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Abstract

This paper describes how transfer-learning can turn a Beowulf clus-
ter into a full super-computer with supra-linear qualitative acceleration.
Harmonic Analysis is used as a real-world example to show the kind of
result that can be achieved with the proposed super-computer architec-
ture, that locally exploits absolute space-time parallelism on each machine
(SIMD parallelism) and loosely-coupled relative space-time parallelization
between different machines (loosely coupled MIMD).
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1 Introduction

Years 2005 and 2006 have been a turning point in computer science. Before
2005, parallel machines were not widely available even though they had been
the object of intensive research with, for example, the Connexion Machines
CM-1 and CM-2 [1], but also on a smaller scale transputers [2] and vectorial
multi-processor machines such as the 1980-90 era CRAY X-MP, Y-MP super
computers, whose MIMD1 capabilities were not really exploited, for lack of ef-
ficient generic parallel algorithms, which will be the object of this paper. Typi-
cally, 8-vectorial processor CRAY Y-MP machines were used as 8 independent
vectorial computers.

1.1 A bit of history on the development of parallel hard-
ware and software

In 2005, a first physical barrier was hit for air-cooled personal computer CPUs,
with 115W 3.8GHz Intel Pentium 4 Prescott. Because consumption (and there-

1Multiple Instruction Multiple Data, cf. Flynn’s classification [23]
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fore heat production) increases as the cube of the clock frequency, the only way
to improve on CPU performance was to develop multi-core processors (only
twice the consumption for twice the computing power, compared to 8 times the
consumption for twice the clock frequency). The first dual-core Intel processor
was the 130w 3.2GHz Pentium D Smithfield that came out in May 2005 [3]
(reduced clock frequency for higher consumption). It is since that time that all
CPUs are now multi-core CPUs more or less capped at 4GHz (typically only on
one core of all the cores of the CPU), which created software-related problems:

• the computing power for highly-demanding algorithms is not increasing
anymore for sequential algorithms (99% of all algorithms) and no real
speed increase perspective for the future (Intel Core I9 clock speed is still
in <5Ghz in 2020),

• the only possible way to exploit the “new” multi-core architecture that is
now standard since 2005-2006 requires the development of parallel algo-
rithms, which unfortunately are quite difficult to program efficiently.

1.2 Parallelizing on GPGPU cards

The above observation applies for “standard” algorithms that do not parallelize
well. However graphic algorithms used for 3D rendering through vertex shaders
(for games such as Doom) and pixel-based imaging (raster graphics algorithms
for softwares such as photoshop) do not fall in this category as they are inher-
ently (embarrassingly) parallel. Due to the huge gaming market ($150 billion in
20192, larger than the CPU market because there are more gamers than com-
puter scientists) chip manufacturers rapidly created dedicated graphic cards that
implemented hard-wired specialized Graphic Processing Units (GPU) for vertex
and raster algorithms, but it is only in 2006 that the computing power of the
GPU chips became large enough to be able to produce fluid real-time rendering
of both kinds using software algorithms. Because raster and vertex rendering al-
gorithms are very different, chip makers had to create General Purpose Graphic
Processing Units (GPGPUs) whose cores were de facto fully-fledged, i.e. able to
implement any kind of standard algorithms as CPUs would, only with a slower
clock-rate but. . . the first GPGPU card with a dedicated open development en-
vironment (NVIDIA GeForce 8800 GTX + CUDA) boasted in 2006 128 cores,
compared to the 2 cores of the Yonah Intel Dual-Core Pentium.

This meant that the first GPGPU card was a massively parallel processor,
however with a catch: its architecture made it an SPMD (Single Program Mul-
tiple Data) processor composed of SIMD (Single Instruction Multiple Data)
multiprocessors, i.e. vector processors not unlike those of the Cray supercom-
puter series of the 1980s. In practice, this meant that in order to fully exploit
the 8800GTX card as a multiprocessor, it was necessary to be able to paral-
lelize an algorithm not only in 128 independent tasks but many more, because

2https://newzoo.com/insights/articles/the-global-games-market-will-generate-152-1-
billion-in-2019-as-the-u-s-overtakes-china-as-the-biggest-market/
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Figure 1: Parallelization of the evaluation of a Weierstrass benchmark function for 10,
70 and 120 iterations on a 128 cores GeForce 8800GTX GPGPU card, for a growing
number of individuals of a genetic algorithm. Only the evaluation of individuals is
parallelized, so what is seen until Population size 2048 is the increase of the sequen-
tial time of the evolutionary algorithm + one evaluation time for 10, 70, 120 iterations
of the Weierstrass function. After 3072 individuals total time increase is linear again
as the card is fully loaded, with sequential + parallel evaluations adding up.

of a smart lightweight system that used a very large number of registers to
switch between threads in the same context, as NVIDIA GPGPU cards im-
plement spatio-temporal parallelism: spatial parallelism over the 128 cores of
the GPGPU chip, and temporal parallelism thanks to pipelining. The amazing
result seen in Fig. 1 is that when parallelization is well done on an NVIDIA
GPGPU card, evaluation time is constant up to 2048 threads. Then, a tran-
sitory phase is observed as the scheduling mechanism starts to deal with more
than 16 threads per core, until 3072 parallel evaluations are required, after which
the card is fully loaded and computation time is linear again with the sequential
and parallel parts of the code [4].

As shown above, the real number of threads that need to be launched in
parallel to fully exploit the scheduling capacity of a GPGPU card is much larger
than its number of cores, meaning that for a current RTX 2080 TI card with
4352 cores, it is necessary to parallelize code over several tens of thousands of
independent threads in order to be able to correctly load the card. This poses
the question of the kind of algorithm that may need / exploit such extraordinary
number of independent threads, and be generic enough so that it can be used
to solve nearly any kind of problem.
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1.3 Parallelizing on n computers / Philosophical introduc-
tion to absolute vs relative space and time

The problem here is quite different as parallelization over several machines re-
quires data to be exchanged over a network which has its limitations.

In order to facilitate the mathematical description of motion (and more
broadly Newtonian Physics) Sir Isaac Newton proposed in Philosophiæ Naturalis
Principia Mathematica (1687) [5] that (cf. citation in annex):

• space and time be considered as absolute measures,

• time flows regularly and continuously in one direction.

The incredible success of Newtonian physics led most of the physicists to
firmly adopt these postulates, even though Leibniz was a ferocious opponent
to absolute space and time, as seen in his 1715-16 correspondence with Samuel
Clarke [6], a supporter of Newton. It is not before Einstein’s famous June 30th
1905 paper Zur Elektrodynamik bewegter Körper (On the Electrodynamics of
Moving Bodies) [7] that Newton’s absolute definition of space and time were
shown as being based on wrong assumptions, by a pure thought experiment
(Gedankenexperiment) in a way not dissimilar to how Galileo disproved Aristo-
tle’s wrong theory of gravity.

What made physicists validate Newtonian physics is that it is a very good
approximation of what can be measured at a meso-scale. This was also true of
Aristotle’s theory of falling bodies, which more or less corresponds to what is
observed if a body falls in a fluid (there was no known way to create void in
the time of Aristotle). If Aristotle’s physical theories are not taught anymore,
Newton’s physics correspond so well to what is observed in everyday life3 that
it is still taught everywhere in high-schools. It is only at University level that
Einstein’s theories of special and general relativity are taught, and only to stu-
dents who study physics, meaning that even though GPS satellites heavily rely
on it, most adults still consider Newtonian’s physics as true, even though it is
only an approximation. This has consequences in many fields, one of which is
supercomputing.

In this paper, we will describe the implications of Einstein’s special and
general relativity theories on supercomputing. We will present a way to address
this problem by parallelizing on loosely coupled computers, with algorithms that
can exploit knowledge transfer to achieve linear and supra-linear acceleration to
solve any kind of continuous, discrete and combinatorial problems. An example
will be given with harmonic analysis on a simple system made of 4 computers
that exhibits supra-linear acceleration.

3Rightfully so, as it can precisely describe the physical properties of the everyday observ-
able world. It is beyond the everyday observable world (the infinitely small with quantum
mechanics and infinitely large) that Newtonian physics is shown to be an approximation.
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2 Relative space and time concepts applied to
supercomputing

Absolute space and time are so well anchored into everyone’s head that when
designing supercomputers, computer scientists naturally followed these princi-
ples in designing their distributed algorithms, and therefore the machines to
implement them. The problems is that as Einstein explained in [7] (and as
before him Leibnitz had understood), time is not absolute, but relative to each
physical entity.

What probably makes humans (and therefore computer scientists) ignore
this fact is that there is such an incredible difference between the speed of light
(that leads to the Einsteinian notion of locality) and the human perception of
time (1/10ths) that for most human-scale applications, time (and space) can be
considered as being absolute.

However, since 2005, air-cooled processors run at around 4GHz (and much
faster in the case of liquid nitrogen cooled supercomputers) meaning that for
scalar processors, the execution of one instruction takes around .25 nanoseconds,
i.e. the time for a light-speed travelling photon to cover a distance of about 7.5
cm only.

If this distance is of the order of magnitude of the diagonal of a CPU chip, one
understands that any supercomputer made of distinct machines whose CPUs
or GPUs are more than 7.5 cm away are directly confronted to the principle
of locality of Einstein’s Special Theory of Relativity described in the famous
Einstein Podolski Rosen (EPR) 1935 paper [8], because the fastest high-speed
network that can be created cannot transfer data faster than the speed of light.

Then, even if superluminal transmission speed could be achieved between in-
dependent processors, there is no common clock binding the different machines
of a supercomputer together. Thence, it follows that absolute time is a concept
that cannot be used as a basis to design super-computer distributed software:

Absolute and perfect synchronization between machines is hopeless.

In parallel computing, linear acceleration means that using 10 computers
would allow a 100% parallelizable program to run 10 times faster. While it is
possible to obtain linear (or even super-linear) acceleration in certain conditions
(after data is locally transferred on the correct nodes), this can only be achieved
for a small period of time (transient mode). In continuous operation, there is
simply no way for an operator that adds or multiplies two floating point numbers
in .25ns to obtain its operands from distant computers at exactly the right time
when it is needed.

Therefore, linear acceleration is simply impossible to achieve in super-computers
in continuous operation.

Such perfect synchronization is needed because traditional supercomputers
expect to exchange data needed for small grain operators such as an addition
of a multiplication. The question posed in this paper is whether exchanging
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higher-level information could make it possible to alleviate the very strong time
constraints of data-exchange.

Indeed, in computer science, a distinction is traditionally made between:

• data: 20,

• information: 20 kg, 20 km, 20C, 20K, . . . , and

• knowledge: 20 km is a long walking distance, 20K is very cold for a human.

The problem with processing data is that data carries nearly no meaning,
so it is necessary to process millions of pieces of data to extract knowledge out
of data. A 10 megapixel photo may contain 30 megabytes, if each colour pixel
is coded on 3 bytes. Each byte of each pixel is a piece of data that does not
represent much. However, assembled together, the 30 megabytes may represent
the photo of a Burmese cat, watching a canary in a red cage in an empty room
with white walls.

Somehow, the 80 letters A Burmese cat, watching a canary in a red cage in
an empty room with white walls represent knowledge, that can be considered as
an approximation of the 30 megabytes of data contained in the photo.

Could exchanging knowledge between computers solve the problem of linear
acceleration, i.e. getting 10 computers to go 10 times faster than 1 computer
to execute one task, on generic problems?

2.1 Transfer Learning

In traditional machine learning (that is, the field of Artificial Intelligence that
automatically processes data to extract meaningful relationships between data
so as to make predictions about unseen data), Transfer Learning is a widely used
method that consists, basically, in transferring portions of a trained model A
(trained on a source domain) to an untrained model B (to be trained on a target
domain). Transfer Learning is mainly used to cope with some lack of data in
the target domain: if the source and target domain are related, it the postulate
of Transfer Learning is that it should be possible to reuse the knowledge learned
by the source model. For instance, if there exists a model A that can predict
the risk of developing heart diseases in adults, some of the knowledge learned
by A could be reused in a model B to be trained to predict the same risk but
in the case of children (the two domains are different but related). The main
challenge is to tackle the differences between the source and the target domains
so as to generalize well on the target domain.

In practice, in the case of Deep Machine Learning, Transfer Learning consists
in reusing the parameters learned at the layer levels of Deep Neural Networks.
Given the hierarchical nature of Deep Neural Networks (DNN), it has been
empirically shown [9] that transferring the layers closest to the input (low level
features) in trained model A lead to faster learning performance in the training
of the untrained target model B. Higher level features (in the layers closer to
the outputs and specific to the task at hand) are too specific to be transferable
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without considerable modifications. Even though this empirical study gave a
precious insight regarding what portions of a model can be transferred, it should
be noted that, so far, the actual success of a transfer (i.e. whether model B is
more accurate after the transfer than it would have been without) can only be
evaluated with trial and error (i.e., after transferring some parameters, checking
the accuracy, transferring different parameters, checking the accuracy, etc.) and
this process is extremely time consuming.

So Transfer Learning is about transferring knowledge rather than data, as
what is transferred (parameters of a trained neural network) are representations
of the data processed by the trained algorithm A. In other words, the first layers
of the trained Neural Network represent an alternative version of the data, most
often reduced, expressing the –complex– relationships between the attributes of
the data).

Transfer learning can also be also applied in the context of Artificial Evolu-
tion, as presented in the next sections of this paper.

3 Artificial evolution and evolutionary algorithms

Evolution is a generic solver in the sense that beyond biological evolution (that
resulted in creating organisms and animals adapted to their ecosystems) its
computer science embodiment makes it capable of finding good solutions to dif-
ficult continuous, discrete and combinatorial problems. Evolutionary algorithms
are very old. They are among the first ones that were tried on the very first
computers [10], but it is not before the 1970s and 1990s that they started to
provide really interesting results. Since 2000, Genetic Programming (a branch
of artificial evolution) routinely produces human-competitive results.

Artificial evolution regroups many different kinds of evolutionary algorithms,
among which evolution strategies [12, 13, 14, 15], genetic algorithms [12, 13, 14,
15], evolutionary programming [12, 13, 14, 15] and genetic programming [16].

Evolutionary algorithms are very well described in the computer science lit-
erature, so they will only be shortly described below. After having decided on a
digital representation of a potential solution to a problem (called an individual),
the following steps are implemented:

1. Initialize a large number µ of individuals (called a population)

2. Evaluate the quality of the individuals (called the fitness). Evaluation
turns the individuals into potential “parents”.

3. For nbGen generations, do:

(a) Create a population of λ children by:

i. Selecting n parents among the best individuals of the population

ii. Creating one child by using variation operators (typically crossover
and mutation)

(b) Evaluate the population of λ children
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(c) Reduce the population of (µ+λ) individuals back to its initial µ size
by selecting individuals among the best for the next generation

(d) If a termination condition is met (valid solution, computing time
constraint, . . . ) stop the algorithm and return the best individual of
the population, otherwise return to step 3.

3.1 Massive parallelization over GPGPU cards

What is very nice with evolutionary algorithms is that they are embarrassingly
parallel: suppose that the population size is 1000 individuals and that at every
generation, 1000 children are created, then after the initialization step, all ini-
tial individuals can be evaluated independently. At each generation, all newly
created children can also be evaluated independently.

In the case of evolution strategies or genetic algorithms, the evaluation (fit-
ness) function is identical for all individuals, meaning that these algorithms are
perfectly suited for the SIMD parallelism of GPGPU cards [11].

The EASEA (EAsy Specification of Evolutionary Algorithms) platform was
created in 1998, in order to allow non-computer scientists (mathematicians,
physicists, chemists, biologists, engineers) to use artificial evolution to solve
their difficult problems. It was first described in a paper in 2000 [17]. In
2006, the first NVIDIA General Purpose Graphic Processing Unit came out in
the 8800GTX graphic card, along with the CUDA development environment.
A PhD [18] was then started to efficiently and automatically parallelize the
algorithms implemented by the EASEA platform and the first papers started to
come out in 2009 [19, 20]. Acceleration factors of more than x100 vs a sequential
version on CPU are regularly achieved on most kinds of problems.

What is wonderful in the parallelization of evolutionary algorithms is that:

1. Using thousands of individuals makes it possible to have a near-perfect
SIMD parallelization of the completely sequential fitness function as it is
not the code of the function that is parallelized, but the execution of the
exact same sequential fitness function, launched in parallel with thousands
of different parameters (individuals).

2. In fact, all the steps of the evolutionary algorithm can be parallelized (not
only the evaluation part).

So Artificial Evolution is a way to efficiently parallelize sequential code on
potentially thousands of cores (in fact, no parallelization is needed: thousands
of sequential evaluations are launched in parallel). Evolution takes care of effi-
ciently exploiting the sequential computations done in parallel.

In the example used below to show how PARSEC computers are working,
parallel evaluation was performed on equations potentially modelling Fourier
Transform Ion Cyclotron Resonance (FT-ICR) specrtometry data. Sequential
evaluation of one population generation on an Intel Core i7-9700K CPU over-
clocked to 4.6GHz necessitated 177s. Parallel execution of the Parallel evalu-
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ation of the same population generation on an NVIDIA GEFORCE RTX2080
TI GPGPU necessitated 0.98s, for an obtained speedup of ×180.

This was done by using standard SIMD parallelization techniques that are
described in [19].

3.2 Parallelizing over several computers via transfer learn-
ing (island model)

As was described in section 2.1, when parameters of a trained neural network
are transferred to another neural network, it is not data that is transferred,
but knowledge. Indeed, the parameters of the source trained network can be
regarded as a model of the data on which the neural network was trained.

Supposing now that several machines try to optimize the same problem.
Individuals that are evolved in these machines correspond to potential solu-
tions to the problem, so the individuals carry knowledge about the problem.
Therefore, exchanging individuals between different machines running a similar
evolutionary algorithm can be considered as Transfer Learning.

In Artificial Evolution, this type of parallelization is called island paral-
lelization, as a reference to the ecological niches found by Darwin on different
Galapagos islands during his famous trip on HMS Beagle. The interesting evo-
lutionary feature of evolving different populations on different islands is that
the populations are kept distinct thanks to the distance separating the islands.
Only once in a while, during a storm, can a bird be blown by the wind from an
island to another island. This is exactly what is done when implementing the
island model in artificial evolution.

Once in a while, an individual carrying knowledge is transferred from island
A to island B. If the individual from island A is not as good as the population
in island B, it will not be chosen for breeding and will not be selected to survive
to the next generation. It will quickly disappear from the population of island
B.

On the contrary, if the individual from island A is better than the best
individuals of island B, then it will be elected for breeding and will bring genetic
diversity to island B, preventing it from prematurely converging4 towards a local
optimum.

Therefore, implementing an island model preserves diversity and the effi-
ciency of crossover when creating children (cf. experiments below).

4 Introducing PARSEC machines

PARSEC stands for PARallel System for Evolutionary Computing. A PARSEC
machine is made of a number of computers that are interconnected with a low-

4In population algorithms, “converging” happens when all individuals become identical, i.e.
when they have converged in a local optimum. When this happens, crossover is not operative
anymore, because the crossover between two clones produces a child that is identical to the
parents.
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speed network (typically a cheap Ethernet network). The main difference with a
Beowulf cluster [21] is that PARSEC machines can use heterogeneous machines,
running at different speed, and even heterogeneous operating systems. The other
difference with a Beowulf cluster is that in order to overcome the heterogeneity
of the machines, a PARSEC machine must run collaborative software that can
exchange knowledge, not data.

The specificity of PARSEC machines is that they are loosely coupled, whereas
standard supercomputers are made of tightly coupled machines interconnected
with very expensive high-speed fiber-optic networks that represents a big frac-
tion of the cost of a supercomputer. Another problem with standard supercom-
puters is that if one part of the hardware breaks down (the power supply of one
of the computers that is part of the supercomputer, for instance), the whole
computation must stop until the repair is done.

When sharing knowledge using the Island model, all computers are indepen-
dent and continue trying to solve the problem on their own. If one machine
breaks down, computing continues on the other machines. The only implica-
tion of having one less machine is that the other machines will not be able to
benefit from its computing power. When the broken down machine is repaired
and up again, computing can be restarted from scratch on this machine only.
Very soon, the newly restarted machine will start receiving the latest solutions
meaning that it will recover and be operational again on the cutting edge of the
computation within seconds. Thus, PARSEC machines are inherently robust.

5 Experimenting with a PARSEC machine on
the harmonic analysis problem

5.1 Description of the harmonic analysis problem

Harmonic analysis is a mathematical method used to express signals as sums of
sines. Several methods have been proposed for the analysis of harmonic signals,
Fast Fourier Transform (FFT) being the most widely used one. Nowadays,
with advances in technology, obtaining large and complex data has become very
common. When the amount data is large and these data are noisy, the FFT
method performs poorly, especially in finding the phase parameter of sinusoidal
functions. Standard methods use denoising algorithms to remove the noise
from the signals before applying the Fourier Transform. Number of denoising
algorithms have been developed [22] but computation time is very long when the
data is large and complex and even with denoised signals, the Fourier Transform
does not determine the phase parameter correctly.

In this paper, we present an artificial evolution approach run on a PARSEC
machine in order to determine the harmonic components of a noisy signal pro-
duced by an FT-ICR mass spectrometer. FT-ICR mass spectrometers are used
to measure the weight of molecules rotating in an electro-magnetic field. As
molecules rotate, a sinusoidal image is produced and the resulting signals can
be modelled using a sum of sine waves, as given in the following formula:
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Signal[i] =
∑
peaks

A× sin(ω × i+ φ) + η (1)

where A is the amplitude, ω is the frequency, φ is the phase and η is noise.

Figure 2: Complete data for Substance P is obtained from the FT-ICR spec-
trometer of MSAP (Miniaturization, for Synthesis, Analysis and Proteomics
CNRS USR 3290 laboratory, Lille University). The vertical lines are beats due
to the constant interval between the isotopic peaks of a pure substance.

Evolutionary algorithm have been previously applied in a few number pub-
lications for analysing harmonic signals. The authors of [24] used a genetic al-
gorithm method for harmonic analysis of NMR (Nuclear Magnetic Resonance)
signals with low signal-to-noise ratio. It should be noted that NMR spectrum is
much smaller in size compared to FT-ICR spectrum: they used a small data set
with only 128 points on a Pentium 200MHz PC in their analysis. However, this
method was costly in time and thus it was recommended to use it only when
the signal-to-noise ratio is low since conventional methods perform poorly in
this case. [25] applied a real coded genetic algorithm for harmonic analysis and
used simulated data to test their method. They concluded that a signal with
a sum of 16 sinuosids can be estimated with only 20 points using evolutionary
algorithm method whereas 200 000 points are needed if FFT method is used.
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5.2 Description of the data

Fig. 2 shows the data output from the FT-ICR machine for Substance P5. The
generated dataset contains 8 million points on 1 dimension. As observed in Fig.
2, the signals are damped all along the acquisition, as molecules are interfering
with the imperfect vacuum in the machine. In order to find a sum of sines (that
has a constant amplitude), genetic programming was used to find the damping
equation matching the energy loss of the molecules. The function is then used
to normalize the data by straightening the signal.

6 Obtained results

The first point to discuss is whether artificial evolution is capable of finding a
good solution to the harmonic analysis problem.

Figure 3: Spectrum of the evolved functions (red). The 6th peak can be seen.

Only a very small part of the signal has been used (2048 points) randomly
extracted from a larger set (16384 points) out of the 8M points (Non-Uniform
Sampling). The genetic algorithm breaks the Nyquist constraint which states
that the acquisition should comprize at least two complex signal periods, mean-
ing that evolutionary algorithms could be used for faster acquisition of ion cy-
clotron resonance mass spectrometry. The precision obtained on peak position
is equivalent to the one obtained by FFT whereas the accuracy on peak intensity
is better. Furthermore the same algorithm is able to deconvolute non-uniform
sampling data obtained by skipping points in the acquisition which is a major
improvement in 2D spectroscopies.

The presented method is not costly in time as its execution time is linearly
proportional to the sampling size and the number of sines in the signal. So it
can be used in the processing of large datasets such as those produced in FT-
ICR mass spectrometry where a single spectrum may contain 16M points. The

5https://en.wikipedia.org/wiki/Substance_P
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application to real world complex mixtures which may comprise up to 100,000
sines [28] is under investigation and to 2D FT-ICR mass spectrometry which is
currently limited by the computational power.

6.1 Discussion on the computation time between island
and isolated runs

In this section, two main sets of experiments are presented, in which harmonic
analysis is performed by using:

a) an isolated artificial evolution algorithm with 262 144 individuals.

b) 4 islands with 65 536 individuals each, loosely coupled over an Ethernet
network, exchanging individuals every second.

Individuals are composed of the parameters for 10 sines, i.e. 30 single pre-
cision real values (120 bytes), so the total load on the network between the
4 machines is to transfer 480 bytes per second, without any synchronization
between the machines (incoming individuals are integrated at the next new
generation, where they replace a bad individual in the accepting island).

Figure 4: Evolution of the fitness of the island model (left curves) vs isolated
runs (right curves). Lower values means better data fitting. Nb: the x-axis is
given in log2 scale.
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6.1.1 Fitness evolution of the island model vs isolated runs for sim-
ilar end results

What can be seen in Fig. 4 is that the best fitness of the islands (that represents
the error between the evolved sum of sines and the obtained data that must be
minimized) improves much faster than the fitness of the isolated runs.

This is expected as 4 machines have 4 times the computing power of one
machine. The big question is whether loosely coupled machines can cooperate
well enough to be able to exhibit linear acceleration.

Figure 5: Boxplots comparing the obtained error values for isolated and 4-island
runs after 2, 4, 8, 16, 32 and 64 seconds (once more a log2 scale).

Because artificial evolution is a stochastic algorithm that contains a random
part, it is important to show boxplots over several experiments. Fig. 5 shows
the boxplots of the best fitness on 18 isolated runs (red) and the 4 islands
(blue). One can see that variability is much more important in the 18 262144
isolated independent runs than on the island model, where standard deviation
is negligible. In fact, in order to find results that are comparable in quality to
the island model (below value 5), it was necessary to launch 18 independent
isolated runs, meaning that the runtime for isolated runs should in effect be
multiplied by 18 to obtain comparable results than with the island model.
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7 Defining qualitative acceleration

Usually, the maximum acceleration that can be obtained by parallelizing an
algorithm is described in terms of Amdahl’s law [27]:

A =
s+ p

s+ p/N
(2)

with A the maximum expected acceleration for N the number of processors, s
the sequential time on one processor and p the sequential time of a perfectly
parallelizable piece of code.

Gustafson’s law [26] shows how this equation is too restrictive, as what must
be taken into account is proportional acceleration, and not absolute acceleration:

Ap =
s′ + p′N

s′ + p′
(3)

with Ap being Gustafson’s proportional acceleration, N the number of proces-
sors and s′ and p′ the sequential and parallel time taken on the parallel system.

However, both acceleration metrics refer to the number of instructions ex-
ecuted per second in sequential or parallel systems. We will say that these
metrics define quantitative acceleration.

However, on real-world problems, what is interesting is not the number of
instructions performed per second, but the quality of the results obtained for a
given run time.

Because the island model presented in this paper to interconnect different
machines is a complex system with emergent properties6, we are interested in
measuring acceleration obtained by the island model vs the isolated model not
in terms of number of instructions per second but in term of necessary time to
obtain a similar quality, as measured by the error to be minimized between the
acquired signal and the sum of sines that is evolved to model the signal.

We therefore propose a new acceleration metrics that we call qualitative
acceleration, defined by the ratio between the time needed for the island model
to obtain an error value over the time needed for an isolated algorithm to obtain
the same error value:

Aq =
tim(ε)

tis(ε)
(4)

With Aq the quantitative acceleration, tim(ε), the time for the island model to
reach error value ε and tisε the time for the isolated algorithm to reach the same
ε error value.

Qualitative acceleration can be plotted by taking slices from the Best Fitness
over Time curve (Fig. 4) and having on the x axis the values attained by both
experiments and in y axis the time ratio between isolated model (reference) and
island model.

6An emergent system can be defined as a number of autonomous entities in interaction, that
create several levels of collective organization leading to emergent (or immergent) behaviour.
In short complex systems can be summarized by Aristotle’s famous statement: the whole is
more than the sum of the parts.
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Figure 6: Acceleration plot of island runs with respect to single runs.

The result is Fig. 7, where we can see the time ratio between both models.
The time to find value 40.5 is roughly similar for both models. however, it is
about 2.5 faster to find value 35.5 with the island model than with the isolated
model. This represents an infra-linear acceleration as 4 machines are only 2.5
times faster to find the same result.

However, things get interesting as it becomes more and more difficult to find
low error values. From error value 20 to 10, linear acceleration (≈ 4) is achieved.

Then, something really nice happens: 4 machines obtain value 5.5 nearly 20
times faster than one single machine, with an identical population size.

Values 5.5 was chosen as the lowest value to compare both models because
it was the only value found by at least 5 isolated algorithms (the 13 other could
not find this error value).

7.1 Defining supralinear acceleration

Linear acceleration is defined as obtaining and ×N speedup with N machines.
On Fig. 7, this would appear as a horizontal line with y value 4.

Super-linear acceleration would be represented by a horizontal line with a y
value greater than 4. However, this is not what is observed on Fig. 7.

Beyond value 10 (when it becomes really difficult to find better results), the
island model becomes much faster as its individuals still benefit from efficient
crossover operators, because the rare individual migrations between the islands
prevented their population from converging to a local optimum, therefore main-
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taining genetic diversity between the individuals. Indeed, after a population
algorithm has converged (i.e. when all the individuals are clones, stuck in a
local optimum, sharing identical genes), crossover is ineffective as children will
be identical to the parents. This is what is happening in the panmictic isolated
262144 individuals islands, that can only rely on mutation to find better results
below error value 10.

We therefore define supralinear acceleration as a non-constant positive ac-
celeration evolution, which keeps improving well beyond superlinearity. Indeed,
observed acceleration on the shown example stops at ≈ 20× with only 4 ma-
chines, but this is only due to the fact that we stopped qualitative comparison
at value 5.5.

Supralinear acceleration will still increase until the island model finds values
that cannot be obtained by isolated panmictic runs, in which case acceleration
will de facto increase to infinite values.

8 Discussion on PARSEC machines vs standard
supercomputers and conclusion

Standard supercomputers are nowadays often made of many independent com-
puters hosting one or several GPGPU cards. Whereas parallelization on the
GPGPU cards is difficult to do efficiently for standard algorithms (because they
require to be able to identify tens of thousands of independent threads in the
algorithm that must run in SIMD mode), the very high clock frequency speed
shows achieved nowadays by CPUs show that it is impossible to perfectly syn-
chronize different machines due to Einstein’s principle of locality exposed in his
1905 and 1935 papers.

Attempting to obtain linear accelerations with the number of computers for
continuous operation is therefore a hopeless quest that is bound to fail.

Evolutionary algorithms are generic solvers that can tackle all kinds of dif-
ficult problems, be they continuous, discrete or combinatorial. They are em-
barrassingly parallel, meaning that they parallelize perfectly on SIMD GPGPU
cards, which more or less impose that all cores execute the same instruction at
the same nanosecond, over tens of thousands of threads. This requires abso-
lute time that is achievable inside a single GPGPU chip, but unachievable in
between CPUs.

However, because evolutionary algorithms can use Transfer Learning, ex-
changes between CPU is not limited to meaningless data, that requires millions
of bytes to describe a simple cat (photo). Exchanging individuals between is-
lands run on different CPU makes it possible to achieve not only linear or
super-linear acceleration, but supra-linear acceleration on several machines, by
exchanging but a few bytes per second (480 in the presented example).

This makes it possible to create efficient loosely-coupled PARSEC super-
computers for the only cost of computing power i.e. a fraction of the cost of
a standard supercomputer. Then, the island model makes PARSEC computers
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robust to failures, meaning that no expensive infrastructure is needed to run
them.

In conclusion, the presented experiments show that very good quality results
can be obtained on a state of the art difficult problem (harmonic analysis) by
using loosely coupled PARSEC machines, without the use of an expensive high
speed fiber optic network to interconnect them. × 180 acceleration was achieved
on SIMD parallelization of the 262144 individuals of the algorithm which had
to be multiplied by > 20 to take into account the acceleration obtained on 4
island-interconnected machines, amounting to a ×3600 acceleration factor.

Results obtained in 1 minute on this 4-machine PARSEC system were there-
fore equivalent to a 60 hours run for a sequential algorithm on a CPU.

We believe cheap PARSEC machines could be a good alternative to current
million dollars super-computers7.
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Annex
Quotation of Scholium (page 5) of chapter 1 (Definitions) of Newton’s

MATHEMATICAL PRINCIPLES OF NATURAL PHILOSOPHY 8:

Hitherto I have laid down the definitions of such words as are less
known, and explained the sense in which I would have them to be under-
stood in the following discourse. I do not define time, space, place and
motion, as being well known to all. Only I must observe, that the vul-
gar conceive those quantities under no other notions but from the relation
they bear to sensible objects. And thence arise certain prejudices, for the
removing of which, it will be convenient to distinguish them into absolute
and relative, true and apparent, mathematical and common.

I. Absolute, true, and mathematical time, of itself, and from its own
nature, flows equably without regard to anything external, and by another
name is called duration: relative, apparent, and common time, is some
sensible and external (whether accurate or unequable) measure of duration
by the means of motion, which is commonly used instead of true time; such
as an hour, a day, a month, a year.

II. Absolute space, in its own nature, without regard to anything ex-
ternal, remains always similar and immovable. Relative space is some
movable dimension or measure of the absolute spaces; which our senses
determine by its position to bodies; and which is vulgarly taken for im-
movable space; such is the dimension of a subterraneous, an aereal, or
celestial space, determined by its position in respect of the earth.

7A 800 TFlop PARSEC machine is currently being installed at UFAZ Franco-Azerbaijani
University in Baku for around 150K Euros.

8https://ia902706.us.archive.org/0/items/newtonspmathema00newtrich/

newtonspmathema00newtrich.pdf
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