Skip to main content

A Deep Learning Assisted Gene Expression Programming Framework for Symbolic Regression Problems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11307))

Abstract

Genetic programming is a powerful evolutionary algorithm that solves user-defined tasks through the evolution of computer programs. Selecting a proper set of function primitives is a fundamental and challenging operation in applying GP to real applications. Traditional manual design methods require a lot of domain knowledge and are not effective and convenient enough. To address this issue, this paper proposed an automatic function primitive identification mechanism. The key idea is to train a deep convolutional neural network to predict the probability of the existence of a function primitive in the target solution. During the evolution of GP, function primitives with higher probabilities are more likely to be selected to construct solutions. The proposed method is tested on nine benchmark problems and the experimental results have demonstrated the efficacy of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Inception-v3 can be downloaded from http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz.

References

  1. Berry, M.J., Linoff, G.S.: Data Mining Techniques. Wiley, Hoboken (2009)

    Google Scholar 

  2. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-31030-5

    Book  MATH  Google Scholar 

  3. Castelli, M., Vanneschi, L., Silva, S.: Semantic search-based genetic programming and the effect of intron deletion. IEEE Trans. Cybern. 404(1), 103–113 (2014). https://doi.org/10.1109/TSMCC.2013.2247754

    Article  Google Scholar 

  4. Cramer, N.L.: A representation for the adaptive generation of simple sequential programs. In: Proceedings of the 1st International Conference on Genetic Algorithms, pp. 183–187. L. Erlbaum Associates Inc., Hillsdale (1985)

    Google Scholar 

  5. Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst. 13(2), 8–129 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Ferreira, C.: Gene Expression Programming. Springer, Berlin (2006). https://doi.org/10.1007/3-540-32849-1

    Book  MATH  Google Scholar 

  7. Ffrancon, R., Schoenauer, M.: Memetic semantic genetic programming. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1023–1030. ACM (2015)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)

    MATH  Google Scholar 

  10. Lamos-Sweeney, J.D.: Deep learning using genetic algorithms. Dissertations and Theses - Gradworks (2012)

    Google Scholar 

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  12. Mahsal Khan, M., Khan, G.M., Miller, J.: Evolution of optimal ANNs for non-linear control problems using cartesian genetic programming, vol. 1, pp. 339–346 (2010)

    Google Scholar 

  13. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46239-2_9

    Chapter  Google Scholar 

  14. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_3

    Chapter  Google Scholar 

  15. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)

    Article  Google Scholar 

  16. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  17. Turner, A.J., Miller, J.F.: Recurrent cartesian genetic programming of artificial neural networks. Genet. Program. Evolvable Mach. 18(2), 185–212 (2017)

    Article  Google Scholar 

  18. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  19. Zhong, J., Feng, L., Cai, W., Ong, Y.: Multifactorial genetic programming for symbolic regression problems. IEEE Trans. Syst. Man Cybern. Syst. (2018, in press). https://doi.org/10.1109/TSMC.2018.2853719

  20. Zhong, J., Cai, W., Lees, M., Luo, L.: Automatic model construction for the behavior of human crowds. Appl. Soft Comput. 56, 368–378 (2017)

    Article  Google Scholar 

  21. Zhong, J., Feng, L., Ong, Y.S.: Gene expression programming: a survey. IEEE Comput. Intell. Mag. 12(3), 54–72 (2017)

    Article  Google Scholar 

  22. Zhong, J., Ong, Y.S., Cai, W.: Self-learning gene expression programming. IEEE Trans. Evol. Comput. 20(1), 65–80 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61602181), the Fundamental Research Funds for the Central Universities (Grant No. 2017ZD053), the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (Grant No. 2017ZT07X183), and the Guangzhou Science and Technology Plan Project (Grant No. 201804010245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghui Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, J., Lin, Y., Lu, C., Huang, Z. (2018). A Deep Learning Assisted Gene Expression Programming Framework for Symbolic Regression Problems. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11307. Springer, Cham. https://doi.org/10.1007/978-3-030-04239-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04239-4_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04238-7

  • Online ISBN: 978-3-030-04239-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics