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Abstract: Security of computers and the networks that connect them is 
increasingly becoming of great significance. Computer security is defined 
as the protection of computing systems against threats to confidentiality, 
integrity, and availability. There are two types of intruders: external 
intruders, who are unauthorized users of the machines they attack, and 
internal intruders, who have permission to access the system with some 
restrictions. This chapter presents a soft computing approach to detect 
intrusions in a network. Among the several soft computing paradigms, we 
investigated fuzzy rule-based classifiers, decision trees, support vector 
machines, linear genetic programming and an ensemble method to model 
fast and efficient intrusion detection systems. Empirical results clearly 
show that soft computing approach could play a major role for intrusion 
detection. 
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1 Introduction 

The traditional prevention techniques such as user authentication, data 
encryption, the avoidance of programming errors and firewalls are used as 
the first line of defense for computer security. If a password is weak and is 
compromised, user authentication cannot prevent unauthorized use. 
Firewalls are vulnerable to errors in configuration and ambiguous or 
undefined security policies. They are generally unable to protect against 
malicious mobile code, insider attacks and unsecured modems. 
Programming errors cannot be avoided as the complexity of the system 
and application software is changing rapidly, leaving behind some 



exploitable weaknesses. Intrusion detection is therefore required as an 
additional wall for protecting systems [5][9]. Intrusion detection is useful 
not only in detecting successful intrusions, but also provides important 
information for timely countermeasures [11][13]. An intrusion is defined 
as any set of actions that attempt to compromise the integrity, 
confidentiality or availability of a resource. An attacker can gain access 
because of an error in the configuration of a system. In some cases it is 
possible to fool a system into giving access by misrepresenting oneself. An 
example is sending a TCP packet that has a forged source address that 
makes the packet appear to come from a trusted host. Intrusions may be 
classified into several types [12]. 

• Attempted break-ins, which are detected by typical behavior profiles 
or violations of security constraints.  

• Masquerade attacks, which are detected by atypical behavior profiles 
or violations of security constraints.  

• Penetration of the security control system, which are detected by 
monitoring for specific patterns of activity.  

• Leakage, which is detected by atypical use of system resources.  
• Denial of service, which is detected by atypical use of system 

resources.  
• Malicious use, which is detected by atypical behavior profiles, 

violations of security constraints, or use of special privileges. 
The process of monitoring the events occurring in a computer system or 

network and analyzing them for sign of intrusions is known as intrusion 
detection. Intrusion detection is classified into two types: misuse intrusion 
detection and anomaly intrusion detection.  

Misuse intrusion detection uses well-defined patterns of the attack that 
exploit weaknesses in system and application software to identify the 
intrusions. These patterns are encoded in advance and used to match 
against the user behavior to detect intrusion.  

Anomaly intrusion detection uses the normal usage behavior patterns to 
identify the intrusion. The normal usage patterns are constructed from the 
statistical measures of the system features, for example, the CPU and I/O 
activities by a particular user or program. The behavior of the user is 
observed and any deviation from the constructed normal behavior is 
detected as intrusion.  

We have two options to secure the system completely, either prevent the 
threats and vulnerabilities which come from flaws in the operating system, 
as well as in the application programs, or detect them and take some action 
to prevent them in future and also repair the damage. It is impossible in 



practice, and even if possible, extremely difficult and expensive, to write a 
completely secure system. Transition to such a system for use in the entire 
world would be an equally difficult task. Cryptographic methods can be 
compromised if passwords and keys are stolen. No matter how secure a 
system is, it is vulnerable to insiders who abuse their privileges. There is 
an inverse relationship between the level of access control and efficiency. 
More access controls make a system less user-friendly and more likely to 
not be used.  

An Intrusion Detection System (IDS) is a program that analyzes what 
happens or has happened during an execution and tries to find indications 
that the computer has been misused. An intrusion detection system does 
not eliminate the use of preventive mechanism but it works as the last 
defensive mechanism in securing the system. Data mining approaches are 
a relatively new technique for intrusion detection.  

2 Intrusion Detection – A Data Mining Approach 

Data mining is a relatively new approach for intrusion detection. Data 
mining approaches for intrusion detection were first implemented in 
mining audit data for automated models for intrusion detection [2][8]. The 
raw data is first converted into ASCII network packet information, which 
in turn is converted into connection level information. These connection 
level records contain connection features like service, duration, etc. Data 
mining algorithms are applied to this data to create models to detect 
intrusions. Data mining algorithms used in this approach are RIPPER (rule 
based classification algorithm), meta-classifier, frequent episode algorithm 
and association rules. These algorithms are applied to audit data to 
compute models that accurately capture the actual behavior of intrusions as 
well as normal activities. 

The RIPPER algorithm was used to learn the classification model in 
order to identify normal and abnormal behavior [4]. Frequent episode 
algorithm and association rules together are used to construct frequent 
patterns from audit data records. These frequent patterns represent the 
statistical summaries of network and system activity by measuring the 
correlations among system features and the sequential co-occurrence of 
events. From the constructed frequent patterns the consistent patterns of 
normal activities and the unique intrusion patterns are identified and 
analyzed, and then used to construct additional features. These additional 
features are useful in learning the detection model more efficiently in order 
to detect intrusions. The RIPPER classification algorithm is then used to 



learn the detection model. A Meta classifier is used to learn the correlation 
of intrusion evidence from multiple detection models and to produce a 
combined detection model. The main advantage of this system is the 
automation of data analysis through data mining, which enables it to learn 
rules inductively, replacing manual encoding of intrusion patterns. 
However, some novel attacks may not be detected. 

Audit data analysis and mining combine’s association rules and 
classification algorithm to discover attacks in audit data [1]. Association 
rules are used to gather necessary knowledge about the nature of the audit 
data as the information about patterns within individual records can 
improve the classification efficiency. This system has two phases: training 
and detection. In the training phase a database of frequent item sets is 
created for the attack-free items by using only the attack-free data set. This 
serves as a profile against which frequent item sets found later will be 
compared. Next a sliding-window, on-line algorithm is used to find 
frequent item sets in the last D connections and compares them with those 
stored in the attack-free database, discarding those that are deemed normal. 
In this phase a classifier is also trained to learn the model to detect the 
attack. In the detection phase a dynamic algorithm is used to produce item 
sets that are considered as suspicious and used by the classification 
algorithm already learned to classify the item set as attack, false alarm 
(normal event) or as unknown. Unknown attacks are the ones which are 
not able to detect either as false alarms or as known attacks. This method 
attempts to detect only anomaly attacks. 

3 Soft Computing Models 

Soft Computing (SC) is an innovative approach to construct 
computationally intelligent systems consisting of artificial neural 
networks, fuzzy inference systems, approximate reasoning and derivative 
free optimization methods such as evolutionary computation etc. In 
contrast with conventional artificial intelligence techniques which only 
deal with precision, certainty and rigor the guiding principle of soft 
computing is to exploit the tolerance for imprecision, uncertainty, low 
solution cost, robustness, partial truth to achieve tractability and better 
rapport with reality [15]. 



3.1 Fuzzy Rule Based Systems 

Fuzzy logic has proved to be a powerful tool for decision making to 
handle and manipulate imprecise and noisy data. The notion central to 
fuzzy systems is that truth values (in fuzzy logic) or membership values (in 
fuzzy sets) are indicated by a value on the range [0.0, 1.0], with 0.0 
representing absolute falseness and 1.0 representing absolute truth. A 
fuzzy system is characterized by a set of linguistic statements based on 
expert knowledge. The expert knowledge is usually in the form of if-then 
rules. 
Definition 1: Let X be some set of objects, with elements noted as x. Thus, 
X = {x}. 
Definition 2: A fuzzy set A in X is characterized by a membership function 
which are easily implemented by fuzzy conditional statements. In the case 
of fuzzy statement if the antecedent is true to some degree of membership 
then the consequent is also true to that same degree. 

A simple rule structure: If antecedent then consequent 

A simple rule: If variable1 is low and variable2 is high then output is 
benign else output is malignant 

In a fuzzy classification system, a case or an object can be classified by 
applying a set of fuzzy rules based on the linguistic values of its attributes. 
Every rule has a weight, which is a number between 0 and 1 and this is 
applied to the number given by the antecedent. It involves 2 distinct parts. 
First the antecedent is evaluated, which in turn involves fuzzifying the 
input and applying any necessary fuzzy operators and second applying that 
result to the consequent known as inference. To build a fuzzy classification 
system, the most difficult task is to find a set of fuzzy rules pertaining to 
the specific classification problem.  

We explored three fuzzy rule generation methods for intrusion 
detection systems. Let us assume that we have a n dimensional c-class 
pattern classification problem whose pattern space is an n-dimensional unit 
cube [0, 1]n. We also assume that m patterns xp = (xp l,...,xpn) , p = 
1,2,...,m, are given for generating fuzzy if-then rules where xp∈  [0,1] for 
p =1,2,..., m, i =1,2,...,n where xp∈  [0,1] for p =1,2,..., m, i =1,2,...,n. 

Rule Generation Based on the Histogram of Attribute Values 
(FR1) 

In this method, use of histogram itself is an antecedent membership 
function. Each attribute is partitioned into 20 membership functions fh(.), 



h=1,2,...,20. The smoothed histogram ( )k
i im x of class k patterns for the ith 

attribute is calculated using the 20 membership functions fh (.) as follows: 
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The smoothed histogram in (1) is normalized so that its maximum value is 
1. A single fuzzy if-then rule is generated for each class. The fuzzy if-then 
rule for the kth class can be written as  

If x1 is 1
kA   and ... and xn is 

k
1A  then class k,   (4) 

where k
iA  is an antecedent fuzzy set for the ith attribute. The membership 

function of k
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where k
iµ  is the mean of the ith attribute values xpi of class k patterns, and 

k
iσ  is the standard deviation. Fuzzy if-then rules for the two-dimensional 

two class pattern classification problem are written as follows: 
If x3 is 1

3A  and x4 is 1
4A  then class 2   (6) 

If x3 is 2
3A  and x4 is

2 2a +b then class 3  (7) 

membership function of each antecedent fuzzy set is specified by the mean 
and the standard deviation of attribute values. For a new pattern xp = 
(xp3,xp4), the winner rule is determined as follows: 

{ }* *( ). ( ) max ( ). ( ) 1,23 3 2 4 3 41 2
k kA x A x A x A x kp p p p= =

  
 (8) 



Rule Generation Based on Partition of Overlapping Areas (FR2) 

Figure 1 demonstrates a simple fuzzy partition, where the two- 
dimensional pattern space is partitioned into 25 fuzzy subspaces by five 
fuzzy sets for each attribute (S: small, MS: medium small, M: medium, 
ML: medium large, L: large). A single fuzzy if-then rule is generated for 
each fuzzy subspace. Thus the number of possible fuzzy if-then rules in 
Figure 1 is 25.  

 

Fig.1: An example of fuzzy partition 

One disadvantage of this approach is that the number of possible fuzzy 
if-then rules exponentially increases with the dimensionality of the pattern 
space. Because the specification of each membership function does not 
depend on any information about training patterns, this approach uses 
fuzzy if-then rules with certainty grades. The local information about 
training patterns in the corresponding fuzzy subspace is used for 
determining the consequent class and the grade of certainty. In this 
approach, fuzzy if-then rules of the following type are used: 

If x1 is 1jA  and ... and xn is jnA
 
then class Cj, 

with CF = CF j,  j  =1,2 , . . ,N    (9)  
where j indexes the number of rules, N is the total number of rules, jiA is 

the antecedent fuzzy set of the ith rule for the ith attribute, Cj; is the 
consequent class, and CFj is the grade of certainty. The consequent class 
and the grade of certainty of each rule are determined by the following 
simple heuristic procedure: 

Step 1: Calculate the compatibility of each training pattern xp 
=(xp1,xp2,…,xpn) with the jth fuzzy if-then rule by the following 
product operation: 

( ) ( ) ( )...  , 1, 2, ...,11 .x A x A x p mp p pnj j jnπ = × × =
  (10)

 



Step 2: For each class, calculate the sum of the compatibility grades 
of the training patterns with the jth fuzzy if-then rule Rj: 

( ) ( ), k=1,2,...,c 
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where ( ) R jclass kβ  the sum of the compatibility grades of the 

training patterns in class k with the jth fuzzy if-then rule Rj. 
Step 3: Find Class *

jA  that has the maximum value ( ) Rclass k jβ : 
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If two or more classes take the maximum value or no training pattern 
compatible with the jth fuzzy if-then rule (i.e., if βClass k(R j)=0 for k 
=1,2,..., c) ,  the consequent class Ci can not be determined uniquely. 
In this case, let Ci be φ. 
Step 4: If the consequent class Ci is 0, let the grade of certainty CFj 
be CF j  = 0.  Otherwise the grade of certainty CF j i s  determined as 
follows: 
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The above approach could be modified by partitioning only the 
overlapping areas as illustrated in Figure 2. 

small large

  

small large

 
(a) Simple fuzzy grid approach  (b) Modified fuzzy grid approach 

Fig. 2. Fuzzy partition of each attribute 

This approach generates fuzzy if-then rules in the same manner as the 
simple fuzzy grid approach except for the specification of each 
membership function. Because this approach utilizes the information about 



training patterns for specifying each membership function as mentioned in 
Section 2.1.1, the performance of generated fuzzy if- then rules is good 
even when we do not use the certainty grade of each rule in the 
classification phase. In this approach, the effect of introducing the 
certainty grade to each rule is not so important when compared to 
conventional grid partitioning. 

Neural Learning of Fuzzy Rules (FR3) 

The derivation of if-then rules and corresponding membership functions 
depends heavily on the a priori knowledge about the system under 
consideration. However there is no systematic way to transform 
experiences of knowledge of human experts to the knowledge base of a 
Fuzzy Inference System (FIS).  In a fused neuro-fuzzy architecture, neural 
network learning algorithms are used to determine the parameters of fuzzy 
inference system (membership functions and number of rules). Fused 
neuro-fuzzy systems share data structures and knowledge representations. 
A common way to apply a learning algorithm to a fuzzy system is to 
represent it in a special neural network-like architecture. An Evolving 
Fuzzy Neural Network (EFuNN) implements a Mamdani type FIS and all 
nodes are created during learning. The nodes representing membership 
functions (MF) can be modified during learning. Each input variable is 
represented here by a group of spatially arranged neurons to represent a 
fuzzy quantization of this variable. New neurons can evolve in this layer if, 
for a given input vector, the corresponding variable value does not belong 
to any of the existing MF to a degree greater than a membership threshold. 
Technical details of the learning algorithm are given in [16]. 

3.2.Linear Genetic Programming (LGP) 

Linear genetic programming is a variant of the GP technique that acts on 
linear genomes [3]. Its main characteristics in comparison to tree-based GP 
are that the evolvable units are not expressions of a functional 
programming language (like LISP), but the programs of an imperative 
language (like c/c ++). An alternate approach is to evolve a computer 
program at the machine code level, using lower level representations for 
the individuals. This can tremendously hasten the evolution process as, no 
matter how an individual is initially represented, finally it always has to be 
represented as a piece of machine code, as fitness evaluation requires 
physical execution of the individuals.  

The basic unit of evolution here is a native machine code instruction that 
runs on the floating-point processor unit (FPU). Since different 



instructions may have different sizes, here instructions are clubbed up 
together to form instruction blocks of 32 bits each. The instruction blocks 
hold one or more native machine code instructions, depending on the sizes 
of the instructions. A crossover point can occur only between instructions 
and is prohibited from occurring within an instruction. However the 
mutation operation does not have any such restriction. In this research a 
steady state genetic programming approach was used to manage the 
memory more effectively [1]. 

3.3. Decision Trees (DT) 

Intrusion detection can be considered as classification problem where each 
connection or user is identified either as one of the attack types or normal 
based on some existing data. Decision trees work well with large data sets. 
This is important as large amounts of data flow across computer networks. 
The high performance of decision trees makes them useful in real-time 
intrusion detection. Decision trees construct easily interpretable models, 
which is useful for a security officer to inspect and edit. These models can 
also be used in the rule-based models with minimum processing [7]. 
Generalization accuracy of decision trees is another useful property for 
intrusion detection model. There will always be new attacks on the system, 
which are small variations of known attacks after the intrusion detection 
models are built. The ability to detect these new intrusions is possible due 
to the generalization accuracy of decision trees.  

3.4. Support Vector Machines (SVM) 

Support Vector Machines have been proposed as a novel technique for 
intrusion detection. SVM maps input (real-valued) feature vectors into a 
higher dimensional feature space through some nonlinear mapping. SVMs 
are powerful tools for providing solutions to classification, regression and 
density estimation problems. These are developed on the principle of 
structural risk minimization. Structural risk minimization seeks to find a 
hypothesis for which one can find the lowest probability of error. The 
structural risk minimization can be achieved by finding the hyper plane 
with maximum separable margin for the data [14]. Computing the hyper 
plane to separate the data points, i.e. training a SVM, leads to a quadratic 
optimization problem. SVM uses a feature called a kernel to solve this 
problem. A kernel transforms linear algorithms into nonlinear ones via a 
map into feature spaces. SVMs classify data by using these support 
vectors, which are members of the set of training inputs that outline a 
hyper plane in feature space. 



4.0 Attribute Deduction in Intrusion Detection Systems 

Since the amount of audit data that an IDS needs to examine is very large 
even for a small network, analysis is difficult even with computer 
assistance because extraneous features can make it harder to detect 
suspicious behavior patterns. Complex relationships exist between 
features, which are difficult for humans to discover. IDS must therefore 
reduce the amount of data to be processed. This is very important if real-
time detection is desired. The easiest way to do this is by doing an 
intelligent input feature selection. Certain features may contain false 
correlations, which hinder the process of detecting intrusions. Further, 
some features may be redundant since the information they add is 
contained in other features. Extra features can increase computation time, 
and can impact the accuracy of IDS. Feature selection improves 
classification by searching for the subset of features, which best classifies 
the training data.  

Feature selection is done based on the contribution the input variables 
made to the construction of the decision tree. Feature importance is 
determined by the role of each input variable either as a main splitter or as 
a surrogate. Surrogate splitters are defined as back-up rules that closely 
mimic the action of primary splitting rules. Suppose that, in a given model, 
the algorithm splits data according to variable ‘protocol_type’ and if a 
value for ‘protocol_type’ is not available, the algorithm might substitute 
‘flag’ as a good surrogate. Variable importance, for a particular variable is 
the sum across all nodes in the tree of the improvement scores that the 
predictor has when it acts as a primary or surrogate (but not competitor) 
splitter. Example, for node i, if the predictor appears as the primary splitter 
then its contribution towards importance could be given as iimportance. But if 
the variable appears as the nth surrogate instead of the primary variable, 
then the importance becomes iimportance = (pn) * iimprovement in which p is the 
‘surrogate improvement weight’ which is a user controlled parameter set 
between (0-1) [17]. 

5.0 Intrusion Detection Data 

In 1998, DARPA intrusion detection evaluation program created an 
environment to acquire raw TCP/IP dump data for a network by simulating 
a typical U.S. Air Force LAN [10]. The LAN was operated like a real 
environment, but was blasted with multiple attacks. For each TCP/IP 
connection, 41 various quantitative and qualitative features were extracted. 



Of these a subset of 494,021 data were used for our studies, of which 20% 
represent normal patterns [6]. Different categories of attacks are 
summarized in Figure 4. Attack types fall into four main categories: 

DoS: Denial of Service 

Denial of Service (DoS) is a class of attack where an attacker makes a 
computing or memory resource too busy or too full to handle legitimate 
requests, thus denying legitimate users access to a machine. There are 
different ways to launch DoS attacks: by abusing a computer’s legitimate 
features; by targeting the implementation bugs; or by exploiting a system’s 
miss configurations. DoS attacks are classified based on the services that 
an attacker renders unavailable to legitimate users.  

R2L: Unauthorized Access from a Remote Machine 

A remote to user (R2L) attack is a class of attack where an attacker sends 
packets to a machine over a network, then exploits the machine’s 
vulnerability to illegally gain local access as a user. There are different 
types of R2U attacks; the most common attack in this class is done using 
social engineering. 

U2Su: Unauthorized Access to Local Super User (root) 

User to root (U2Su) exploits are a class of attacks where an attacker starts 
out with access to a normal user account on the system and is able to 
exploit vulnerability to gain root access to the system. Most common 
exploits in this class of attacks are regular buffer overflows, which are 
caused by regular programming mistakes and environment assumptions.  

Probing: Surveillance and Other Probing 

Probing is a class of attack where an attacker scans a network to gather 
information or find known vulnerabilities. An attacker with a map of 
machines and services that are available on a network can use the 
information to look for exploits. There are different types of probes: some 
of them abuse the computer’s legitimate features; some of them use social 
engineering techniques. This class of attack is the most common and 
requires very little technical expertise. 



6.0 Experiment Setup and Results 

The data for our experiments was prepared by the 1998 DARPA intrusion 
detection evaluation program by MIT Lincoln Labs [10]. The data set 
contains 24 attack types that could be classified into four main categories 
namely Denial of Service (DoS), Remote to User (R2L), User to Root 
(U2R) and Probing. The original data contains 744 MB data with 
4,940,000 records. The data set has 41 attributes for each connection 
record plus one class label. Some features are derived features, which are 
useful in distinguishing normal connection from attacks. These features are 
either continuous or discrete. Some features examine only the connections 
in the past two seconds that have the same destination host as the current 
connection, and calculate statistics related to protocol behavior, service, 
etc. These are called same host features. Some features examine only the 
connections in the past two seconds that have the same service as the 
current connection and are called same service features. Some other 
connection records were also sorted by destination host, and features were 
constructed using a window of 100 connections to the same host instead of 
a time window. These are called host-based traffic features. R2L and U2R 
attacks don’t have any sequential patterns like DoS and Probe because the 
former attacks have the attacks embedded in the data packets whereas the 
later attacks have many connections in a short amount of time. So some 
features that look for suspicious behavior in the data packets like number 
of failed logins are constructed and these are called content features.  

Our experiments have three phases namely data reduction, training 
phase and testing phase. In the data reduction phase, important variables 
for real-time intrusion detection are selected by feature selection. In the 
training phase, the different soft computing models were constructed using 
the training data to give maximum generalization accuracy on the unseen 
data. The test data is then passed through the saved trained model to detect 
intrusions in the testing phase. The 41 features are labeled as shown in 
Table 1 and the class label is named as AP. This data set has five different 
classes namely Normal, DoS, R2L, U2R and Probes. The training and test 
comprises of 5,092 and 6,890 records respectively [6]. 

Our initial research was to reduce the number of variables. Using all 41 
variables could result in a big IDS model, which could be an overhead for 
online detection. The experiment system consists of two stages: Network 
training and performance evaluation. All the training data were scaled to 
(0-1). The decision tree approach described in Section 4 helped us to 
reduce the number of variables to 12 variables. The list of reduced 
variables is illustrated in Table2. 



Table 1. Variables for intrusion detection data set 

Variable No. Variable name Variable type Variable label 
1 duration continuous A 
2 protocol_type discrete B 
3 service discrete C 
4 flag discrete D 
5 src_bytes continuous E 
6 dst_bytes continuous F 
7 land discrete G 
8 wrong_fragment continuous H 
9 urgent continuous I 
10 hot continuous J 
11 num_failed_logins continuous K 
12 logged_in discrete L 
13 num_compromised continuous M 
14 root_shell continuous N 
15 su_attempted continuous O 
16 num_root continuous P 
17 num_file_creations continuous Q 
18 num_shells continuous R 
19 num_access_files continuous S 
20 num_outbound_cmds continuous T 
21 is_host_login discrete U 
22 is_guest_login discrete V 
23 count continuous W 
24 srv_count continuous X 
25 serror_rate continuous Y 
26 srv_serror_rate continuous X 
27 rerror_rate continuous AA 
28 srv_rerror_rate continuous AB 
29 same_srv_rate continuous AC 
30 diff_srv_rate continuous AD 
31 srv_diff_host_rate continuous AE 
32 dst_host_count continuous AF 
33 dst_host_srv_count continuous AG 
34 dst_host_same_srv_rate continuous AH 
35 dst_host_diff_srv_rate continuous AI 
36 dst_host_same_src_port_rate continuous AJ 
37 dst_host_srv_diff_host_rate continuous AK 
38 dst_host_serror_rate continuous AL 
39 dst_host_srv_serror_rate continuous AM 
40 dst_host_rerror_rate continuous AN 
41 dst_host_srv_rerror_rate continuous AO 



Table 2. Reduced variable set 

C,  E,  F,  L,  W,  X,  Y,  AB,  AE,  AF,  AG,  AI 

Using the original and reduced data sets, we performed a 5-class 
classification. The (training and testing) data set contains 11,982 randomly 
generated points from the data set representing the five classes, with the 
number of data from each class proportional to its size, except that the 
smallest class is completely included. The set of 5,092 training data and 
6,890 testing data are divided in to five classes: normal, probe, denial of 
service attacks, user to super user and remote to local attacks. The datasets 
contain a total of 24 training attack types, with an additional 14 types in 
the test data only. Where the attack is a collection of different types of 
instances that belong to the four classes described earlier and the other is 
the normal data. The normal data belongs to class 1, probe belongs to class 
2, denial of service belongs to class 3, user to super user belongs to class 4, 
remote to local belongs to class 5. All the IDS models are trained and 
tested with the same set of data. 

We examined the performance of all three fuzzy rule based approaches 
(FR1, FR2 and FR3) mentioned in Section 3.1. When an attack is correctly 
classified the grade of certainty is increased and when an attack is 
misclassified the grade of certainty is decreased. A learning procedure is 
used to determine the grade of certainty. Triangular membership functions 
were used for all the fuzzy rule based classifiers. We used 4 triangular 
membership functions for each input variable for the EFuNN training 
(FR3). A sensitivity threshold Sthr = 0.95 and error threshold Errthr = 0.05 
was used for all the classes.89 rule nodes were developed during the one 
pass learning [17]. 

The settings of various linear genetic programming system parameters 
are of utmost importance for successful performance of the system. The 
population space has been subdivided into multiple subpopulation or 
demes. Migration of individuals among the subpopulations causes 
evolution of the entire population. It helps to maintain diversity in the 
population, as migration is restricted among the demes. Table 3 depicts the 
parameter settings used for LGP experiments. The tournament size was set 
at 120,000 for all the 5 classes. Figure 3 demonstrates the growth in 
program length during 120,000 tournaments and the average fitness values 
for detecting normal patterns (class 1). More illustrations are available in 
[1]. 



Table 3. Parameter settings for linear genetic programming 

Parameter Normal Probe DoS U2Su R2L 
Population size 2048 2048 2048 2048 2048 

Tournament size 8 8 8 8 8 

Mutation frequency (%) 85 82 75 86 85 

Crossover frequency (%) 75 70 65 75 70 

Number of demes 10 10 10 10 10 

Maximum program size 256 256 256 256 256 

 
(a) 

 
(b) 

Fig. 3. LGP performance for the detection of normal patterns (a) growth in 
program length (b) average fitness 



Our trial experiments with SVM revealed that the polynomial kernel 
option often performs well on most of the datasets. We also constructed 
decision trees using the training data and then testing data was passed 
through the constructed classifier to classify the attacks [12]. 

Table 4. Performance comparison using full data set 

Table 5. Performance comparison using reduced data set 

A number of observations and conclusions are drawn from the results 
illustrated in Tables 4 and 5. Using 41 attributes, the FR2 method gave 
100% accuracy for all the 5 classes, showing the importance of fuzzy 
inference systems. For the full data set, LGP outperformed decision trees 
and support vector machines in terms of detection accuracies (except for 
one class). 

The reduced dataset seems to work very well for most of the classifiers 
except the fuzzy classifier (FR2). For detecting U2R attacks FR2 gave the 
best accuracy. Due to the tremendous reduction in the number of attributes 
(about 70% less), we are able to design a computational efficient intrusion 
detection system. Since a particular classifier could not provide accurate 

Classification accuracy on test data set (%) Attack 
type 

FR1 FR2 FR3 DT SVM LGP 

Normal 40.44 100.00 98.26 99.64 99.64 99.73 
Probe 53.06 100.00 99.21 99.86 98.57 99.89 
DOS 60.99 100.00 98.18 96.83 99.92 99.95 
U2R 66.75 100.00 61.58 68.00 40.00 64.00 
R2L 61.10 100.00 95.46 84.19 33.92 99.47 

Classification accuracy on test data set (%) Attack 
type 

FR1 FR2 FR3 DT SVM LGP 

Normal 74.82 79.68 99.56 100.00 99.75 99.97 
Probe 45.36 89.84 99.88 97.71 98.20 99.93 
DOS 60.99 60.99 98.99 85.34 98.89 99.96 
U2R 94.11 99.64 65.00 64.00 59.00 68.26 
R2L 91.83 91.83 97.26 95.56 56.00 99.98 



results for all the classes, we propose to use an ensemble approach as 
demonstrated in Figure 4. The proposed ensemble model could detect all 
the attacks with high accuracy (lowest accuracy being 99.64%) with only 
12 input variables. Ensemble performance is summarized in Table 6. 
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Fig. 4. IDS architecture using an ensemble of intelligent paradigms 

Table 6. Performance of the ensemble method 

Attack type Ensemble classification accuracy on test data (%) 

Normal 100.00 

Probe 99.93 

DOS 99.96 

U2R 99.64 

R2L 99.98 



In some classes the accuracy figures tend to be very small and may not 
be statistically significant, especially in view of the fact that the 5 classes 
of patterns differ in their sizes tremendously. For example only 27 data 
sets were available for training the U2R class. More definitive conclusions 
can only be made after analyzing more comprehensive sets of network 
traffic. 

7.0 Conclusions 

In this chapter, we have illustrated the importance of soft computing 
paradigms for modeling intrusion detection systems. For real time 
intrusion detection systems, LGP would be the ideal candidate as it can be 
manipulated at the machine code level. Overall, the fuzzy classifier (FR2) 
gave 100% accuracy for all attack types using all the 41 attributes. The 
proposed ensemble approach requires only 12 input variables. More data 
mining techniques are to be investigated for attribute reduction and 
enhance the performance of other soft computing paradigms.  
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