Skip to main content

Maximum Margin Decision Surfaces for Increased Generalisation in Evolutionary Decision Tree Learning

  • Conference paper
Genetic Programming (EuroGP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6621))

Included in the following conference series:

Abstract

Decision tree learning is one of the most widely used and practical methods for inductive inference. We present a novel method that increases the generalisation of genetically-induced classification trees, which employ linear discriminants as the partitioning function at each internal node. Genetic Programming is employed to search the space of oblique decision trees. At the end of the evolutionary run, a (1+1) Evolution Strategy is used to geometrically optimise the boundaries in the decision space, which are represented by the linear discriminant functions. The evolutionary optimisation concerns maximising the decision-surface margin that is defined to be the smallest distance between the decision-surface and any of the samples. Initial empirical results of the application of our method to a series of datasets from the UCI repository suggest that model generalisation benefits from the margin maximisation, and that the new method is a very competent approach to pattern classification as compared to other learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koza, J.R.: Genetic Programming: on the programming of computers by means of natural selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  2. Vladimir, V.: The nature of statistical learning theory, 2nd edn. Springer, Heidelberg (1999)

    Google Scholar 

  3. Koza, J.R.: Concept formation and decision tree induction using the genetic programming paradigm. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 124–128. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  4. Folino, G., Pizzuti, C., Spezzano, G.: Genetic Programming and Simulated Annealing: A Hybrid Method to Evolve Decision Trees. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 294–303. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Eggermont, J.: Evolving Fuzzy Decision Trees with Genetic Programming and Clustering. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 71–82. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Rouwhorst, S.E., Engelbrecht, A.P.: Searching the forest: Using decision trees as building blocks for evolutionary search in classification databases. In: Proceedings of the, Congress on Evolutionary Computation CEC 2000, vol. 1, pp. 633–638 (2000)

    Google Scholar 

  7. Bot, M., Langdon, W.B.: Application of genetic programming to induction of linear classification trees. In: Proceedings of the Eleventh Belgium/Netherlands Conference on Artificial Intelligence, BNAIC 1999 (1999)

    Google Scholar 

  8. Marmelstein, R.E., Lamont, G.B.: Pattern classification using a hybrid genetic program decision tree approach. In: Genetic Programming 1998: Proceedings of the Third Annual Conference (1998)

    Google Scholar 

  9. Tsakonas, A.: A comparison of classification accuracy of four genetic programming-evolved intelligent structures. Information Sciences 176(6), 691–724 (2006)

    Article  Google Scholar 

  10. Mugambi, E.M., Hunter, A., Oatley, G., Kennedy, L.: Polynomial-fuzzy decision tree structures for classifying medical data. Knowledge-Based Systems 17(2-4), 81–87 (2004)

    Article  Google Scholar 

  11. Mitchel, T.: Machine Learning. McGraw-Hill, New York (1997)

    Google Scholar 

  12. Estrada-Gil, J.K., Fernandez-Lopez, J.C., Hernandez-Lemus, E., Silva-Zolezzi, I., Hidalgo-Miranda, A., Jimenez-Sanchez, G., Vallejo-Clemente, E.E.: GPDTI: A genetic programming decision tree induction method to find epistatic effects in common complex diseases. Bioinformatics 13(13), i167–i174 (2007)

    Article  Google Scholar 

  13. Kuo, C.-S., Hong, T.-P., Chen, C.-L.: Applying genetic programming technique in classification trees. Soft Computing 11(12), 1165–1172 (2007)

    Article  MATH  Google Scholar 

  14. Haruyama, S., Zhao, Q.: Designing smaller decision trees using multiple objective optimization based gps. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 6, p. 5 (2002)

    Google Scholar 

  15. Folino, G., Pizzuti, C., Spezzano, G.: Improving induction decision trees with parallel genetic programming. In: Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing, Canary Islands, January 9-11, pp. 181–187. IEEE, Los Alamitos (2002)

    Chapter  Google Scholar 

  16. Agapitos, A., O’Neill, M., Brabazon, A.: Evolutionary Learning of Technical Trading Rules without Data-Mining Bias. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 294–303. Springer, Heidelberg (2010)

    Google Scholar 

  17. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16(2), 264–280 (1971)

    Article  MATH  Google Scholar 

  18. Shawe-Taylor, J., Bartlett, P.L., Williamson, R.C., Anthony, M.: Structural risk minimization over data-dependent hierarchies. IEEE Transactions on Information Theory 44(5) (1998)

    Google Scholar 

  19. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  20. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  21. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agapitos, A., O’Neill, M., Brabazon, A., Theodoridis, T. (2011). Maximum Margin Decision Surfaces for Increased Generalisation in Evolutionary Decision Tree Learning. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds) Genetic Programming. EuroGP 2011. Lecture Notes in Computer Science, vol 6621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20407-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20407-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20406-7

  • Online ISBN: 978-3-642-20407-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics