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Abstract 
Several challenging issues have to be addressed for 
automated synthesis of multi-domain systems. First, 
design of interdisciplinary (multi-domain) engineering 
systems, such as mechatronic systems, differs from 
design of single-domain systems, such as electronic 
circuits, mechanisms, and fluid power systems, in part 
because of the need to integrate the several distinct 
domain characteristics in predicting system behavior. 
Second, a mechanism is needed to automatically select 
useful elements from the building block repertoire, 
construct them into a system, evaluate the system and 
then reconfigure the system structure to achieve better 
performance. Dynamic system models based on diverse 
branches of engineering science can be expressed using 
the notation of bond graphs, based on energy and 
information flow. One may construct models of 
electrical, mechanical, magnetic, hydraulic, pneumatic, 
thermal, and other systems using only a rather small set 
of ideal elements as building blocks. Another useful tool, 
genetic programming, is a powerful method for creating 
and evolving novel design structures in an open-ended 
manner. Through definition of a set of constructor 
functions, a genotype tree is created for each individual 
in each generation. The process of evaluating the 
genotype tree maps the genotype into a phenotype -- i.e., 
to the abstract topological description of the design of a 
multi-domain system, using a bond graph along with 
parameters for each component, if needed. Finally, 
physical realization is carried out to relate each abstract 
element of the bond graph to corresponding components 
in various physical domains. To implement the above 
GPBG approach in a specific application domain, 
cautious steps have to be taken to make the evolved 
design represented by bond graphs realizable and 
manufacturable. To achieve this, one important step is to 
define appropriate building blocks of the design space 
and carefully design a realizable function set in genetic 
programming. We are going to illustrate this in an 
example of behavioral synthesis of a RF MEM circuit – a 
micro-mechanical band pass filter design. Finally, we 
have some discussions on how to extend the above 
approach to an integrated evolutionary synthesis 
environment for MEMS across a variety of design layers. 

1. Introduction 
Design automation is undoubtedly a very difficult 
task. However, we have some very successful 

application examples. Much research has been done 
on design automation of single domain systems 
using evolutionary computation approach. For 
example, automated design of analog circuits has 
attracted much attention in recent years (Grimbleby 
2000; Lohn 1999; Koza et al 1999; Fan et al 2001). 
They could be classified into two categories: GA-
based and GP-based. Most GA-based approaches 
realize topology optimization via a GA and 
parameter optimization with numerical optimization 
methods (Grimbleby 2000).  Some GA approaches 
also evolve both topology and component 
parameters; however, they typically allow only a 
limited amount of components to be evolved (Lohn 
1999). Although their works basically achieve good 
results in analog circuit design, they are not easily 
extendable to interdisciplinary systems like 
mechatronic systems.   
 
 Several challenging issues have to be addressed for 
automated synthesis of multi-domain systems. First, 
design of interdisciplinary (multi-domain) engineering 
systems, such as mechatronic systems, differs from 
design of single-domain systems, such as electronic 
circuits, mechanisms, and fluid power systems, in part 
because of the need to integrate the several distinct 
domain characteristics in predicting system behavior. 
Second, a mechanism is needed to automatically 
select useful elements from the building block 
repertoire, construct them into a system, evaluate the 
system and then reconfigure the system structure to 
achieve better performance. It is a remarkable fact that 
models based on apparently diverse branches of 
engineering science can be expressed using the 
notation of bond graphs, based on energy and 
information flow. Using that language, one may 
construct models of electrical, mechanical, magnetic, 
hydraulic, pneumatic, thermal, and other systems 
using only a rather small set of ideal elements as 
building blocks. As a special form of evolutionary 
computation, genetic programming is a powerful 
approach to creating and evolving novel design 
structures in an open-ended manner. Through 
definition of a set of constructor functions, a genotype 
tree is created for each individual in each generation. 
The process of evaluating the genotype tree maps the 



genotype into a phenotype -- i.e., to the abstract 
topological description of the design of a multi-
domain system, using a bond graph along with 
parameters for each component, if needed. Finally, 
physical realization is carried out to relate each 
abstract element of the bond graph to corresponding 
components in various physical domains. The above 
approach, combining bond graphs and genetic 
programming, has led to several successful design 
results by computational synthesis. The first is a 
domain-independent eigenvalue placement design 
problem that is tested for some sample target sets of 
eigenvalues (Seo et al 2001). The second is in the 
electrical domain – design of analog filters to achieve 
specified performance over a given frequency range 
(Fan et al 2001). The third is in the electromechanical 
domain – redesign of a printer drive system to obtain 
desirable damping of the position of a rotational load 
(Fan et al 2002). 
 
We are going to extend our approach to synthesize 
MEMS (Micro Electro Mechanical Systems). Due to 
their multi-domain and intrinsically three-dimensional 
nature, design and analysis of MEMS is very 
complicated and requires access to simulation tools 
with finite element analysis capability, like 
Conventorware and ANSYS. Computation cost is 
typically very high. A common representation that 
encompasses multiple energy domains is thus needed 
for modeling of the whole system. We need a system-
level model that reduces the number of degrees of 
freedom from the hundreds and thousands of degrees 
of freedom characterizing the meshed 3-D model to as 
few as possible. The bond graph, based on power 
flow, provides a unified model representation across 
inter-disciplinary system domains and is also 
compatible with 3-D numerical simulation and 
experimental results in describing the macro behavior 
of the system, so long as suitable lumping of 
components can be done to obtain lumped-parameter 
models. It can be used to represent the behavior of a 
subsystem within one energy domain, or the 
interaction of multiple domains. Therefore, the first 
important step in our method of MEMS synthesis is to 
develop a strategy to automatically generate bond 
graph models to meet particular design specifications 
on system level behaviors.  
 
For system-level design, hand calculation is still the 
most popular method in current design practice. This 
is for two reasons:  1) The MEMS systems we are 
considering, or designing, are relatively simple in 
dynamic behaviors -- especially the mechanical parts -
- largely due to limitation in fabrication capability. 2) 
There is no powerful and widely accepted synthesis 
approach to design multi-domain systems 
automatically. 
 

The GP/BG approach, which combines the capability 
of genetic programming to search in an open-ended 
design space, and the merits of bond graphs for 
representing and modeling multi-domain systems 
elegantly and effectively, proves to be a promising 
method to do system-level synthesis of multi-domain 
dynamical systems, including MEMS. In the first or 
higher level of system synthesis, our GPBG approach 
can help to obtain a high-level description of a system 
that assembles the system from a library of existing 
components in an automatic manner to meet a 
predefined design specification. Then in the second or 
lower level, other numerical optimization approaches 
(Zhou 1998), as well as evolutionary computation, 
may be used to synthesize custom components from a 
functionality specification. It is worthwhile to point 
out that for the system designer, the goal of synthesis 
is not necessarily to design the optimum device, but to 
take advantage of rapid prototyping and "design 
reuse" through component libraries; while for the 
custom component designer, the goal may be 
maximum performance. These two goals may lead to 
different synthesis pathways. 

 
However, in trying to establish an automated synthesis 
approach for MEMS, we should take cautious steps. 
Due to the limitation of fabrication technology, there 
are many constraints in design of MEMS. Unlike in 
VLSI, which can draw on extensive sets of design 
rules and programs that automatically test for design-
rule violations, the MEMS field lacks design 
verification tools at this time. This means that no 
design automation tools are available at this stage 
capable of designing and verifying any kind of 
geometrical shapes of MEMS devices. Thus, 
automated MEMS synthesis tools must solve sub-
problems of MEMS design in particular application 
domains for which a small set of predefined and 
widely used basic electromechanical elements are 
available, to cover a moderately large functional 
design space.  

 
Automated synthesis of a RF MEM device, namely, 
micro-mechanical band pass filter is taken as an 
instance in this paper. As designing and 
micromachining of more complex structures is a 
definite trend, and research into micro-assembly is 
already on its way, the GP/BG approach is believed to 
have many potential applications. More work to 
extend the above approach to an integrated 
evolutionary synthesis environment for MEMS across 
a variety of design layers is also discussed in the end. 
 



2. Design Methodology   
 

2.1 Bond Graphs 

The bond graph is a modeling tool that provides a 
unified approach to the modeling and analysis of 
dynamic systems, especially hybrid multi-domain 
systems including mechanical, electrical, pneumatic, 
hydraulic components, etc. (Karnopp et al 2000). It is 
the explicit representation of model topology that makes 
the bond graph a good candidate for use in open-ended 
design search. For notation details and methods of 
system analysis related to the bond graph representation 
see Karnopp et al. and Rosenberg (Rosenberg et a 
1993).  Much recent research has explored the bond 
graph as a tool for design (Youcef-Toumi 1999). 

Bond graphs have four embedded strengths for design 
applications, namely, the wide scope of systems that can 
be created because of the multi- and inter-domain nature 
of bond graphs, the efficiency of evaluation of design 
alternatives, the natural combinatorial features of bond 
and node components for generation of design 
alternatives, and ease of mapping to the engineering 
design process. Those attributes make bond graphs an 
excellent candidate for modeling and design of a multi-
domain system. 

2.2 Bond Graph and Genetic Programming 

Genetic programming is an extension of the genetic 
algorithm, using evolution to optimize actual computer 
programs or algorithms to solve some task (Holland 
1975, Goldberg 1989), typically involving a graph-type 
(or other variable-length) representation.  The most 
common form of genetic programming (Koza et al, 
1994) uses trees to represent the entities to be evolved.  
Genetic programming can manipulate variable-sized 
strings and can be used to “grow” trees that specify 
increasingly complex bond graph models. The tree 
representation on GP chromosomes, as compared with 
the string representation typically used in GA, gives GP 
more flexibility to encode solution representations for 
many real-world design applications. The bond graph, 
which can contain cycles, is not represented directly on 
the GP tree—instead, the function set (nodes of the tree) 
encodes a constructor for a bond graph.  

Defining of a proper function set is one of the most 
significant steps in preparing a genetic programming 
run. It may affect both the search efficiency of genetic 
programming and validity of evolved results and is 
                                                 
 

closely related to the selection of building blocks for the 
system being designed. In this research, a basic function 
set and modular function set are presented and listed in 
table 1 and table 2. Operators in the basic function set 
basically aim to construct primitive building blocks for 
the system, while operators in the modular function set 
purport to construct relatively modular and predefined 
building blocks composed of primitive building blocks. 
Notice that numeric functions are included in both 
function sets, as they are needed in both cases. In other 
research, we hypothesize that usage of modular 
operators in genetic programming has some implications 
in improving its search efficiency. However, in this 
paper, we concentrate on another issue, proposing the 
concept of a realizable function set. By using only 
operators in a realizable function set, we seek to 
guarantee that the evolved design is physically realizable 
and has the potential to be manufactured. This concept 
of realizability may include stringent fabrication 
constraints to be fulfilled in some specific application 
domains. This idea is to be illustrated in the design 
example of an RF MEM device, namely, a micro-
mechanical band pass filter. 

Examples of modular operators, namely insert_BU and 
insert_CU operators, are illustrated in figure 1 and figure 
2. Examples of basic operators are available in our 
earlier work (Seo et al 2001). 

 

 

 

 

Basic Function Set 

add_C Add a C element to a junction 
add_I Add a I element to a junction 
add_R Add a R element to a junction 
insert_J0 Insert a 0-junction in a bond 
insert_J1 Insert a 1-junction in a bond 
replace_C Replace the current element with a C  
replace_I Replace the current element with a I 
replace_R Replace the current element with a R 
+ Add two ERCs 
- Substract two ERCs 
enda End terminal for add functions 
endi End terminal for insert functions 
endr End terminal for replace functions 
erc Ephemeral Random Constant (ERC) 
 
    Table 1. Operators in Basic Function Set 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As illustrated in figure 1, a resonant unit (RU) that 
composes of one I, R, and C component all attached to 
an 1-junction, is inserted to an original bond with 
modifiable site through the insert_RU function. After 
insert_RU function is executed, a new RU is created and 
one additional modifiable site, namely bond (3), appears 
in the resulting phenotype of bond graph along with the 
original modifiable site bond (1).  The new added 1-
junction also has an additional modifiable site (2). As 
component C, I, R all have parameters to be evolved, 
insert_RU function has three corresponding arity (4) (5) 
(6) for numerical evolution of parameters. 

Figure 2 explains how insert_BU function works. 
Bridging unit (BU) is a subsystem that composes of 
three capacitors with the same parameters attached 
together with a 0-junction in the center and two 1-
junctions at the left and at the right respectively. After 
execution of the insert_BU function, an additional 
modifiable site (2) appears at the rightmost newly 
created bond. The reason why RU and BU looks in that 
way is given in the next case study section. 

3. Case Study 

3.1 Problem Formulation 

Automated synthesis of a RF MEM device, micro-
mechanical band pass filters is used as an example in 
this paper (Wang and Nguyen 1999).  Through 
analyzing two popular topologies used in surface 
micromachining of micro-mechanical filters, we found 
that they are topologically composed of a series of RUs 
and Bridging Units (BUs) or RUs and Coupling Units 
(CUs) concatenated together. Figure 3, 4, 5 illustrates 

Modular Function Set 

insert_RU Insert a Resonant Unit 
insert_CU Insert a Coupling Unit 
insert_BU Insert a Bridging Unit 
add_RU Add a Resonant Unit 
insert_J01 Insert a 0-1-junction compound 
insert_CIR Insert a special CIR compound 
insert_CR Insert a special CR compound 
Add_J Add a junction compound  
+ Add two ERCs 
  - Substract two ERCs 
endn End terminal for add functions 
endb End terminal for insert functions 
endr End terminal for replace functions 
erc Ephemeral Random Constant (ERC) 

 

 Resonant 
Unit

Bridging 
Unit … …

Figure 3. Layout of Filter Topology I: 
Filter is composed of a series of Resonator Units 
(RUs) connected by Bridging Units (BUs).      

Table 2. Operators in Modular Function Set 

Figure 1. Operator to Insert Bridging Unit 

Figure 2. Operator to Insert Resonant Unit 



the layouts and bond graph representations of filter 
topology I and II.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Design Embryo 

All individual genetic programming trees create bond 
graphs from an embryo.  Selection of the embryo is also 
an important topic in system design, especially for multi-
port systems. In our filter design problems, we use the 
following bond graph as our embryo, as shown in Figure 
6. 

 

 

 

3.3 Function Set 
GPBG is a quite general approach to automate synthesis 
of multidisciplinary systems. Using a basic set of 
building blocks, we can actually try to construct any 
kind of systems without constraints. However, 
engineering systems in the real world are confined by 
various constraints. So if we implement GPBG to 
synthesis real world engineering systems, we have to 
take care that those constraints can be enforced within 
the bounds of the approach.   
 
Unlike our previous designs with basic function sets, 
which impose fewer topological constraints on design, 
MEMS design features relatively few devices in the 
component library. These devices are typically more 
complex in structure than those primitive building 
blocks used in the basic function set. Only evolved 
designs represented by bond graphs matching the 
dynamic behavior of those devices belong to the 
component library are expected to be manufacturable 
under current or anticipated technology. Thus, an 
important and special step in MEMS synthesis with the 
GPBG approach is to define a realizable function set 
that, throughout execution, can always produce 
phenotypes that can be built using existing or expected 
technology. 
 
By analyzing the system of MEM filters from a bond 
graph viewpoint, we know that it is basically composed 
of Resonator Units (RUs) and Coupling Units (CUs). 
Another popular MEM filter topology includes 
Resonator Units and Bridging Units (BUs). It turns out 
that a realizable function set for these design topologies 
often includes functions from both the basic set and 
modular set. In many cases, multiple realizable function 
sets, rather than only one, can be used to evolve 
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Figure 4. Bond Graph Representation of 
Filter Topology I 

Figure 5. Layout of Filter Topology II: 
Filter is composed of a series of Resonator
Units coupled by Coupling Units.   
Its corresponding bond graph representation
is also shown. 

          Figure 6. Embryo of Design 



realizable structures of MEMS. In this research, we used 
the following function set, along with traditional 
numeric functions and end operators for creating filter 
topologies with coupling units and resonant units.   
 
 
 

3.4 Fitness Function 
The fitness function is defined as follows. 
Within the frequency range of interest, uniformly sample 
100 points.  Compare the magnitudes of the frequency 
response at the sample points with target magnitudes, 
which is one within the pass frequency range of [316, 
1000] Hz, and zero otherwise between 0.1 and 100KHz. 
Compute their differences and get a sum of squared 
differences as raw fitness, defined as rawFitness .  Then 
normalized fitness is calculated according to: 

)(5.0
raw

norm FitnessNorm
NormFitness ++=  

3.5 Experimental Setup 
We used a strongly-typed version [Luke, 1997] of lilgp 
[Zongker and Punch, 1996] to generate bond graph 
models.  The major GP parameters were as shown 
below: 
 
 
 
 
 
 
 
 
 
Three major code modules were created in our work. 
The algorithm kernel of HFC-GP was a modified 
version of an open software package developed in our 
research group -- lilgp. A bond graph class was 
implemented in C++. The fitness evaluation package is 
C++ code converted from Matlab code, with hand-coded 
functions used to interface with the other modules of the 
project. The commercial software package 20Sim was 
used to verify the dynamic characteristics of the evolved 
design. The GP program obtains satisfactory results on a 
Pentium-IV 1GHz in 1000~1250 minutes. 
 
3.6 Experiment Results 
Experiment results show strong topological search 
capability of genetic programming and feasibility of our 
GPBG approach for finding realizable design for micro-
mechanical filters. Although significant fabrication 
difficulty is currently presented when fabricating a 
micro-mechanical filter with more than 3 resonators, it 

does not invalidate our research and topological search 
capability of the GPBG approach, considering its 
potential in exploring more complicated topologies of 
future MEMS design and the ever-progressing 
technology frontiers of MEMS fabrication. 

 
  
 
In figure 7 above, we define K = number of resonant 
units used in the filter topology. It is very obvious from 
the fitness improvement curve that as evolution goes on, 
fitness value undergoes continual improvement (Hu et al 
2002). It is also an interesting observation that, as fitness 
improves, the value of K also becomes larger. This 
observation is supported by the fact that a higher-order 
system with more resonator units has the potential of 
better system performance than its low-order 
counterpart. Table 2 shows the values of K and the 
numbers of the generations at which K changes. 
 
 
 
 
 
The plot of corresponding system frequency responses at 
generations 98, 164, 364 and 409 are shown in Figure 8. 
 

 

Population size:  500 in each of 
thirteen subpopulations  
Initial population:  half_and_half 
Initial depth:  4-6 
Max depth:  50    Max_nodes  5000  
Selection:  Tournament (size=7) 
Crossover:  0.9    Mutation:  0.3 
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# of generations 64 98 158 164 364 409 
          K 2 3 4 5 6 7 
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Figure 7. Fitness Improvement Curve 

Table 2. Number of Generations vs. Number of Resonator Units

Figure 8. Plot of frequency responses of design 
candidates with different number of resonator units. 
All results are from one genetic programming run of 
GPBG approach. 



A layout of a design candidate with three resonators and 
its bond graph representation are shown below in figure 
9. Notice that the geometry of resonators may not show 
the real sizes and shapes of a physical resonator and the 
layout figure only serves as a topological illustration. 
 
 

 

 

 

 

 

 

 

 

4. Extensions 
In MEMS, there are two or three levels of designs that 
need to be synthesized. Usually the design process starts 
with basic capture of the schematic of the overall 
system, then goes on through layout and construction of 
a 3-D solid model. So the first design level is the system 
level, which includes selection and configuration of a 
repertoire of planar devices or subsystems. The second 
level is 2-D layout of basic structures like beams to form 
the elementary planar devices. In some cases, if the 
MEMS is basically a result of a surface-micro machining 
process and no significant 3-D features are present, 
design of this level will end one cycle of design. More 
generally, modeling and analysis of a 3-D solid model 
for MEMS is necessary.  

For the second level -- two-dimensional layout 
designs of cell elements -- layout synthesis usually takes 
into consideration a large variety of design variables and 
design constraints. The most popular synthesis method 
seems to be based on conventional numerical 

optimization methods. The design problem is often first 
formulated as a nonlinear constrained optimization 
problem and then solved using an optimization software 
package (Zhou 1998). Geometric programming, one 
special type of convex optimization method, is reported 
to synthesize a CMOS op-amp. The method is claimed 
to be both globally optimal and extremely fast. The only 
disadvantage and limitation is that the design problem 
has to be carefully formatted first to make it suitable for 
the treatment of the geometric programming algorithm. 
However, all the above approaches are based on the 
assumption that the structures of the cell elements are 
relatively fixed and subject to no radical topology 
changes (Hershenson et al 2001). A multi-objective 
evolutionary algorithm approach is reported for 
automatic synthesis of topology and sizing of a MEMS 
2-D meandering spring structure with desired stiffnesses 
in certain directions (Zhou et al 2001). 
 
The third level design calls for FEA (Finite Element 
Analysis). FEA is a computational method used for 
analyzing mechanical, thermal, electrical behavior of 
complex structures. The underlying idea of FEA is to 
split structures into small pieces and determine 
behaviors of each piece. It is used for verifying results of 
hand calculations for simple model, but more 
importantly, for predicting behavior of complex models 
where 1st order hand calculations are not available or 
insufficient. It is especially well suited for iterative 
design. As a result, it is quite possible that we can use an 
evolutionary computation approach to evolve a design 
using evaluation by means of FEA to assign fitness.  
Much work in this area has already been reported and it 
should also be an ideal analysis tool for use in the 
synthesis loop for final 3-D structures of MEMS. 
However, even if we have obtained an optimized 3-D 
device shape, it is still very difficult to produce a proper 
mask layout and correct fabricate procedures. 
Automated mask layout and process synthesis tools will 
be very helpful to relieve the designers from considering 
the fabrication details and focus on the functional design 
of the device and system instead (Ma L., Antonsson E. 
K. 2000)   
 
Our long time task of research is to include 
computational synthesis for different design levels, and 
to provide support for design engineers in the whole 
MEMS design process.  
 
 

5. Conclusions 
This paper has suggested a design methodology for 
automatically synthesizing system-level designs for 
MEMS. For design of systems like the MEM filter 
problem, with strong topology constraints and fewer 
topology variations allowed, the challenge is to define a 
realizable function set that assures the evolved design is 
physically realizable and can be built using existing or 

 

Figure 9. Layout and bond graph representation
of a design candidate from the experiment with
three resonator units coupled with two coupling
units.  



anticipated technologies.  Experiments show that a 
mixture of functions from both a modular function set 
and a basic function set form a realizable function set, 
and that the GPBG algorithm evolves a variety of 
designs with different levels of topological complexity 
that satisfy design specifications.  
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