: Three pairs of replicators used to study the impact of repeated com-

ponents. Structures in each pair have the same size, shape, number of allowable

states, but only the first one (A in each pair) has repeated components.

Table 4.4: Performance measures of the replicators shown in Figure 4.11.

How does the presence of repeated components in the seed alter the effective-

ness of the replicator factory? I have chosen three pairs of structures to investigate
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this matter, where each pair is a square, rectangle, or irregular shape respectively,

as shown in Figure 4.11. The structures in each pair are identical (same shape,

size, and number of allowable states), except that only the first structure contains

repeated components. For each structure the replicator factory evolved an R-tree

which enables the structure to self-replicate without debris within 2∼3 time steps.

The performance measures are summarized in Table 4.4, where the SeedType col-

umn indicates the type of shapes each pair takes and the column ifRepCom is a

Boolean variable, which has a value of YES if there is a presence of repeated com-

ponents, and NO otherwise.

To visualize the influence of the presence of repeated components on the

performance vector 〈stepDup, evoDup, evoClean, timeDup, timeClean, ruleDup,

ruleClean〉, I generated a rescaled parallel-coordinates-plot, Figure 4.12, from Table

4.4, where the structures are grouped by the value of ifRepCom, and the mean val-

ues of each performance measurement of each group is rescaled on a scale of 0∼1 so

that all variables are represented on the same scale (for each measurement, 0 corre-

sponds to the minimum and 1 to the maximum). Here it can clearly be seen that

on average the presence of repeated components reduces the number of evolution

generations, computation time, and number of rules required to enable the struc-

ture to self replicate, with or without debris removal. From the derived correlation

matrix it can also be seen that the YES value of ifRepCom has negative influence

consistently on each item in the performance vector.
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Figure 4.12: Rescaled parallel-coordinates-plot produced from Table 4.4 visualizes

the impact of the presence of repeated components. The structures are grouped

by the ifRepCom column, and the mean values of each performance measurement

of each group is rescaled on a scale of 0∼1 such that all variables are represented

on the same scale (for each measurement, 0 corresponds to the minimum and 1

to the maximum). The “Yes” line in the chart represents those observations of

which the value of ifRepCom is Yes, and the “No” line in the chart represents those

observations of which the value of ifRepCom is No.
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4.3.5 Repeated Sub-Structures

Figure 4.13: Four pairs of replicators: structures in each pair are identical except

only the first structure contains repeated sub-structures.

Table 4.5: Performance measures of replicators in Figure 4.13.

How does the presence of repeated sub-structures in the seed alter the effec-

tiveness of the replicator factory? To investigate this matter, as shown in Figure

4.13, I have chosen 4 pairs of structures which share the following properties: 1) the

structures in each pair are identical (same size, shape, number of allowable states)

except only the first structure contains repeated sub-structures; 2) from pair to pair,
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the size varies from 14 to 20 components; 3) from pair to pair, the shape varies from

irregular, loop, to regular; 3) from pair to pair, the number of allowable states varies

from 7 to 29. The replicator factory successfully evolved an R-tree for each structure

to self replicate without debris within 2∼4 time steps, with the performance mea-

sures summarized in Table 4.5, and with the self-replication process of the first pair

of structures shown in Figure 4.14 as an example. In Table 4.5, the Shape column

indicates the type of shape each pair belongs to, and the ifRepStr indicates which

structure in each pair contains repeated sub-structures.

Figure 4.14: Self-replication of the first pair of replicators in Figure 4.13. The

upper-left seed has repeated sub-structures. The bottom left seed does not.

To visualize the influence of the presence of repeated sub structures on the

performance vector 〈stepDup, evoDup, evoClean, timeDup, timeClean, ruleDup,

ruleClean〉, I generated a rescaled parallel-coordinates-plot, Figure 4.15 (left), from
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Figure 4.15: Rescaled parallel-coordinates-plot and mean chart visualizing the im-

pact of the presence of repeated sub-structures. The presence of repeated sub-

structures consistently lowers each measured evolutionary and replication cost. The

“Yes” line in the chart represents those observations of which the value of ifRepStr

is Yes, and the “No” line in the chart represents those observations of which the

value of ifRepStr is No.
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the performance summary shown above, where the structures are grouped by the

value of ifRepStr, and the mean values of each performance measurement of each

group is rescaled on a scale of 0∼1. Here it can clearly be seen that on average the

presence of repeated sub-structures reduces the number of evolution generations,

computation time, and number of rules required to enable the structure to self

replicate, with or without the debris cleaned. From the derived correlation matrix

and a sample linear regression chart shown in Figure 4.15 (right), it can also be seen

that the YES value of ifRepStr has inverse influence on the performance measures.

4.3.6 Type of Symmetry

As shown above, repeated sub-structures tend to reduce the evolutionary cost

toward self-replication. Does structure symmetry have a similar influence? In 2-D

CA space, there are 4 types of symmetries: reflection, rotation, translation, and

glide-reflection. I have tested each of these types. For example, each structure in

Figure 4.16 has exactly the same sub-structures, size, and states, but with various

types of symmetry. Note that translation symmetry is actually the same as repeated

sub-structures. The replicator factory has successfully discovered R-trees for each of

these structures that enable them to self-duplicate without debris within 2∼3 time

steps. The self-replication of two of the structures, one of reflection and the other of

glide-reflection symmetry, is illustrated in Figure 4.17. The performance measures

of these replicators are summarized in Table 4.6. The TypeOfSymmetry column

indicates which symmetry each replicator belongs to.
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Figure 4.16: Sample seeds with reflection (top row), rotation (2nd row), translation

(3rd row), and glide-reflection (last row) symmetry. These structures otherwise have

exactly the same sub-structures, size, and number of allowable states.
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Figure 4.17: Self-replication of two of the structures in Figure 4.16. The structure on

the left has reflection symmetry while the one on right has glide-reflection symmetry.
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Figure 4.18: Rescaled parallel-coordinates-plot and mean charts visualizing the im-

pact of the presence of four types of symmetry. It seems that glide-reflection often

leads to much higher evolutionary cost than other types of symmetry.

112



Table 4.6: Performance measures of the replicators in Figure 4.16.

Again, a rescaled parallel-coordinates-plot is produced from the performance

measures, as shown in Figure 4.18. It suggests that on average, evolution and

replication cost with the presence of reflection or rotation symmetry is close, if

not lower, than with translation symmetry (i.e. repeated sub-structures). However,

glide-reflection symmetry, which is a combination of reflection and translation, seems

to potentially lead to higher cost. Also note that, the sub-structure in seed translate-

1 (third row, left in Figure 4.16) only translates horizontally, while in translate-2

(third row, right in Figure 4.16) the sub-structure translates both horizontally and

vertically, which has seemingly caused it to take more time steps and much higher

evolutionary cost to self replicate.

4.4 Conclusions

The S-tree/R-tree encoding and replicator factory makes it possible for a broad

range of replicating arbitrary structures to be artificially synthesized and self con-

structed in a systematic fashion. This represents a significant step forward in cre-

ating self-replicating structures because it qualitatively reduces the time cost of

replicator construction compared to past manual methods. Further, the replica-
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tors created in this fashion are qualitatively different from those generated in past

studies (universal constructors and loops). Families of replicators demonstrated in

this chapter have again suggested that these automatically discovered replicators

can duplicate themselves very quickly, in a fission-like or rotational process. Several

replicators manage to self-replicate within only one time step, representing a speed

which had never been pursued with past replicator models .

Given the large number of self replicating structures the replicator factory

has produced, I was able to study the properties of self-replicating systems using

GP as the initial configuration’s size, shape, symmetry, allowable states, and other

factors were systematically varied. It was found that the number of GP generations,

computation time, and number of rules required by an arbitrary structure to self-

replicate are positively correlated with the number of components, configuration

shape, and allowable states in the initial configuration, but inversely correlated

with the presence of repeated components or sub-structures, and seed symmetry.

These results suggest the properties of the resulting replicators can be predicted in

part a priori.

Even though the limited number of experiments and statistical results included

in this chapter have revealed many qualitative properties of self-replicating systems,

due to the nature of evolutionary computation, it is impossible for this study alone

to cover a sufficiently large number of experiments to permit a full spectrum of ob-

servations, hence the results presented here merit much further quantitive studies on

a broader spectrum of replicators, further leveraging the unprecedented productivity

of the replicator factory demonstrated in this chapter.
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Chapter 5

Multi-Objective Artificial Evolution toward Task-Performing

Self-Replication with Specified Seed Structures

5.1 Overview

As mentioned in Chapters 1 and 2, past studies in self-replication have mainly

involved two approaches, the theoretical study of universal constructors and the

manual design of simple self-replicating loops. These approaches represent two ex-

tremes of the replication complexity scale: on one end there are highly complex

but marginally realizable universal constructors, on the other end one finds sim-

ple structures that can do nothing but self-replication [65]. It has been realized

that a system capable of self replication but not much of anything else would not

be very useful. In 1995, Tempesti asked whether it is possible to add additional

computational capabilities to simple self replicating loops, hence attaining complex

machines that are nevertheless completely realizable [68]. He took the first step in

this direction and manually revised a self-replicating loop that resembles Langton’s

(see Section 2.2.2), but with added capability of attaching an executable program

that writes out “LSL”, the acronym of the Logic Systems Laboratory. Subsequent

studies have also shown that any program, written in a simple yet universal lan-

guage, can be embedded into self-replicating loops [53]. These works demonstrated
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that some simple manually-designed self-replicating loops are capable of carrying

out some limited “secondary” tasks. However, these past works implementing sec-

ondary capabilities all share the following limitations: 1) they are implemented on

specific, non-arbitrary, and manually-designed seed structures; 2) they depend on

manual, pre-written computer programs; and 3) they are implemented by embed-

ding the pre-written program into the specific seed structure, in other words, at the

cost of altering (and changing the complexity of) the seed structure itself.

Previous chapters have presented an approach to creating novel self-replicators,

with the use of GP to automatically program cellular automata with arbitrary, ini-

tially non-replicating structures. However, it is not clear whether these automati-

cally programed self-replicators are also capable of carrying out a simple secondary

task, such as writing out “UM”, the acronym for University of Maryland, and if so,

whether GP could be used to discover the needed rule sets. Assuming the answer

to be yes, there can be seen several possibilities for achieving this. First, after gen-

erating a self-replicator with the replicator factory as before, one could pre-write

and embed a manual computer program like others, in the generated self-replicating

structure. A second possibility is first to generate the self-replicating structure as

usual, then subsequently execute a separate GP evolution to automatically program

the cellular automata to add the secondary functionality on top of self-replication.

A third option is to automatically program the cellular automata toward both self-

replication and secondary task performance in parallel with a single GP evolution.

If we could implement the first option, it would prove that self-replicators

created by this third approach are at least as sound as the past manually-designed
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self-replicators, in terms of secondary task performance. On the other hand, if the

second option could be implemented, it would indicate not only the novel replicators

are as sound as before, but also this new approach has the advantage of overcoming

the past limitations listed above. In other words, it would show, given an arbitrary

known seed structure, the evolutionary approach can automatically program it to-

ward not only self-replication, but also carrying out a secondary task, without the

need for pre-writing and embedding manual programs or altering the complexity

of the seed structure itself. Also, this would extend such secondary capabilities to

arbitrary seed structures, contrast to the past when only specific seeds were used.

Finally, the third option, if possible, would be most ideal, because it would demon-

strate everything that the second option can prove, plus it is the least cost, as it

also eliminates the need of multiple GP-evolution runs. For this reason, this is the

option that this study has chosen to focus on, despite it being apparent that this

option would be most challenging at the same time.

Choosing the third option naturally leads to the introduction of multi-objective

issues into the replicator factory model. Self-replication and secondary task perfor-

mance are obviously incommensurable, often competing, objectives. As detailed in

Chapter 3, when the CA simulation starts at time t=0, in the entire CA space all

cells are quiescent except those active cells forming a single seed structure. When

the time proceeds, these active cells can reach more cells, but without exceeding light

speed, because of the well accepted CA rule that a quiescent cell fully surrounded

by other quiescent cells can only remain quiescent during the following time step.

This means with the limited simulation time steps, there is a limited active area
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for any activity to take place. It follows that self-replication and task performance

have to compete for this limited active space. If a duplicated seed structure al-

ready occupies an active cell, no other structure can occupy the same cell. On the

other hand, since state transitions starting from the same initial configuration are

governed by the same rules encoded in a single R-tree, the two objectives have to

compete for the rules in the R-tree too. For example, if an R-tree dedicates its rules

to producing a configuration in the active area to match a maximum number of seed

structures, it obviously gives less chance for distinct structures to occupy the same

cells, as required by a secondary task, such as writing out “UM”. In Chapter 3 both

the evolving R-tree and limited CA space could be dedicated to the optimization

of one single objective, i.e., self-replication, with the use of a single fitness function

concerning a single S-tree (produced from the seed to be duplicated). In contrast, if

we now generalize the realization of a secondary task such as the creation of an arbi-

trary pre-specified target structure, we would need to introduce a secondary fitness

function to measure the performance of the same R-tree in terms of creating the

target structure. This secondary fitness function will incorporate a different S-tree,

one representing the target structure, instead of the seed structure.

The introduction of distinct objectives and multiple fitness function compo-

nents brings a new level of complexity to the GP based replicator factory model.

What is being sought now is the automated programing of CA rules that produce

diversified global behaviors that have to compete and coordinate at the same time,

in a shared time and space. In Chapter 3, a single fitness function (see Section 3.4.4)

was developed to allow the population to approximate to a single global optimum.
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In contrast, now balancing between proximity and diversity becomes the key. To ad-

dress that, we have to extend the replicator factory model with diversity preserving

methods, to assign fitness measures based on multiple S-trees, to enable R-tree tour-

nament selection based on multiple fitness criteria, and to support multi-objective

R-tree elitism, as detailed in the following sections.

5.2 Problem Formulation

Let r represent an evolving R-tree, s represent an S-tree for a given structure,

p represent an infinite cellular space, and t represent a time step applying r on s in

p. As in Chapter 3, define function δ(r,s,p,t) to be, after applying r on s recursively

in p for t time steps, the number of instances of isolated structures found in p that

match s.

Further, let e represent an S-tree for a given “target structure”, i.e., a CA

configuration (contiguous non-quiescent cells) separate from a self-replicating struc-

ture. Define function η(r,s,e,p,t) to be, after applying r on s in p recursively for t

time steps, the number of instances of isolated structures found in p that match e.

Define a Boolean function βδ(r,s,p,t) as:

βδ(r, s, p, t) =



















1, if δ(r, s, p, t) ≥ 2

0, otherwise



















, (5.1)

and a second Boolean function βη(r,s,e,p,t) as follows:
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βη(r, s, e, p, t) =



















1, if η(r, s, e, p, t) ≥ 1

0, otherwise



















(5.2)

For a time step t′, if βδ(r, s, p, t
′) = 1 and βη(r, s, e, p, t

′) = 1, or,

(βδ(r, s, p, t
′)× βη(r, s, e, p, t

′)) = 1 (5.3)

t′ is said to be a sustained time step. In words, by the definition of βδ and βη above,

a sustained time step is a CA time whenever at least 2 instances of the isolated seed

structure and at least one instance of the isolated target structure are found in the

CA space.

With the definitions above, we can now formally state the problem as follows:

Given a cellular space p, a seed structure s, an extra structure e, we want to

find an R-tree r, which will satisfy the following goals:

1. There exists a time step Tj, for any positive integer j, so that

Tj
∑

t=1

δ(r, s, p, t) ≥ j (5.4)

Note this equation requires that, given enough time steps, we can obtain any

desirable number of replicated seed structures. Let’s call this the replicatability

objective.

2. There exists a time step Tk, for any positive integer k, so that

Tk
∑

t=1

η(r, s, e, p, t) ≥ k (5.5)
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Note this equation requires that, given enough time steps, we can also obtain

any desirable number of pre-specified target structures. Let’s call this the

taskability objective.

3. There exists a time step Ti, for any positive integer i, so that

Ti
∑

t=1

(βδ(r, s, p, t)× βη(r, s, e, p, t)) ≥ i (5.6)

Note this equation requires that, given enough time steps, we can find any

desirable number of sustained time steps. Let’s call this the sustainability

objective.

5.3 R-tree Fitness Assignment with Multiple S-trees

When the GP evolution starts, R-tree initialization and simulation are carried

out in exactly the same way as described in Sections 3.4.2 and 3.4.3 respectively.

Section 3.4.4 developed a fitness assignment method based on a single S-tree, where

probes exploiting the complete structural information encoded by the given S-tree

are tested at all possible locations with all possible orientations, so that the probes

producing the best results can be identified and accepted. The number of acceptable

probes at each time step is dynamically and adaptively determined in order to avoid

the over-probing problem. Most of this methodology can be adopted here, except

that we need to address the following differences:

1. Because our goal now is to program the CA to allow both the seed structure
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and target structure to occupy the active space at the same time, we will

need to perform two types of probing. One uses the seed S-tree to detect

configurations matching the seed structure, and the other uses the target S-

tree to detect configurations that match the target structure. The former is

hereafter referred as seed probing, and the latter as target probing.

2. Over-probing can now happen not only by accepting too many seed probes,

but also by accepting too many target probes, because both appear in same

CA space. They are referred as seed over-probing and target over-probing

hereafter.

3. A new problem, which is hereafter referred as speciation, can now happen if

a relatively high number of accepted seed probes dominate the limited space

and prevent target structure from being formed, or vice versa.

4. The order of seed probing vs. target probing becomes important, because

any accepted probes will mark the traversed active cells “UNAVAILABLE” to

subsequent probes, and thus potentially impact their results.

5.3.1 Determining Acceptable Seed Probes and Target Probes

In order to avoid seed over-probing, target over-probing, and speciation prob-

lems, we can modify Strategy 3.1 described in Section 3.4.4.2 as follows:

Strategy 5.1: An evolving R-tree, r, shall start with an initial goal that

probes and finds the starting sustained time step t̃, when βδ(r, s, p, t̃)×βη(r, s, e, p, t̃)) >

1, and that only when that R-tree succeeds in finding t̃ can it start to become more
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aggressive in attempting to accept more seed or target probes. The better it per-

forms in previous evaluation time steps, the faster it can accept more seed and target

probes and produce more sustained time steps.

This strategy says that an evolving R-tree can start with a basic goal, pro-

graming itself to find a minimum CA space which contains 2 isolated seed structures

and 1 target structure. Until this is achieved, it can accept neither more seed probes

nor target probes. On the other hand, once the current goal is achieved, it can grad-

ually raise its goal by adaptively adjusting the number of acceptable seed probes

(πt
δ) and target probes (πt

θ) at a coordinated and controlled pace. This process can

be illustrated by the following pseudo-code:

for R-tree r, seed S-tree s, target S-tree e, and cellular space p {

π0

δ = 2;

π0

η = 1;

at each time step t > 0 {

if (δ(r, s, p, t− 1) = πt−1

δ and η(r, s, e, p, t− 1) = πt−1

η ) {

πt
δ = πt−1

δ + 1;

πt
η = πt−1

η + 1;

}

}

This pseudo-code says that at t=0, the number of acceptable seed probes

and target probes is 2 and 1 respectively. At any subsequent time step, if each of

these accepted probes finds a perfectly matching structure (e.g., initially, finding 2

isolated seed structures and 1 isolated target structure), the number of acceptable

seed probes and target probes can each be increased by 1. Otherwise, they remain
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the same. Whenever these numbers are adjusted, the new numbers have to be

realized, before they can be adjusted again.

Typically, during the early phase of evolution, no R-tree can make any sus-

tained time steps, so no R-tree can raise its goal at any time step. Later, once an

R-tree succeeds in making the first sustained time step (i.e., making two perfect

isolated seed structure and one isolated target structure), it is allowed to accept 3

seed probes and 2 target probes at the subsequent time step. Then, it can raise

these numbers again only when it achieves the said numbers of structures.

5.3.2 Interlaced Acceptance of Seed Probes and Target Probes

As pointed out earlier, the order of seed probing vs. target probing be-

comes important, because any accepted probes will mark the traversed active cells

“UNAVAILABLE” to subsequent probes, and thus potentially impact their results.

Based on last section, at time step t, we are allowed to accept πt
δ (such as 2) seed

probes and πt
η (such as 1) target probes. But how shall we do that? First perform

seed probing like in Section 3.4.4.1 and accept the allowed number of best seed

probes before performing the target probing, or vice versa, or intermix in certain

ways? Either way will obviously introduce human bias into the evolution. To avoid

such bias and achieve optimal result, the following strategy is added:

Strategy 5.2: Seed probing and target probing shall be conducted and ac-

cepted in an intermixed and interlaced fashion, in an order which is automatically,

adaptively, and dynamically determined, so that a more promising probe, regardless
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of being a seed probe or target probe, can always be accepted before a less promis-

ing one, given the fixed number of acceptable seed probes and target probes of a

considered R-tree at a given time step.

This strategy says, the order of interlaced probing and probe acceptance can

not be arbitrary, and shall not be pre-determined by a person. They shall be con-

ducted in an adaptive order so that a less promising probe can never be accepted

in favor of a more promising one, regardless of its type. The following pseudo-code

implements such an interlaced probing algorithm:

SeedProbesToBeAccepted = πt
δ;

TargetProbesToBeAccepted = πt
η;

while (SeedProbesToBeAccepted > 0 or TargetProbesToBeAccepted > 0) {

// if there are more seed or target probes to be accepted,

bestProbe = null; bestResult = 0.0;

for each cell, c ∈ p {

if c is not active, go to next cell; // skip

if c is marked unavailable, go to next cell; // skip

// Otherwise, conduct a probe from current cell, with the seed S-tree (4 phases)

currProbe = probe(s, c);

// get the scalar measure for the current probe

currResult = currProbe.result();

if(currResult ≥ 1.0) {

// perfect match, accept immediately as a seed probe

bestProbe = currProbe; // store the current one

break; // no need to probe other cells, exit for

}

// did not find a perfect seed probe from this cell, let’s try to probe it as
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// a target structure instead, and compare which yields better matching

// so, conduct a probe from current cell, with the target S-tree (4 phases)

targetCurrProbe = probe(e, c);

// get the scalar measure for the current probe

targetCurrResult = targetCurrProbe.result();

if(targetCurrResult ≥ 1.0) {

// perfect match, accept immediately as a target probe

bestProbe = targetCurrProbe; // store the current one

break; // no need to probe other cells, exit for

}

// at this point, did not find a perfect seed probe nor a target probe from this cell

// so determine if keep it as a best seed probe or target probe, or throw away:

if(currResult > bestProbe.result()) {

// if found as a better seed probe, store

bestProbe = currProbe; // store the current one

probeAcceptType = seed; // track if it wins as a seed probe or target probe

}

if(targetCurrResult > bestProbe.result()) {

// if found as a better target probe, store

bestProbe = currProbe; // store the current one

probeAcceptType = target; // track if it wins as a seed probe or target probe

}

} // end of for

// at this point all cells and all orientations have been probed,

// best probe identified, either as a seed or a target probe, now accept it.

if(probeAcceptType == seed) { //accept as a best seed probe

bestProbe.accept(s); // this also marks the traversed cells as unavailable

126



//deduct the number of acceptable seed probes

SeedProbesToBeAccepted = SeedProbesToBeAccepted - 1;

} else if (probeAcceptType == target) { //accept as a best target probe

bestProbe.accept(e); // this also marks the traversed cells as unavailable

//deduct the number of acceptable target probes

TargetProbesToBeAccepted = TargetProbesToBeAccepted - 1;

}

// go for next acceptable seed or target probe, if still any

} //end of while

This pseudo-code suggests probing each location and orientation both as a seed

probe and target probe. If one probe results in a scalar measure of 1.0, immediately

accept that probe (also marking the traversed cells as “UNAVAILABLE”), because

obviously no other future probes (seed or target) can yield a better matching. On

the other hand, if a probe results in a partial matching (a scalar measure less than

1.0), then check if the current probe is better than previous ones. If not, throw it

away. If yes, store the current probe as the current best probe. After each available

cell and orientation has been probed, accept the stored best probe, either as a seed

probe or target probe, and also mark the traversed active cells “UNAVAILABLE”

to subsequent probings. Repeat this process until there are no more acceptable seed

probes or target probes. Note that, as soon as one considers a new R-tree, or a

new evaluation time step, this whole process starts over with all of the marked cells

un-marked and available again.
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5.3.3 Fitness Function for Replicatability

Section 5.3.1 describes how the number of acceptable seed and target probes

can be adaptively determined for each R-tree at each time step, and Section 5.3.2

describes how the acceptable seed and target probes can be identified and accepted

adaptively in an interlaced fashion, in order to avoid over-probing, speciation, and

human bias. Like in Section 3.4.4.1, let r represent an simulated (evaluated) R-tree, s

represent an S-tree for a given seed structure, p represent an infinite cellular space, c̄

∈ p represent a root cell being probed, h ∈ (1,2,3,4) represent the phase of the current

probe, and t represent a time step applying r on s in p. Define function κδ(r,s,p,t,c̄,h)

to be, after applying r on s in p recursively for t time steps, then probing s from

c̄ in phase h, the number of traversed cells (those not marked “UNAVAILABLE”)

which match the state of the corresponding node (active or quiescent) as guided by

s, and let p̆i represent the set of cells marked as “UNAVAILABLE” by a previously

accepted probe i, we can then write the replicatability fitness function as follows:

fδ(r) =
∑

t∈T v

(

n=πt
δ
(r)

∑

n=1

( max
c∈p, c¬∈

⋃m=n−1

m=1
p̆m

( max
h∈(1,2,3,4)

(
κδ(r, s, p, t, c, h)

λ(s)
)))). (5.7)

This equation says that the replicatability fitness of an evolving R-tree is

the accumulated result of every accepted seed probe at every evaluation time step.

Every accepted seed probe finds a best probe among tested seed probes at every

location and every orientation, given the remaining cells that are not marked as

“UNAVAILABLE”. Obviously an R-tree can now gain a higher replicatability fitness

value by either earning a higher number of accepted seed probes, or better results
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produced from individual accepted seed probes, or both.

5.3.4 Fitness Function for Taskability

In addition to all of the definitions in Section 5.3.3 above, let e represent an

S-tree for a given target structure, and define function κη(r,s,p,t,c̄,h,e) to be, after

applying r on s in p recursively for t time steps, then probing e from c̄ in phase h,

the number of traversed cells (those not marked “UNAVAILABLE”) which match

the state of the corresponding node (active or quiescent) as guided by e. Then based

on accepted target probes, we can write the taskability fitness function as follows:

fη(r) =
∑

t∈T v

(

n=πt
η(r)

∑

n=1

( max
c∈p, c¬∈

⋃m=n−1

m=1
p̆m

( max
h∈(1,2,3,4)

(
κη(r, s, p, t, c, h, e)

λ(e)
)))). (5.8)

This equation says that the taskability fitness of an evolving R-tree is the

accumulated result of every accepted target probe at every evaluation time step.

Every accepted target probe finds a best probe among tested target probes at every

location and every orientation, given the remaining cells that are not marked as

“UNAVAILABLE”. Obviously an R-tree can now gain a higher taskability fitness

value by either earning a higher number of accepted target probes, or better results

produced from individual accepted target probes, or both.

5.3.5 Fitness Function for Sustainability

As pointed out in Section 5.2, a sustained time step is an evaluation time

step t̃ ∈ T v, at which at least two perfectly matching seed probes and at least 1
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perfectly matching target probe are accepted, i.e., βδ(r, s, p, t̃)× βη(r, s, e, p, t̃)) > 1.

As shown in Section 5.3.2, the intermixed probing algorithm provides the capability

for identifying such perfectly matching seed or target probes during the probing and

fitness evaluation process. Hence, we can easily track the number of such accepted

and perfectly matching probes at each evaluation time step, for a given R-tree, r.

Accordingly, we can easily derive the value of fθ, which can be denoted as:

fθ(r) =
∑

t∈T v

(βδ(r, s, p, t)× βη(r, s, e, p, t)) (5.9)

This equation says, the sustainability fitness of an evolving R-tree is the accu-

mulated number of sustained time steps out of the total number of evaluated time

steps, which (the latter) is common among all R-trees in a given GP generation.

5.4 R-tree Tournament Selection Based on Multiple Criteria

An essential idea behind the GP paradigm is to let better R-trees have a

better chance to be selected into the mating pool and reproduce. In Chapter 3, the

meaning of “better” was un-ambiguous, because every R-tree can be fully ranked

based on a single fitness measure. In contrast, now each R-tree receives three fitness

measures, replicatability fδ, taskability fη, and sustainability fθ, as shown above.

Since now different fitness measures can rank the R-trees in different orders, we need

to re-define the meaning of “better”. An R-tree is said to be “better” than another

R-tree if it is not worse in any objective and at least better in one objective. In such

a case a superior R-tree r̄∗ is also said to dominate an inferior one (r̄), i.e., formally,
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an R-tree r̄∗ ∈ R is said to dominate another R-tree r̄ ∈ R, denoted as r̄∗ ≻ r̄,

if and only if:

∀i ∈ {δ, η, θ} : (fi(r̄
∗) ≥ fi(r̄)) (5.10)

and,

∃i ∈ {δ, η, θ} : fi(r̄
∗) > fi(r̄) (5.11)

Likewise, an R-tree is said to be “worse” than another R-tree if it is not better

in any objective and at least worse in one objective. In such a case the inferior

R-tree (r̄∗) is also said to be dominated by the superior one (r̄), denoted as r̄∗ ≺ r̄.

If an R-tree is not better, nor worse, than another R-tree, such R-trees are said to

be “indifferent”. This is shown in Figure 5.1.

Further, an R-tree r̄∗ ∈ R is said to be non-dominated, if and only if it is not

dominated by any other R-tree in the search space, i.e.,

¬∃r̄ ∈ R : r̄ ≻ r̄∗ (5.12)

As shown in Figure 5.1, there can be multiple instances of non-dominated R-

trees. Each of these non-dominated R-trees is different from the others, and each

represents a best trade-off among replicatability, taskability, and sustainability.
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Figure 5.1: With respect to the current R-tree shown in yellow, R-trees in the brown

area dominate the current R-tree, the ones in the gray area are dominated by the

current R-tree, and the one in white areas are indifferent.
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5.4.1 Domination Pressure

Using the definition above, given the multiple fitness criteria, an R-tree can

be either “better”, “worse”, or “indifferent” than another R-tree. However, we still

need to derive a scalar value from these domination relationships so that we can use

this scalar value to fully rank the population and facilitate the tournament selection

algorithm (detailed in Section 3.4.6). The concept of domination pressure, denoted

as φ(r̄), is thus introduced here. The more an R-tree is dominated by other R-

trees, the higher domination pressure it receives, and hence, the less chance it has

to reproduce, and vice versa. φ(r̄) is defined as follows:

φ(r̄) =
∑

r̄i∈R, r̄i≻r̄

τ(r̄i), (5.13)

where,

τ(r̄) = | {r̄j | r̄j ∈ R ∧ r̄ ≻ r̄j} | (5.14)

Therefore, τ(r̄) represents the total number of other R-trees that R-tree r̄ dominates

in the population, and φ(r̄) represents the sum of τ(r̄∗) of all R-trees r̄∗ that dom-

inates r̄. By this definition, a domination pressure zero (φ(r̄) = 0) means r̄ is not

dominated by any other R-trees. On the other hand, a high domination pressure

means an R-tree is being dominated by many other R-trees (which in turn, dominate

many other R-trees). This allows a global criteria to be used in the selection opera-

tor without using an aggregation of the absolute values of any individual objective

measures.
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5.4.2 Distribution Pressure

Domination pressure, as explained above, can be used to drive the R-tree evo-

lution toward good trade-offs among replicatability, taskability, and sustainability.

However, as pointed out in the overview section of this chapter, it is critical to

keep a good balance between proximity and diversity. Domination pressure helps to

address proximity, but not diversity. In order to promote R-trees with greater diver-

sity to have a better chance to reproduce, a second pressure is hereby introduced,

namely the distribution pressure, as follows.

The idea is to impede R-trees that sample points close to each other into

the mating pool at the same time, and hence effectively promote R-trees that are

more distributed apart to enter the mating pool. The higher density an R-tree

is surrounded by neighboring peers, the less that R-tree shall be selected into the

mating pool, and vice versa. Thus, the distribution pressure can be defined as

inversely proportional to the density of neighboring peers, which can be estimated

with distance to the k-th closest neighbor of each R-tree. This can be done as follows.

First, the distance between two R-trees, r̄ and r̄∗, can be obtained by calculating

the Euclidean metric of the fitness vector:

σ(r̄, r̄∗) =
√

(fδ(r̄∗)− fδ(r̄))2 + (fη(r̄∗)− fη(r̄))2 + (fθ(r̄∗)− fθ(r̄))2 (5.15)

Let the population be L. For a candidate R-tree, r̄ ∈ L, if we calculate its

distance to every other R-tree in L, we get a list of size (|L| − 1). Then sort the list.

The k-th value in the sorted list provides a scalar density estimate (αk
r̄ ) of R-tree r̄,
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where normally K =
√

|L|. The distribution pressure ψ(r̄) of R-tree r̄ can then be

defined as:

ψ(r̄) =
a1

αk
r̄ + b1

, (5.16)

where a1 and b1 are configurable constants.

It shall be pointed out that the way the domination pressure and distribution

pressure for the R-tree population are calculated here is very much influenced by

the fine grained fitness assignment methods used in SPEA2 [84], an existing multi-

objective evolutionary algorithm, reviewed in Chapter 2.

5.4.3 Parsimony Pressure

The introduction of domination pressure and distribution pressure in the tour-

nament selection helps to keep a good balance between proximity and diversity.

However, for an R-tree to attempt to minimize the domination and distribution

pressures at the same time, it can potentially expand itself easily and become very

large. Large R-trees tend to consume more computation to evolve, slow down the

evolution speed, and reduce the overall performance. Hence, a third controlling

pressure, namely, the parsimony pressure, ω(r̄), is introduced in order to keep each

R-tree as parsimonious as possible. The parsimony pressure is defined as positively

proportional to the size of an R-tree r̄ (number of nodes in the tree, µ(r̄)):

ω(r̄) = a2µ(r̄) + b2, (5.17)
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where a2 and b2 are configurable constants.

In sum, we now can define an aggregated pressure, ̺(r̄),

̺(r̄) = ω(r̄) + ψ(r̄) + φ(r̄), (5.18)

so that the tournament selection can be conducted exactly like before (Section 3.4.6),

based on ̺(r̄), and hence drive the GP evolution toward diversified optimal trade-

offs among replicatability, taskability, and sustainability, while keeping the R-trees

as parsimonious as possible.

5.5 Multi-Objective R-tree Elitism

After the multi-objective fitness measurement and diversity preserving tour-

nament selection described above, R-trees can reproduce with the same genetic

operators as before, such as crossover and mutation (Section 3.4.7). As a result, it

is expected that the offspring R-trees are also diversified. This means we might find

a set of R-trees that are not dominated by any other R-trees in the new candidate

population. Each of these R-trees represents a currently found best trade-off among

replicatability, taskability, and sustainability, and therefore none shall be discarded

in favor of another. In Section 3.4.8, we described the R-tree elitism built in the

replicator factory, such that the very best or “elite” R-tree can not be expelled from

the population in favor of worse individuals. Because now each R-tree in the non-

dominated set can be qualified as an “elite” R-tree, we need to enhance the elitism

implementation to accommodate the need to prevent each of these elite R-trees
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from being lost. A common way to deal with this problem in other multi-objective

evolution is to maintain a secondary population, the so-called archive, which acts

like as an external storage separate from the evolving population [107]. Zitzler and

many others have reported that including the members in the archive population in

the selection process can significantly improve evolutionary multi-objective search

[83]. Consequently, in this study I decided to adopt such a method and introduce

a second population into the multi-objective replicator factory, to which the non-

dominated R-trees in the original population are copied at each generation. The

new population is referred to as the elite population, the original population the

optimization population, and the union of both the union population.

5.6 The Resulting Extended Multi-Objective Replicator Factory Model

A schematic view of the extended multi-objective replicator factory model is

illustrated in Figure 5.2. In the beginning, the optimization R-tree population is

randomly initialized and the elite population is empty. Then, each R-tree in the

optimization population is simulated in the given cellular space within the eval-

uation time steps, and each individual objective fitness measures is derived from

the simulation results as described in Section 5.3.3, 5.3.4, and 5.3.5 respectively.

Next, based on these multi-objective fitness measures, the domination relationship

between each pairs of R-trees is determined. During the first generation, this is

done among the R-trees in the optimization population only, not the empty elite

population. In subsequent generations, however, it is done among all R-trees in the
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Figure 5.2: A schematic view of the multi-objective replicator factory model.
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union population. Then, based on the domination relationship derived from the

multiple fitness measures, the domination pressure for each R-tree is calculated in

the scope of the union population, according to Section 5.4.1 above. This means,

for example, that an R-tree with zero domination pressure is not dominated by any

R-tree in the optimization population as well as in the elite population. Likewise,

the distribution pressure and parsimony pressure of each R-tree in the scope of the

union population are updated, based on the details given in Section 5.4.2 and 5.4.3

respectively.

As shown in Figure 5.2, based on the updated three kinds of pressures, two

forms of selection operations are then performed on top of the union population.

The first is the mating selection which picks R-trees from the union population

using the tournament selection algorithm to form a mating pool. In this tourna-

ment selection algorithm (Section 5.4), the probability of an R-tree being picked

is inversely proportional to the total pressure that it currently faces, i.e., a sum of

its domination pressure, distribution pressure, and parsimony pressure. As a re-

sult, the mating pool tends to pick parents from the union population, which are

more promising to generate better trade-offs among replicatability, taskability, and

sustainability, while keeping the R-trees as diversified and parsimonious as possi-

ble. Once the mating pool is formed, the same R-tree genetic operators established

in the original replicator factory model can be used to produce a new generation

of the optimization R-tree population. This includes the probability based R-tree

crossover and mutation operations. Also shown in Figure 5.2, the second kind of

selection operation is the elitism selection, which simply copies the R-trees that have
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zero domination pressure into the elite population.

Once both of the optimization and elite population are updated as described

above, the multi-objective replicator factory enters a new generation, and repeats

the same process shown above, until either the maximum number of generations

has reached, or the user decides the elite population has reached one or more R-

trees that provide satisfactory results in terms of replicatability, taskability, and

sustainability.

5.7 Task-Performing Self-Replication: Experimental Results

The extended multi-objective replicator factory model described in the pre-

vious sections has been implemented with C++, and executed on an IBM T42

ThinkPad laptop. Various combinations of seed structures, target structures, and

other configuration items have been tested. I have found that the new model can in-

deed successfully synthesize diversified R-trees that enable not only self-replication,

but also performing simple secondary tasks, such as writing out “UM”, the acronym

for University of Maryland. Both the seed structure and the target structure to be

“manufactured”’ by the seed structure can be fairly arbitrary, with the complexity

of the extra structure being allowed to significantly exceed that of the seed structure

itself. Nevertheless, both self-replication and target structure construction can carry

on continuously and sustainably, i.e., any number of duplicated seed structures or

target structures can be obtained given enough space and time. The following are

some examples of such experimental results. The following parameters were used:
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Elite Population size = 10, Optimization Population Size = 90, R-tree Mutation

Probability = 0.42, R-tree Crossover Probability = 0.88, R-tree GP Tournament

Size = 2, and Max Hesitation = 200.

Figure 5.3: Secondary task performance, example 5.1: (a)the pre-specified target

structure, which is a 6-component 29-state weak-rotational-symmetric structure,

(b)the pre-specified seed structure, which is a 4-component 29-state weak-rotational-

symmetric structure. For illustrative purpose, the seed structure is chosen to spell

the English word “seed”, and the target structure is likewise chosen to spell the

English word “target”. An R-tree is sought to program the seed structure not only

to self-duplicate, but also to perform a secondary task, i.e., “manufacture” the target

structure as it replicates.

The first example presents a pre-specified seed structure shown in Figure

5.3(b), which is a 4-component (2x2) 29-state weak-rotational-symmetric struc-

ture, and also a pre-specified target structure shown in Figure 5.3(a), which is a

6-component (3x2) 29-state weak-rotational-symmetric structure. Each component

in the seed and target structure is oriented, and each cell in the cellular space can

be either the quiescent state, or one of the 7 oriented components (hence totally 7

x 4 + 1 = 29 states/cell). Note that for illustrative purpose, the seed structure is
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chosen to spell the English word “seed”, and the target structure is likewise chosen

to spell the English word “target”. Also note that the “target” is more complex

than the “seed”. An R-tree is sought by the multi-objective replicator factory to

program the given seed structure to self-replicate, and perform the given secondary

task at the same time.

Figure 5.4: Secondary task performance, example 5.1-1: executing first automati-

cally programmed R-tree against the given seed structure from t=0 to t=6. Color

code convention: non-isolated seed structure marked in yellow, non-isolated target

structure in cyan, isolated seed structure in blue, and isolated target structure in

lime. The cells covered by the initial seed structure are also always highlighted by

red edges at any time step to provide a location correlation.
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Figure 5.5: Continuation of Figure 5.4 from t=11 to t=12.
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Figure 5.6: Continuation of Figure 5.5 from t=13 to t=14.
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The execution results of two of the automatically programmed diversified R-

trees with the given target and seed structures are shown from Figure 5.4 to 5.6

and from Figure 5.7 to 5.11 respectively. To make it easy to visualize the produced

structures at each evaluation time step, color codes are used in these figures. A

non-isolated seed structure is marked in yellow, non-isolated target structure in

cyan, isolated seed structure in blue, and isolated target structure in lime. Also, to

provide location correlation, the cells covered by the initial seed structure are always

highlighted by red edges at any time step. The same visualization convention is used

hereafter. For example, in Figure 5.4, the initial configuration at t=0 is shown with

the seed cells highlighted with red edges. These highlighted cells are referred as seed

cells hereafter.

From example 5.1-1 (Figure 5.4), we can observe the following: 1) the con-

figuration expands from the initial seed cells at light speed simultaneously to the

left, top, and bottom, but not to the right. Consequently, it can be seen at t=14

(Figure 5.6, right) there are precisely 14 rows above the seed cells, 14 rows below

the seed cells, and 14 columns to the left of the seed cells, that contain active cells.

2) As the expansion occurs, it forms a growing vertical “fission-wall” on the left

edge, which repeatedly splits into seed replica, and deposits target structures to

the right. These target structures, once created, never dissolve in pieces, but keep

rotating 90o at each time step. For example, the first target structure deposited at

t=2 (Figure 5.4), after rotating 4 times, or 360o, resumes exactly the same location

and orientation at t=6 (Figure 5.4). Note the same structure can still be found at

t=14 (Figure 5.6) at the same location and orientation. Other target structures,
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Figure 5.7: Secondary task performance, example 5.1-2: executing second automat-

ically programmed R-tree against the given seed structure from t=0 to t=6. Color

code convention: non-isolated seed structure marked in yellow, non-isolated target

structure in cyan, isolated seed structure in blue, and isolated target structure in

lime. The cells covered by the initial seed structure are also always highlighted by

red edges at any time step to provide a location correlation.
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Figure 5.8: Continuation of Figure 5.7 from t=7 to t=8.
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Figure 5.9: Continuation of Figure 5.8 at t=12.
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Figure 5.10: Continuation of Figure 5.9 at t=13.
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Figure 5.11: Continuation of Figure 5.10 at t=14.
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once born and deposited in an expanding triangle area, persist exactly in the same

fashion. 3)By the time of t=14 (Figure 5.6), the fission-wall deposits 8 seed replicas

on the left edge and 9 target structures in the triangle behind the edge.

In example 5.1-2 (Figure 5.7), the second R-tree discovered a very different

strategy to perform the same task. As illustrated in Figure 5.7, at t=1, the seed

shown at t=0 transforms into three contiguous structures (2 seeds + 1 target),

almost identical to t=1 in example 5.1-1 above (Figure 5.4). However, at t=2,

something different is exhibited. Even though the contiguous structures also split

into three isolated structures, but in contrast to first R-tree, this time the target

structure just translates to the right, without rotating itself. From this point of

time on, the strategy which this R-tree takes is very simple. It does nothing else

but one thing: let every new seed replica attempt to repeat exactly the same action

that the initial seed did at t=1 and t=2. For example, each of the 2 seed replicas

found at t=2 transforms into exactly the same sets of contiguous structures at t=3.

Note two things here. First, since the seed replica on the top at t=2 is in a rotated

orientation, the corresponding set of contiguous structures it forms on the top at

t=3 is also rotated. Secondly, when the second seed replica at t=2 transforms

into second set of contiguous structures at t=3, it collides with the existing target

structure and causes the target structure to fall into pieces. Likewise, the first set of

contiguous structures at t=3 (on the top) splits into three isolated structures, exactly

the same action and result shown at t=2 (rotated). The second set of contiguous

structures at t=3 (at the bottom) also attempts to repeat the same action, but

there is not enough room and one seed replica (at the upper position) collides with
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the target structure from the other set of contiguous structures and got nullified,

so only 2 isolated structures are resulted from the second set. Next, each of the

three seed replicas found at t=4 repeats exactly the same action, and results in

the isolated structures shown at t=6. Note that at t=6 the lower part is identical

to t=2 and the upper part is identical to t=4 (rotated). This is because the seed

replica at left bottom at t=3 is able to repeat exactly the same action and result

as at t=1 and t2, while the 2 seed replicas on the top at t=4 repeats exactly the

same action and result as at t=3 and t=4. This pattern repeats recursively, again

and again. At t=12 (Figure 5.9), every seed replica still simply repeats exactly the

same action as shown at t=13 (Figure 5.10) and t=14 (Figure 5.11). Comparing the

two discovered strategies found by the single GP run, each has its own strength and

weakness. With first R-tree collision only happens between seed replica themselves.

Each target structure avoids collision and manages to persist by rotating itself and

quickly getting away from the “mother” seed as soon as it is born. With R-tree 2,

target structures do not rotate, collision can happen between seed replicas and target

structures, and possibly cause some target structure to fall into pieces. However, it

turns out this strategy is more productive, due to the fact that, by allowing target

structures to also share the risk of collision, more seed replicas themselves managed

to survive, and each survived seed replica, in turn, recursively splits into more target

structures. Comparing the results at t=14 (see Figure 5.6 and 5.11), R-tree 1 only

produces 8 seed replicas and 9 target structures, while R-tree 2 has produced 17

seed replicas and 13 target structures, given the same number of time steps. These

two strategies can be said indifferent, as none can be said better than the other. In
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real application, if persistence is the priority, than R-tree 1 is choice. On the other

hand, if productivity is the priority, R-tree 2 would win.

Figure 5.12: Secondary task performance, example 5.2: (a)the target structure, pre-

specified as a 8-component 7-state weak-rotational-symmetric structure which writes

out an English letter “U”; (b)the seed structure, pre-specified as a 3-component 7-

state weak-rotational-symmetric structure. An R-tree is sought to program the

seed structure not only to self-duplicate, but also to perform a secondary task, i.e.,

“manufacture” the target structure as it replicates.

Next, a second example experiment is presented with a different seed and

target structures. The target structure is pre-specified as a 8-component 7-state

weak-rotational-symmetric structure which writes out an English letter “U” (Fig-

ure 5.12(a)), the seed structure is pre-specified as a 3-component 7-state weak-

rotational-symmetric structure (Figure 5.12(b)). One of the resulted R-trees is

picked from the elite population after re-configuring the multi-objective replica-

tor factory model with the new seed and target structures and running the second

experiment. The execution result from T=0 to T=14 is presented from Figure 5.13

to Figure 5.17. Here, a clear pattern can also be observed: 1) the configuration
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Figure 5.13: Secondary task performance, example 5.2: executing an automatically

programmed R-tree against the given seed structure from t=0 to t=5. Color code

convention: non-isolated seed structure marked in yellow, non-isolated target struc-

ture in cyan, isolated seed structure in blue, and isolated target structure in lime.

The cells covered by the initial seed structure are also always highlighted by red

edges at any time step to provide a location correlation.
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Figure 5.14: Continuation of Figure 5.13 at t=6 and t=8.

expands from the initial seed cells toward all 4 directions (up, right, down, left) at

light speed; 2) first seed replica appears at t=1 (Figure 5.13) at left bottom cor-

ner, then persists, keeps moving away from the seed cells subsequently; 3) second

seed replica appears at t=2 (Figure 5.13), right above the first one, and then keeps

moving apart in opposite directions, while also keeps moving away from seed cells;

4)the first target structure is deposited at the right bottom corner at t=4 (Figure

5.13), then persists, and keeps moving at exactly the same pace with the first seed

replica. Note that the relative position between the first seed replica and first tar-

get structure (as well as the components between them) never changes after t=4

(Figure 5.13); and 5)additional target structures are deposited after the first one,

very regularly lined behind each other, and then keep moving exactly at the same

pace, all led by the very first seed replica; and 5)by the time of t=14 (Figure 5.17),
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Figure 5.15: Continuation of Figure 5.14 at t=10.
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Figure 5.16: Continuation of Figure 5.15 at=12.
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Figure 5.17: Continuation of Figure 5.16 at t=14.
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6 such target structures are “manufactured”’, seemingly lining up in a horizontal

“assemble line” at the bottom.

Figure 5.18: Secondary task performance, example 5.3: (a)the target structure,

pre-specified as a 18-component 7-state weak-rotational-symmetric structure which

writes out “UM”, the acronym for University of Maryland; (b)the seed structure,

pre-specified as a 3-component 7-state weak-rotational-symmetric structure, same

seed used in example 5.2. An R-tree is sought to program the seed structure not

only to self-duplicate, but also to perform a secondary task, i.e., “manufacture” this

bigger, more complicated target structure.

For comparison, a third sample experiment is presented here, in which the

same seed structure is used as in the second example (Figure 5.18(b)), but a bigger

and more complexed target structured is specified. As shown in Figure 5.18(a), the

new target structure is a 18-component 7-state weak-rotational-symmetric structure

which writes out “UM”, the acronym for University of Maryland. An R-tree auto-

matically programed by the multi-objective replicator factory is executed with the

results illustrated from Figure 5.19 to Figure 5.24. It indicates that the same seed

structure can be programmed to write out not only “U”, but also “UM”, in a clear

and consistent pattern: 1) the configuration also expands from the initial seed cells

159



Figure 5.19: Secondary task performance, example 5.3: executing an automatically

programmed R-tree against the given seed structure from t=0 to t=5. Color code

convention: non-isolated seed structure marked in yellow, non-isolated target struc-

ture in cyan, isolated seed structure in blue, and isolated target structure in lime.

The cells covered by the initial seed structure are also always highlighted by red

edges at any time step to provide a location correlation.
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Figure 5.20: Continuation of Figure 5.19 at t=6 and t=7.

Figure 5.21: Continuation of Figure 5.20 at t=8 and t=9.
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Figure 5.22: Continuation of Figure 5.21 at t=10.
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Figure 5.23: Continuation of Figure 5.22 at t=12.
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Figure 5.24: Continuation of Figure 5.23 at t=14.
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at light speed in all 4 directions; 2) the seed structure keeps replicating, mainly on

the left edge (from t=2 (Figure 5.18), 2 on the edge, to t=14 (Figure 5.24), 8 on the

edge); 3) the first target structure takes more steps to appear than in the example

5.1 and 5.2 above, due to its increased size; 4) however, once the target structures

are formed, they also regularly and persistently line up at the bottom, translating

to the left as led the first seed replica.

5.8 Conclusions

Past studies of self-replication in CA models have mainly involved two ap-

proaches, the theoretical study of universal constructors which are highly complex

but marginally realizable, and the manual design of simple self-replicating loops,

which can do nothing but self-replicate [65]. Tempesti took the first step and showed

that it is possible to add additional computational capabilities to the simple self

replicating loops, such as writing out “LSL”, the acronym of Logic Systems Labora-

tory, and hence attaining complex machines that are nevertheless completely real-

izable [68]. Subsequent studies have also shown a simple yet universal language can

be embedded into self-replicating loops [53]. These works demonstrated that some

simple manually-designed self-replicating loops are capable of carrying out some lim-

ited “secondary” tasks, but such capabilities are limited by specific, non-arbitrary,

and manually-designed seed structures, the need for writing manual, pre-written

computer programs, and the cost of altering (and changing the complexity of) the

seed structure itself by embedding the pre-written program into the specific seed
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structure. A third approach, as established in this study in previous chapters, can

create novel self-replicators, with the use of GP to automatically program the cel-

lular automata with arbitrary, initially non-replicating structures. As this chapter

further shows, these automatically programed, arbitrary self-replicators are at least

as sound as the manually designed self-replicating loops, in terms of the capability

of carrying out a simple secondary task, such as writing out “UM”, the acronym for

University of Maryland. Further, the approach demonstrated here represents a big

step forward from the past, because of the following advantages: 1) it generalizes

such a secondary computability to arbitrary self-replicating structures, in contrast

to the specific manual loops used in the past; 2) it automatically programs the CA

to support both self-replication and secondary computation, in contrast to the need

for pre-writing manual programs in the past; 3) it carries out such a secondary

task with use of the same initial seed structure, in contrast to the past where the

seed structure had to be altered by embedding the manual program in it; and 4)

both self-replication and secondary computation are programmed in a single GP

run, with the possibility of yielding multiple non-dominated solutions, each rep-

resenting a diversified strategy carrying out the same given task. Several sample

experimental results are included to demonstrate the effectiveness of such a novel

approach. Consistent patterns are observed from multiple experiments using differ-

ent seed structures, target structures, or both, indicating when the seed structure

keeps self-replicating like a fission-wall, persistent target structures being deposited

behind, either lined up and translating at the same pace led by the very first seed

replica (see Figure 5.17 and Figure 5.24), or very regularly aligned in an expanding
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triangle, with each rotating at the same location (see Figure 5.6).
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Chapter 6

Multi-Objective Structure/Rule Co-evolution with Unspecified Seed

Structures

6.1 Overview

In last chapter, it was demonstrated that we can automatically program ar-

bitrary structures in CA to self-replicate and do secondary task performance at the

same time, in a single GP evolutionary process. In such a model, there are two

obvious characteristics to be noticed: 1) both the seed structure and the target

structure are known prior to evolution as they are pre-specified in the configuration

file; and 2) it is only the R-tree that evolves. The S-tree of the seed structure is pro-

duced from the pre-specified seed structure and remains constant during the entire

evolution process.

This chapter aims to explore further extending the multi-objective replicator

factory model to be even more general, i.e., enabling it to carry out a pre-specified

task without being given a seed structure. In such a model, only the task to be done

is specified (such as a target structure to be “manufactured”). The new model is

expected to automatically and evolutionarily search for an appropriate seed struc-

ture as well as associated state transition rules, which cooperatively provide the

capability of performing the given task as the found seed structure replicates itself.
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To seek a solution to a given task, the new model would extend the searching from

rule space only to both rule space and structural space. This represents a novel

way for creating CA models toward performing a task. When it proves difficult to

perform the given task with a specified seed, this new approach allows the replica-

tor factory to automatically search for an alternative suitable seed structure for the

given task. We will see an example where this proves useful in writing out “UMD”,

a much bigger target structure than ”U” or “UM”, two structures that were tested

in Chapter 5.

In such a generalized replicator factory model, the input is a target structure

e, and the output is a replicator X, which can be viewed as an evolved pair of an

S-tree and R-tree. The S-tree part, X(s), can be viewed as the static structural

aspect of the replicator, and the R-tree part, X(r), can be viewed as the dynamic

state-transitional aspect of the replicator. Therefore, here both aspects are to be

automatically programmed to successful perform a pre-specified task. This is done

by incorporating structure/rule co-evolution in the current model, with the details

presented below.

6.2 Problem Formulation

Let X represent an evolving replicator, X(s) represent the S-tree part in X,

and X(r) represent the R-tree part of X, e represent an S-tree for a given target

structure, p represent an infinite cellular space, t represent a time step applying X

in p. With the same functions defined in Section 5.2, we can now formally state the
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problem as follows:

Given a cellular space p, and an extra structure e, we want to find a replicator

X which will satisfy the following goals:

1. There exists a time step Tj, for any positive integer j, so that

Tj
∑

t=1

δ(X(r), X(s), p, t) ≥ j (6.1)

This is the replicatability objective of structure/rule co-evolution with an un-

specified seed structure.

2. There exists a time step Tk, for any positive integer k, so that

Tk
∑

t=1

η(X(r), X(s), e, p, t) ≥ k (6.2)

This is the taskability objective of structure/rule co-evolution with an unspec-

ified seed structure.

3. There exists a time step Ti, for any positive integer i, so that

Ti
∑

t=1

(βδ(X(r), X(s), p, t)× βη(X(r), X(s), e, p, t)) ≥ i (6.3)

This is the sustainability objective of structure/rule co-evolution with an un-

specified seed structure.
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6.3 Replicator Initialization

Before structure/rule co-evolution starts, a population of replicators needs

to be initialized. Each replicator has an S-tree part and an R-tree part, so the

initialization of each population member includes initializing the S-tree and R-tree

at the same time.

6.3.1 S-tree Initialization with Random Structures

A random structure initialization algorithm presented below takes two config-

urable control parameters, the initial seed size (ν) and density control (ρ). First, a

center (empty) cell is selected in the cellular automata space. Then an active state

is randomly selected with uniform probability. This cell now becomes the root of

the structure. Next, starting from the root, each active cell attempts to expand

the structure by recursively “reconstructing” (assigning states to) its Moore neigh-

bors, controlled by ρ, until the structure size reaches ν. This is done as follows.

First, the root cell attempts to reconstruct each of its eight Moore neighbors. To

reconstruct a Moore neighbor, either a quiescent state or an active state can be

selected, with the probability of an active state to be selected being ρ. If an active

state is to be selected, such a state is picked with uniform probability (among all

active states). In either case, each of these reconstructed cells are marked with flag

“RECOVERED”. Next, in the order of how they were reconstructed, each of these

active Moore neighbors, in turn, recursively attempts to reconstruct its own Moore

neighbors. Note that it is possible that some of the Moore neighbors are already
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marked “RECOVERED”, since they are already reconstructed by previous active

components. These neighbors are left untouched. Only the remaining neighbors

are reconstructed in the same way. This recursive Moore neighbor reconstructing

process continues until the initial structure size ν is reached. Note that, a higher ν

will result in a bigger initial seed structure. On the other hand, a higher ρ results in

a simpler and more condensed shape, and a low ρ results in a more expanded and

complex shape. Once the random structure construction is complete, an S-tree can

be immediately derived, exactly in the same way as before (Section 3.2.2).

6.3.2 R-tree Initialization for Co-evolution

For each member of the replicator population, the R-tree part can be initialized

exactly as before, as described in Section 3.4.2.

6.4 Replicator Simulation

Once the S-tree part is converted into the seed configuration (t=0), the CA

simulation with the R-tree part can be carried out exactly the same as in Section

3.4.3.

6.5 Replicator Fitness Evaluation and Tournament Selection

Once the replicator is simulated with a given number of time steps, its repli-

catability, taskability, and sustainability fitness measures can be calculated exactly

the same as in Section 5.3, using the seed S-tree from the evolving replicator, and the
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target S-tree from the target structure. Domination pressure, distribution pressure,

and parsimony pressure can also be derived as before. Tournament selection based

on these criteria picks diversified replicators to form the mating pool, as described

in Section 5.4.

Note that here the fitness of an S-tree itself is not directly evaluated. The tour-

nament selection is based on the fitness values of the replicators, not their S-tree

parts alone. The fitness of a replicator is evaluated by the configurations it produces

with respect to self-replication and task-performance, as a collective result of exe-

cuting its R-tree part on its S-tree part, which are both evolved. However, should

it be desired in a future application, it is possible to add a fitness component that

evaluates the fitness of its S-tree part separately, in terms of the structure it evolves

and represents, with respect to the meaning in the application domain. In such sce-

narios, the new fitness component can be integrated into the tournament selection

process, such as the parsimony pressure concerning an R-tree, the replicator’s other

part.

6.6 Replicator Evolution

Once the mating pool is formed, the candidate replicators can reproduce. For

example, a pair of parent replicators can re-combine with their S-tree parts, R-tree

parts, or both, at the same time. After such crossover operations, both the S-tree

part and R-tree part of a candidate replicator can be further subject to the mutation

operation. Since the fitness of a resulting offspring replicator is evaluated by the
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global CA behaviors collectively produced by the new S-tree and R-tree part, the

co-evolution of the S-tree and R-tree in the evolving replicators explores the rule

space and structural space cooperatively toward the successful performance of a

given task.

6.6.1 Evolution in Structural Space with S-tree Genetic Operators

The S-tree representation of structures converts the evolution of an arbitrary

CA structure into the evolution of a tree structure, which has already been well

studied under genetic programming. This is based on the S-tree’s property that the

encoding and decoding between a structure and an S-tree is unambiguous in both

directions. A specific structure can be unambiguously reconstructed from an evolved

S-tree through the reconstruction of the Moore neighborhood of each active cell in

the structure. In a way, the S-tree can also be viewed as a rule tree which governs

how to reconstruct the Moore neighborhood for every component in the structure.

The existing genetic programming operators can readily be applied to S-trees.

One point crossover between two S-trees is equivalent to exchanging sub-structures

between two structures, and one point mutation is equivalent to local modification

to the structure. The point where crossover or mutation is performed on the S-tree

can be randomly selected from all edges with uniform probability.

Figure 6.1 shows an example of structure evolution using a one-point GP

crossover operator. Initially, S-tree1 (Figure 6.1(a), left) represents Structure1 (Fig-

ure 6.1(b), left), and S-tree2 (Figure 6.1(a), right) represents Structure2 (Figure
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Figure 6.1: An example of structure evolution with one-point S-tree crossover. A

crossover takes place between S-tree1 (a, left) and S-tree2 (a, right) with the shaded

sub trees exchanged. Correspondingly, Structure1 (b, left) and structure2 (c, left)

are now replaced by structure1new (b, right) and structure2new (c, right), respec-

tively. The resulting new S-trees after the crossover operation now represent the

new structures respectively.
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6.1(c), left). A crossover takes place between S-tree1 and S-tree2 with the shaded sub

trees exchanged. Correspondingly, Structure1 (Figure 6.1(b), left) and Structure2

(Figure 6.1(c), left) are now replaced by Structure1new (Figure 6.1(b), right) and

Structure2new (Figure 6.1(c), right), respectively. Note that the sub-structures being

exchanged are circled for illustration. The resulting new S-trees after the crossover

operation now represent the new structures. It can be seen that the sub-structure

is not always exactly copied over to the new structure. It is potentially reorga-

nized as the new neighborhood requires. Also note that Structure1new is much

larger and more complex than either Structure1 or Structure2, and at the same time

Structure2new becomes a diminished structure containing only two components. This

raises a risk that the resulting structure after repeated crossovers may become un-

bounded large or diminished small, both of which are undesirable for the evolution

to converge. Hence, like in the R-tree crossover operation (Section 3.3.2.1), the

more restrictive homologous one-point crossover genetic operator instead is chosen.

The essential idea is almost the same as in the R-tree homologous crossover (see

Section 3.3.2.1 for details), except the definition of “mismatch” is different here.

In S-tree homologous one-point crossover, 2 nodes (each from a different parent)

are not a “mismatch” as long as both are either quiescent or active (meaning the

states themselves do not have to exactly match). As a result, S-tree homologous

one-point crossover allows searching a much smaller space and inclemently converg-

ing toward to common sub-structures which can not be modified again without the

mutation operator. The S-tree homologous one-point crossover operator is less re-

strictive than the R-tree homologous one-point crossover operator, so that structural
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crossover can take place on two components as long as the topology of their Moore

neighbors match each other. This was done because otherwise, it is very difficult

to get the structural evolutionary process started because there are so few matches

between the initial random structures.

The offspring S-tree resulting from crossover or mutation operations may con-

tain nodes which have more, or less, child nodes than needed to reconstruct their

Moore neighbors. This is similar to the R-tree evolution when a “missing rule” or

“obsolete rule” scenario occurs and the R-tree is allowed to repair itself by generat-

ing new rules as needed or pruning obsolete rules. The same operations can be done

for S-tree evolution. If any node in an offspring S-tree is found missing child nodes

needed to fully reconstruct its Moore neighborhood, a new child node can be added

to repair the S-tree. Likewise, if any node is found containing more child nodes than

it needs, the extraneous child nodes can be pruned.

6.6.2 Evolution in Rule Space with R-tree Genetic Operators

For the R-tree part to evolve, exactly the same genetic operators detailed in

Section 3.4.7 can be used.

As a result, each candidate replicator in the evolving population is subject to

any combination of the following 4 genetic operators: homologous S-tree crossover,

S-tree mutation, homologous R-tree crossover, and R-tree mutation, and each is

associated with an independent controlling probability (bsc, b
s
m, brc, and brm). By

controlling the values of each of these probabilities, we can let the replicator explore
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the structural and rule space in different paces. A typical combination used in the

subsequent experiments is (bsc = 0.1, bsm = 0.02, brc = 0.8, and brm = 0.4).

6.7 The Resulting Generalized Replicator Factory Supporting Struc-

ture/Rule Co-evolution

With the capability to initialize a replicator with both of its S-tree and R-

tree parts randomly generated, as well as allowing both to simultaneously evolve

subsequently with S-tree and R-tree genetic operators, the previously established

multi-objective replicator factory model can be naturally further generalized to a

multi-objective co-evolution model where only the target structure needs to be pre-

specified, and diversified replicators can be concurrently sought, with each replicator

in the set resulting in a different seed structure and cellular rule set combinations,

which reflect different strategies to perform the common given task. The schematic

view of such a generalized model is illustrated in Figure 6.2. Similar to the previous

model shown in Figure 5.2, there also co-exist two populations, one optimization

population and one elite population. However, the members in both populations are

no longer R-trees, but replicators, which are coupled pairs of co-evolving S-tree and

R-tree. In other words, each evolving member in the population may represent a dif-

ferent seed structure and associated different state transition rules. In the beginning,

the optimization population is initialized with pairs of randomly generated S-trees

and R-trees (Section 6.3), and the elite population is empty. Then, each replicator is

simulated in the CA space, first by reconstructing the initial CA configuration (t=0)
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Figure 6.2: A schematic view of the generalized multi-objective co-evolving replica-

tor factory model.
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from the evolved S-tree part, then by executing its evolved R-tree part recursively

from the initial configuration with a given number of simulation time steps (Section

6.4). With the presence of replicatability, taskability, and sustainability objectives,

fitness measures are evaluated based on the simulation results, in the same way

described in Sections 5.3.3, 5.3.4, and 5.3.5. Then, based on these multiple fitness

measures, the domination relationship, domination pressure, distribution pressure,

and parsimony pressure are derived exactly the same as before (Sections 5.4.1, 5.4.2,

and 5.4.3).

Next, the mating selection picks replicators from the union population using a

tournament selection algorithm to form a mating pool. In this tournament selection

algorithm, the probability for an replicator to be picked is inversely proportional to

the total pressure it currently faces, i.e., a sum of its domination pressure, distri-

bution pressure, and parsimony pressure. As a result, diversified combinations of

parsimonious S-tree/R-tree that are better approximation to better trade-off among

replicatability, taskability, and sustainability have a better chance to enter the mat-

ing pool and produce offspring replicators. The mating between two replicators now

involves not only the crossover of its R-trees, but potentially the crossover of the

S-trees as well, even though the crossover of R-tree and S-tree is based on separate

probabilities (Section 6.6). Since both probabilities are configurable model param-

eters, the evolution of R-tree and S-tree can be controlled to take place in different

and desired paces. Likewise, after the mating operation, both the R-tree and S-tree

are allowed to mutate, based on separate and controllable probabilities. The elite

selection operation is done in the same way as before (Section 5.6).
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6.8 Structure/Rule Co-evolution: Experimental Results

This section presents some experimental results showing it is indeed possible

to automatically program the cellular automata with unspecified seed structures

with the capability of both replicating and performing a pre-specified secondary

task as the discovered structure replicates. In fact, diversified S-tree/R-tree combi-

nations can be found concurrently in a single GP run, with each reflecting a different

strategy, using different seeds and rules to perform the same task. Typical model

parameters used are: Elite Population Size = 10, Optimization Population Size =

90, R-tree Mutation Probability = 0.42, R-tree Crossover Probability = 0.88, R-

tree GP Tournament Size = 2, Initial Seed Size = 5, Seed Density Control = 0.8,

S-tree Crossover Probability = 0.1, S-tree Mutation Probability = 0.02, and Max

Hesitation = 200.

In the first co-evolution experimental example, a target structure is pre-specified

as shown in Figure 6.3 (a), 6-component 29-state weak-rotational-symmetric struc-

ture. Comparing with task performance experiment 5.1 presented in the previous

chapter (Figure 5.3), the same target structure is used here, but no seed structure

is pre-specified. Replicators are sought with novel structures and rules which are

capable of “manufacturing” the target structure. Structure/Rule co-evolution took

place and produced a set of replicators with both the S-tree and R-tree evolved

collectively. Two of the results are shown below. The first replicator produced an

S-tree reflecting a seed structure shown in Figure 6.3 (b), which is a 3-component

29-state weak rotational symmetric structure, and an R-tree reflecting execution
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Figure 6.3: Structure/Rule co-evolution, example 6.1-1: (a)the target structure,

pre-specified as a 6-component 29-state weak-rotational-symmetric structure, same

target structure used in secondary task performance example 5.1 (Figure 5.3); (b)an

automatically discovered seed structure, which is a 3-component 29-state weak-

rotational-symmetric structure. Various S-tree/R-tree combinations were sought to

perform a pre-specified task, i.e., “manufacture” the given target structure, as the

found seed structure self-replicates, as guided by the found R-tree.

results in the cellular space as shown from Figure 6.4 to Figure 6.6. Meanwhile, the

second replicator produced an S-tree reflecting a seed structure shown in Figure 6.7

(b), which is a 3-component 29-state weak rotational symmetric structure, and an

R-tree reflecting execution results in the cellular space as shown from Figure 6.8 to

Figure 6.11.

From Figure 6.4 to Figure 6.6, it can be seen that, when executing the first

S-tree/R-tree combination resulted from the co-evolution, at t=1, the initial seed

structure turns into a composite structure composing two seed replicas sitting on

top of a target structure, which splits into 3 isolated structures at t=2. This fission

process deposits the first target structure at the bottom, which then persists, but

keeps translating away from the seed cells to the bottom direction, without rotating
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Figure 6.4: Structure/Rule co-evolution, example 6.1-1: executing an automatically

programmed R-tree against the automatically discovered seed structure from t=0

to t=5. Color code convention: non-isolated seed structure marked in yellow, non-

isolated target structure in cyan, isolated seed structure in blue, and isolated target

structure in lime. The cells covered by the initial seed structure are also always

highlighted by red edges at any time step to provide a location correlation.
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Figure 6.5: Continuation of Figure 6.4 from t=6 to t=7.

itself. More instances of the same composite structure are formed on the top edge

(like a horizontal fission wall), which split into more and more seed structures, and

deposit more and more target structures below the fission wall. Each of these target

structures, once born, persists and keeps translating away from seed cells to the

bottom direction. By the time of t=14 (Figure 6.6), there are 8 seed replicas formed

on the top, and 19 target structures deposited below them at the same time.

Figure 6.8 to Figure 6.11 illustrates the execution result of a different evolved

S-tree/R-tree combination. It can be seen that, the replicator factory has discovered

a very different and very interesting way to complete the same task. Here, an equal

number of seed replica and target structures can be created and deposited on a

spiral curve. At t=1 (Figure 6.8), the seed structure shown at t=0 transforms into

an isolated pair of seed and target structures. This pair of structures then persist
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Figure 6.6: Continuation of Figure 6.5 at t=14.
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Figure 6.7: Structure/Rule co-evolution, example 6.1-2: (a)the target structure,

same target structure as in example 6.1-1 above (Figure 6.3); (b)a different au-

tomatically discovered seed structure, which is also a 3-component 29-state weak-

rotational-symmetric structure. Various S-tree/R-tree combinations were sought to

perform a pre-specified task, i.e., “manufacture” the given target structure, as the

found seed structure self-replicates, as guided by the found R-tree.

and keep spinning 90o at every subsequent time step. For example, at t=5, it can

be seen they resume exactly the same location and orientation as at t=0, after

rotating 4 times, or 360o. The same can be said for t=9, 13, and 17, etc., as shown

in Figures 6.10 and 6.11. More importantly, while this pair of structures spin in

the center, seemingly they “emit” and launch endless “material” into a spiral curve,

which transform into equal and increasing number of seed and target structures,

all lined up on this spiral trail. Note that at t=17, 21 seed replicas and 21 target

structures can be found on the spiral trail. The spiral can extend infinitively and

produce any number of seed and target structures.

In the second co-evolution experiment example, a target structure is pre-

specified as shown in Figure 6.12 (a), which is same target structure used in task

performance example 5.2 (Figure 5.12) in Chapter 5. A separate run of struc-

ture/Rule co-evolution took place and produced a set of evolved replicators of var-
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Figure 6.8: Structure/Rule co-evolution, example 6.1-2: executing an automatically

programmed R-tree against the automatically discovered seed structure from t=0

to t=5. Color code convention: non-isolated seed structure marked in yellow, non-

isolated target structure in cyan, isolated seed structure in blue, and isolated target

structure in lime. The cells covered by the initial seed structure are also always

highlighted by red edges at any time step to provide a location correlation.
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Figure 6.9: Continuation of Figure 6.8 at t=6 and t=7.

Figure 6.10: Continuation of Figure 6.9 at t=8 and t=9.
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Figure 6.11: Continuation of Figure 6.10 at t=17.

189



Figure 6.12: Structure/Rule co-evolution, example 6.2: (a)the pre-specified 8-

component 7-state target structure, same target structure used in task performance

example 5.2 (Figure 5.12); (b)an automatically discovered seed structure, which is

also a 4-component 7-state weak-rotational-symmetric structure. Various S-tree/R-

tree combinations were sought to perform a pre-specified task, i.e., “manufacture”

the given target structure, as the found seed structure self-replicates, as guided by

the found R-tree.
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Figure 6.13: Structure/Rule co-evolution, example 6.2: executing an automatically

programmed R-tree against the automatically discovered seed structure from t=0

to t=5. Color code convention: non-isolated seed structure marked in yellow, non-

isolated target structure in cyan, isolated seed structure in blue, and isolated target

structure in lime. The cells covered by the initial seed structure are also always

highlighted by red edges at any time step to provide a location correlation.
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Figure 6.14: Continuation of Figure 6.13 at t=6 and t=7.

ious S-tree/R-tree combinations, with one sample result shown here. The evolved

replicator produced an S-tree reflecting a seed structure shown in Figure 6.12 (b),

which is a 4-component 7-state weak rotational symmetric structure, and an R-tree

reflecting execution results in the cellular space as shown from Figure 6.13 to Figure

6.16. It can be seen that this bigger target structure can also be constructed by the

discovered structure in a way which closely resembles structure/rule co-evolution

experiment 6.1 above, i.e., the seed structure gets replicated on the top, and tar-

get structures get deposited below. Note by the time of t=14, 8 seed replicas and

14 target structures are present in the configuration. This process can carry on

infinitively, and produce any number of seed or target structures.

In the third co-evolution experiment example, a target structure is pre-specified
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Figure 6.15: Continuation of Figure 6.14 at t=12.
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Figure 6.16: Continuation of Figure 6.15 at t=14.
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Figure 6.17: Structure/Rule co-evolution, example 6.3: (a)the pre-specified target

structure, a very big 28-component 7-state weak-rotational-symmetrical structure

that writes out “UMD”, the domain name of University of Maryland; (b)an auto-

matically discovered seed structure, which is a 4-component 7-state weak-rotational-

symmetric structure. Various S-tree/R-tree combinations were sought to perform a

pre-specified task, i.e., “manufacture” the given target structure, as the found seed

structure self-replicates, as guided by the found R-tree.

as shown in Figure 6.17 (a), which is a large and complex structure composed of 28

7-state components, and which writes out “UMD”, the domain name of University

of Maryland. The same pre-specified seed structure, which succeeded in writing out

the “U” and “UM” target structures in task performance experiment 2 and 3 in

Chapter 5 (see Figure 5.12 and 5.18), was tested and found unable to produce this

“UMD” structure. However, by extending the search into structural space with the

approach presented in this chapter, a novel structure is discovered which success-

fully self-replicate, and produce this large structure at the same time, as illustrated

below. The structure shown in Figure 6.17 (b), is a 4-component 7-state weak ro-

tational symmetric structure. The R-tree evolved with this structure is executed

against the shown structure and produce results shown from Figure 6.18 to Figure
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Figure 6.18: Structure/Rule co-evolution, example 6.3: executing an automatically

programmed R-tree against the automatically discovered seed structure from t=0

to t=5. Color code convention: non-isolated seed structure marked in yellow, non-

isolated target structure in cyan, isolated seed structure in blue, and isolated target

structure in lime. The cells covered by the initial seed structure are also always

highlighted by red edges at any time step to provide a location correlation.
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6.22. It is shown that, even though it took more steps for such a big target structure

to appear, it can still be made while the found seeds self-replicate.

Figure 6.19: Continuation of Figure 6.18 at t=6 and t=7.

6.9 Conclusions

This chapter further extends the multi-objective replicator factory model to

be even more general, i.e., enabling it to discover its own replicators that also carry

out a pre-specified task without being given a seed structure. In such a generalized

replicator factory model, the input is a task to be performed, such as a target

structure to be constructed, and the output is a replicator, of which both the seed

structure and associated CA rules are to be automatically programmed toward the

successful performance of the given task. To implement such a general model, for
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Figure 6.20: Continuation of Figure 6.19 at t=8 and t=9.

the first time, structure/rule co-evolution is introduced and established, on top of

the multi-objective replicator factory model.

The details presented in this chapter demonstrate how S-trees can be initialized

with random structures, how S-trees can evolve with GP genetic operators, how

evolved S-trees can be re-constructed as CA structures which can then be simulated

by executing the associated concurrently evolving R-trees, and how multi-objective

fitness measures can be evaluated from the simulation results collectively produced

by the co-evolving structure/rules. It is then shown that this approach effectively

extends the exploration from the rule space only to both structural space and rule

space, in the seeking of multiple non-dominated solutions to a pre-specified task.

The experimental results produced from the generalized multi-objective co-
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Figure 6.21: Continuation of Figure 6.20 at t=10.
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Figure 6.22: Continuation of Figure 6.21 at t=11.
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evolution model have provided some results showing that it is indeed possible to

automatically program the cellular automata with unspecified seed structures that

will evolve the capability of “manufacturing” arbitrary target structures at the same

time when the found structures replicate. This indicates that multiple diversified

solutions can concurrently be yielded, with each solution reflecting different strate-

gies, in terms of different seed structures/rules combinations, in order to perform

the same given task. Typically, the seed structure keeps replicating and deposits

persistent target structures behind. The new model is found capable of writing out

persistent “UMD”, with multiple automatically programmed seeds, even though it

was previously found that a pre-specified seed structure used in Chapter 5 experi-

ments was unable to do the same. A small seed structure may be easier to replicate,

but potentially needs more effort to “manufacture” a superior target. Likewise, a

larger seed structure may require less time steps to produce a target, but requires

more effort for itself to replicate. This dilemma potentially makes it hard to pre-

specify an optimal seed structure to perform a given task. However, the general

approach presented in this chapter makes it possible for alternative seed structures

to be automatically approached through evolution.

In sum, the results presented in this chapter show that structure/rule co-

evolution is possible, capable of producing interesting results, and merits much fur-

ther study. Many variations and their effects can be further investigated, such as

1) adopting other types of S-tree genetic operators, such as domain-based or super-

vised genetic operators, for structure evolution; 2) introducing domain-based fitness

measures for structure evolution, and/or 3) introducing multi-staged co-evolution
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so that in different stages S-tree and R-tree genetic operators can be favored with

different weights.

202



Chapter 7

Conclusions and Future Work

Given the local concurrent computations in CA, in the past it has proved

very difficult in general to manually program their transition function when the

desired computation requires global communication and behavior [1], as with self-

replication. This difficult issue of creating models of self-replicating structures in CA

has greatly limited the number of different self-replicating structures designed and

studied to date and contributed to the lack of a systematic study of their properties.

To address this difficult issue, past studies have focused on mainly two approaches.

One is creating CA systems capable of universal construction with self-replication

thus being only as a special case. These so-called universal constructors are highly

complex and marginally realizable, and have mainly been used for theoretical studies

[48, 71, 11]. The second approach focuses on manual design of simpler and smaller

self-replicating loops [9, 34, 57], which are manually crafted to do nothing but self-

replication. The resultant CA models do not allow arbitrary structures to replicate;

instead, they share the same restriction inherited from Langton’s self-replicating

loop: requiring the structure to be a simple, square (or rectangular) shape to enable

their replication [61].

This research presented in this dissertation is the first work adopting GP for

discovery of self-replication models in CA. Not only was it demonstrated that GP
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can be used to automatically program CA to produce self-replication of arbitrary

structures, but also a whole class of new replicators were discovered, which are qual-

itatively different from past models. Using GP to automatically program arbitrary,

initially non-replicating structures to self-replicate removes the restriction that repli-

cas must have a specific loop-like structure, qualitatively reducing the time cost of

replicator construction compared to past manual methods, and creating replicators

that resemble biological cell mitosis more than they do replicators discovered in past

studies (universal constructors and loops). Here, automatically discovered replica-

tors can construct themselves very quickly, in a fission-like, rotational, and/or spiral

process. Surprisingly, some of these discovered replicators can self-replicate within

only one time step, representing a speed which was not known a priori to even be

possible (Figure 3.15).

Especially, this study created an unambiguous and universal tree-like repre-

sentation for both arbitrary structures and rule tables, which made the efficient

and effective application of GP possible in CA programming, even though these

tree encodings do not represent conventional sequential computer programs as in

traditional GP. The structure tree can be viewed as a representation of a desired

global configuration, and the rule tree can be viewed as the representation of local

state-transition rules. Local rules can now efficiently evolve in the form of trees,

and receive fitness measures simply evaluated in terms of how well, when they are

simulated in CA spaces, they express the desired global configuration. Previous

heuristic fitness functions do not provide precise and universal fitness measuring for

local CA rules in terms of produced global results, as they only exploit partial struc-
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tural information (such as component density) and rely on the specific knowledge of

the given structure [37]. Thus this work provides an unprecedented demonstration

of how precise fitness assignment can be used for full or partial matching structures

at any GP stage.

More importantly, the tree based evolution and fitness measuring approach

presented here can be universally applied on arbitrary, future structures without

requiring any knowledge about the structure a priori. This is because of the new

approach’s capability of converting an arbitrary structure into a common tree-based

structure, which can be fully exploited by an existing GP evolutionary system, built

prior to any knowledge of the structure, to retrieve the complete structural infor-

mation encoded in the S-tree, such as details about every Moore neighbor of every

component in the structure. By retrieving such complete structural information

from the tree encoding, in the efficient way that is allowed by representation of

a structure as a MST (minimum spanning tree), and comparing them to a given

configuration, we can tell precisely how well the current configuration satisfies the

expected global computation. Thus, this approach provides a feasible and efficient

GP programming model toward global CA computation, despite the local concurrent

computations in CA.

The development of the time-effective method for generating self-replicating

structures presented here opened up the possibility for studying replicator configu-

ration properties in a systematic way. It proved possible to automatically generate

whole families of self-replicating structures, allowing one to systematically inves-

tigate the properties of replicating CA structures as one varies the initial config-
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uration, size, shape, symmetry, and allowable states. This work showed that the

number of GP generations, computation time, and number of rules required by an

arbitrary structure to self-replicate are positively correlated with the number of

components, configuration shape, and allowable states in the initial configuration,

but inversely correlated with the presence of repeated components or sub-structures,

and seed symmetry. This leads to the conclusion that the properties of the resulting

replicators can be predicted in part a priori. In summary, the anticipated impact

of this study includes the creation of an automated approach for creating novel

self-replicators, the discovery of a whole new class or family of self-replicators of

arbitrary structures, and a deeper knowledge of the properties of self-replicating

cellular automata models.

After satisfying the primary goal of this study — establishing that genetic pro-

gramming provides a powerful method for creating CA models of self-replication —

this dissertation research extended its study to the examination of whether the new

approach can also support finding self-replicators that perform simple secondary

tasks. In the past, Tempesti and subsequently others showed that it is possible

to add additional computational capabilities to simple self replicating loops, allow-

ing them to carry out some limited “secondary” tasks [68, 53]. However, these past

replicators with secondary capabilities were limited in that they are implemented on

specific, non-arbitrary, and manually-designed seed structures; they depend on man-

ual, pre-written computer programs; and they are implemented by embedding the

pre-written program into the specific seed structure, in other words, at the cost of al-

tering (and changing the complexity of) the seed structure itself. The results shown
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in this study suggest that self-replicators that are created by GP for arbitrary initial

structures, are also capable of carrying out a simple secondary task, such as writing

out “UM”, the acronym for University of Maryland. Compared to the past meth-

ods, the GP approach developed in this dissertation has the following advantages:

1) it generalizes producing replicators that carry out a secondary task to arbitrary

self-replicating structures, from just the specific manually-designed loops used in

the past; 2) it automatically programs the CA to support both self-replication and

any needed secondary computation, in contrast to the need for pre-written manual

programs as in the past; 3) it carries out such a secondary task with the use of

the same initial seed structure, in contrast to in the past where the seed structure

has to be altered by embedding a manually-written program in it; and 4) both self-

replication and secondary computation are programmed in a single GP run, with

the possibility of yielding multiple non-dominated solutions, each representing a dif-

ferent strategy for carrying out the same given task. For example, it was shown that

multiple simple structures can “manufacture” structures much more complex than

themselves, such as writing out “UM” consistently and continuously, at the same

time as replication, without involving pre-writing and embedding manual programs.

This represents another impact of this dissertation, i.e., introducing multi-objective

evolution into self-replication CA models for the first time and providing a new ap-

proach to creating arbitrary self-replicators capable of concurrent task performance

without requiring embedding manual programs.

Finally, this is also the first work to create a structure/rule co-evolution system,

on top of the multi-objective GP paradigm, to discover, without being given seed
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structures, replicators that could also perform a pre-specified secondary task. In

such a model, only the task to be done was specified. The new model was able to

automatically search for and find an appropriate seed structure as well as associated

state transition rules, which cooperatively provide the capability to perform the

given task as the seed structure replicates itself. To seek a solution to a given task,

the new model extended the search from rule space only to both rule space and

structural space. This represents a novel way for creating CA models toward task

performance. The experimental results indicate that multiple diversified solutions

can concurrently be yielded, with each solution reflecting different strategies in terms

of different seed structures/rules combinations. Typically, the seed structure keeps

replicating and deposits persisting or moving target structures behind. The new

model was found capable of writing out “UMD”, with an automatically programmed

seed, even though previous efforts to manually create a pre-specified seed structure

were unsuccessful. Thus, when it is hard to pre-specify an optimal seed structure to

perform a given task, alternative seed structures may sometimes be automatically

discovered through evolution using GP.

The approach formulated in this work uses a uniform tree representation to

encode a global structural configuration and local interaction rules. It defines ge-

netic operators for one or both representations, and then lets one or both efficiently

evolve, automatically guided by fitness measures simply evaluated in terms of how

well, when the rule-representation is simulated, it expresses or exhibits the global

structural representation. This represents a general evolutionary CA programming

approach which can be readily applied to solve many other complex problems in
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cellular automata [79, 4, 2, 74, 23], such as games [6, 14, 18, 19], behavioral and

social problems [20, 25, 17, 73].

Among the many issues that might be examined in the future, several ap-

pear to be of particular importance. These include the further development of

programmable self-replicators for real applications, and a better theoretical under-

standing of both the time/space complexity of the GP paradigm and the principles

of self-replication in cellular automata spaces. Domain-based fitness functions and

novel S-tree genetic operator, could also be further introduced and examined in the

context of the co-evolution system described in this dissertation. More general and

flexible cellular automata environments, such as those having non-uniform transi-

tion functions or novel interpretations of transition functions, merit exploration.

It has already proved possible, for example, to create simple self-replicating struc-

tures in which a cell can change the state of neighboring cells directly [36]. Also,

from the perspective of realizing physically self-replicating devices, exchange of in-

formation between the modeling work described here and ongoing work to develop

self-replicating molecules/nanotechnology is important. Closely related to this issue

is ongoing investigation of the feasibility of electronic hardware directly supporting

self-replication [51, 87]. If these developments occur and progress is made, I foresee

a productive future for the development of a technology of self-replicating systems.
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