
Abstract

In this paper we introduce a new approach to the
use of automatically defined functions within
Genetic Programming for classification tasks.The
technique consists of coevolving a number of sep-
arate sub-populations of functions, each of which
acts as a feature extractor for the K-nearest-neigh-
bour algorithm. Using two well-known
classification tasks it is shown that our coevolu-
tionary approach performs better than the
equivalent traditional function mechanism used in
Genetic Programming. The approach is then
extended to include explicit feature selection at
the level above the coevolving extractor functions.
In this way features which are not needed for the
task can be ignored more effectively than relying
on the evolution of extractors which achieve the
same effect. It is shown that this approach per-
forms better than the first coevolutionary
technique, and hence better than the traditional
approach.

1 INTRODUCTION

The use of function subroutines is ubiquitous in high-level
computer programming languages. Functions provide the
ability to reuse code efficiently, generating a modular and
hierarchical structure to programs. Since its formalization,
Genetic Programming (GP) [Koza 1992] has included the
ability to exploit functional subroutines, termed “automat-
ically defined functions” (ADFs) [Koza 1992, p.534];
modular functions can form part of the genetic make-up of
an evolving program.

In this paper we present an extension, specifically for clas-
sification tasks, to our previous work on a coevolutionary
approach to the use of automatically defined functions in
genetic programming [e.g. Ahluwalia et al. 1997]. In the

general approach each identified ADF is assigned its own
independent sub-population which coevolves with other
ADF sub-populations and a population of main program
trees or “result-producing branches” (RPBs). For each
evaluation, ADFs from each sub-population are selected
randomly to be used by a program, where fitness can be
assigned globally or locally. In the global case all ADFs
and the main tree receive the same fitness. In the local case
the main tree receives the global fitness, but each ADF
receives the fitness available for that aspect of the task
with which it is concerned. In either case selection and
reproduction are done independently within each sub-pop-
ulation.

Recently, we have also introduced a version of the
approach termed “evolution defined functions” (EDFs)
[Ahluwalia & Bull 1998] which uses the coevolutionary
strategy in conjunction with the two mutation operators,
compression and expansion, of the “genetic library
builder” (GLiB) [Angeline & Pollack 1994]. We showed
that the automatic specification of EDF sub-populations
via compression is beneficial when the existence of a par-
ticular function is determined by a measure of its worth/
recent usage. We then extended the approach further to
allow any number of functions to be created during evolu-
tion, rather than having an a priori fixed number of EDFs,
again using the measure of existing function worth. It was
shown that improvements can be achieved over the previ-
ous coevolutionary approach.

In this paper we introduce a version of our coevolutionary
technique specifically for classification tasks, based on the
work of Raymer et al. [1996], in which ADFs are feature
preprocessors/extractors for the well-known K-nearest-
neighbour (Knn) classification algorithm. The Knn algo-
rithm holds a number of data exemplars in memory (the
training set) and uses the Euclidean distance of a presented
data item to the memory members to determine its class/
identification.

Coevolving Functions in Genetic Programming:

Manu Ahluwalia
Intelligent Computer Systems Centre

Faculty of Computer Studies and Mathematics
University of the West of England

Bristol BS16 1QY, U.K.
manu@ics.uwe.ac.uk

Larry Bull
Intelligent Computer Systems Centre

Faculty of Computer Studies and Mathematics
University of the West of England

Bristol BS16 1QY, U.K.
larry@ics.uwe.ac.uk

 Classification using K-nearest-neighbour

The paper is arranged as follows: the next section details
the basic approach. Section 3 describes the problems used
to do the comparisons and section 4 presents results from
its use. Finally, all findings are discussed.

2 FUNCTIONS AS FEATURE EXTRAC-
TORS IN GENETIC PROGRAMMING

2.1 AUTOMATICALLY DEFINED FUNCTIONS

Koza [1992] presented automatically defined functions as
a refinement to genetic programming with the aim of ena-
bling the composite evolution of larger programs. Here
each identified ADF is genetically joined to the main pro-
gram tree such that a child’s ADFs are a mix of its par-
ents’; each joined ADF recombines with the
corresponding ADF of the other parent. Whenever a call to
a particular type of ADF is made, the joined example indi-
vidual is used. The number of ADFs available during evo-
lution is fixed a priori and the ADFs exist in a hierarchy,
i.e. ADF0 can call all others, ADF1 all others except
ADF0, etc. (see [Koza 1994] for a full review).

This idea has been extended by Spector [1996] to allow for
the modular use of macros, rather than full function sub-
routines, in GP - termed automatically defined macros
(ADMs).

Raymer et al. [1996] have presented an alternative
approach to the use of ADFs specifically for classification
tasks. Rather than evolve classification programs, they
evolve sets of feature preprocessors, or feature “extrac-
tors”, for use in conjunction with a K-nearest-neighbour
algorithm. Here each feature is altered by a GP ADF tree,
evolved for that feature only, with the aim of increasing
the separation of pattern classes in the feature space. The
modified set of features are then used by a Knn algorithm
to evaluate the effectiveness of the evolved extractors;
each individual consists of a set of ADFs, one for each fea-
ture.

2.2 COEVOLVING AUTOMATICALLY DEFINED
FUNCTIONS

As noted above, we have previously suggested a coevolu-
tionary approach to the use of GP with ADFs for larger
programs. The use of coevolutionary or multi-agent/popu-
lation techniques has been shown to be beneficial in a
number of domains, e.g. [Husbands & Mill 1991]. In the
approach presented each type of ADF evolves within its
own separate sub-population via a standard Genetic Algo-
rithm [Holland 1975] (steady state algorithms are used

[Syswerda 1989]). As each evolved main tree is evaluated,
making one or more calls to a particular function type, an
individual from the corresponding sub-population is ran-
domly selected, i.e. over time an individual ADF sub-pop-
ulation member can find itself being used by a number of
evolving programs and any other ADFs used within them.
We have suggested that in this way a greater amount of
genetic mixing, and hence searching, is possible than in
Koza’s original approach.

In [Raymer et al. 1996] each ADF is a feature extractor for
a Knn algorithm and hence each individual consists ofα
ADFs for a task containingα features, with no main pro-
gram. To apply our coevolutionary approach to their
approach we use a system containingα sub-populations of
coevolving feature extractors, where one individual from
each population is required for an evaluation (Figure 1).
Since we use a steady-state system, after evaluating each
corresponding individual in the initial populations, the off-
spring of each population are partnered for an evaluation.

Raymer et al.’s approach uses feature extraction, rather
than feature selection. As noted above, feature extraction

EVALUATION

ADF0 ADF1 ADF2

(via K-nearest-neighbour)

Complete Set of Feature Extractors

generate offspring from each population

Figure 1: Showing the coevolutionary approach to the
use of ADFs for classification. Each population gener-
ates a feature extractor for its particular feature, which
are then used as preprocessors for the K-nearest-neigh-
bour classification algorithm. All individuals receive
the resulting rating/score.

alters the scaling of the feature space, whereas feature
selection indicates whether a feature should be used.
Hence feature selection is possible in the former when a
scaling of zero is applied. For other (early) examples of
evolutionary computation approaches to these two tech-
niques, see [Siedlecki & Sklansky 1988] for a genetic
algorithm-based feature selection approach using Knn and
[Kelly & Davis 1991] for a similar genetic algorithm-
based feature extraction approach also using Knn. In this
paper we also present a version of our approach which
includes a population of traditional genetic algorithm
binary feature selectors, such that these individuals are
analogous to the main programs in GP with ADFs and our
(more general) previous coevolutionary techniques. Here,
when a main program contains a ‘1’ in a given locus, an
individual from the corresponding ADF sub-population is
generated for use in conjunction with the Knn algorithm
(after all initial sub-population members have been used).
This allows both the benefits of feature extraction and fea-
ture selection to be exploited; feature selection is possible
without waiting for feature functions to evolve scales of
exactly zero. For completeness we also present an EDF
version of this system, such that usage/worth counters are
employed to determine whether the population of main
(feature selector) programs have found the current logic of
a particular function (feature extractor) beneficial. Such
sub-populations are randomly re-initialised if they have
not been significantly used. We use uniform crossover
[Syswerda 1989] and mutation (rate per bit 0.01) to evolve
the feature selectors here.

3 THE CLASSIFICATION TASKS

In this paper we use two well-known classification prob-
lems to compare the different strategies (see [Eiben et
al.1997] for an example of the comparative performance
and potential benefits of GP for classification tasks).

3.1 AUSTRALIAN CREDIT CARD

The Australian Credit Card data set [Statlog] contains 690
examples, each of which contains the customer’s details in
14 input variables (floating values between 0 and 1) and a
classification bit (output) which is ’0’ or ’1’. A ‘1’ indi-
cates that a particular customer should have a credit card
and the ‘0’ indicates not. The Knn memory is generated by
dividing the full data set into (roughly) half and then using
a random three-quarters of that. The Classifier System is
trained using the same set of 400 of the examples and eval-
uations are run until a system correctly classifies all of the
training data or no further improvement is seen. Also, K=1
is used here.

The function set used for all populations is {+,-,/,*} and
the terminal set is {A,R}, where R is an ephemeral ran-
dom constant, range 0.0-1.0, and A is the feature value.
The initial population is created with tress of depth size
10.

3.2 LETTER IMAGE RECOGNITION

In this task [Frey & Slate 1991] the objective is to identify
each of a large number of black-and-white rectangular

pixel displays as one of the 26 capital letters in the English
alphabet. The character images are based on 20 different
fonts and each letter within these 20 fonts is randomly dis-
torted to produce a file of 20,000 unique stimuli. Each

Average
Fitness

0.0 10.0 20.0 30.0 40.0 50.0
0.0

100.0

200.0

300.0

400.0

0.0 10.0 20.0 30.0 40.0 50.0
0.0

100.0

200.0

300.0

Generation

Generation

CO-ADFb
EDF
CO-ADFa
Raymer

CO-ADFb
EDF
CO-ADFa
Raymer

Figure 2: Comparative performance of the Knn techni-
ques on the Australian data set.

Fitness
Best

stimulus is converted into 16 primitive numerical
attributes (statistical moments and edge counts) which are

then scaled to fit into a range of integer values from 0
through 15. The Knn memory is generated by halving the

full data set and picking three-quarters of that half. A
training set of 1000 examples from the same half is used
here, randomly recreated once every ten evaluations for
efficiency, until a system which can correctly classify all
of the training data is found. Again, K=1 here.

The function and terminal sets are the same as those for
the Australian Credit Card task and the tress in the initial
population are restricted to depth size 10.

It has been found that, for both tasks, the best results are
obtained when crossover (for each population) is per-
formed on a small percentage (20%) of the population. A
mutation rate of 0.02 per node and roulette-wheel selec-
tion are used throughout.

4 RESULTS

4.1 AUSTRALIAN CREDIT CARD

Figure 2 shows the average results from fifty runs using
these three versions of our coevolutionary approach and
Raymer et al.’s on the Australian Credit Card task. Here
each feature sub-population contains 101 individuals for
the first coevolutionary version of Raymer et al.’s
approach (CO-ADFa) and 94 for the other two (CO-ADFb
and EDF) since they require an extra sub-population for
the binary feature selector main programs (~1410 in total).

In the EDF version of the system the usage counter was
checked every 5 generations to see if any sub-populations
had not been used by the main programs, i.e. whether each
feature was being used for the majority of classifications
(>50%).

From figure 2 it can be seen that the two techniques which
make explicit use of feature selection (CO-ADFb and
EDF) do better than those which rely purely on feature
extraction, both in terms of mean and best performance,
with all coevolutionary approaches doing better than
Raymer et al.’s approach. The CO-ADFb and EDF
approaches produce sets of selector/extractors which, cou-
pled with the Knn algorithm, classify 98% of the data set
correctly using (the same) 10 features. The use of the EDF
dynamic function creation mechanism here gave no bene-
fits in terms of functionality, only speed-up, and is in fact
slightly slower than the CO-ADFb approach. The CO-
ADFa and Raymer et al.’s approaches produce classifiers
capable of around 95% accuracy on the full data set.

4.2 LETTER IMAGE RECOGNITION

Figure 3 shows the average results from fifty runs of the
same techniques on the letter recognition task. Each sub-

0.0 100.0 200.0 300.0
0.0

200.0

400.0

600.0

800.0

1000.0

CO-ADFb

EDF

CO-ADFa

Raymer

0.0 100.0 200.0 300.0

0.0

200.0

400.0

600.0

800.0
CO-ADFb

EDF

CO-ADFa

Raymer

Generation

Generation

Figure 3: Comparative performance of the Knn techni-

ques on the Letter Recognition task.

Fitness

Best

Average
Fitness

population contains 100 individuals for Raymer et al.’s

and the CO-ADFa approaches and 94 for the other two

(~1600 in total). It can be seen that, again, the use of
explicit feature selection proves beneficial, both in terms
of mean and best performance, with CO-ADFb and EDF
both producing classifiers with 94% accuracy on the com-
plete task. The CO-ADFb approach is found to use 9 fea-
tures here, with the EDF approach using the same 9 plus
one other feature on average. The CO-ADFa approach
produces classifiers with around 92% accuracy and
Raymer et al.’s approach also produces classifiers with
92% accuracy.

Since the EDF approach with the binary feature selector
used an extra feature to the ADF approach using feature
selection (CO-ADFb), the evolved feature extractors have
been examined for this task.

It was found that both resulting classifiers used features 5-
8, 11 and 13-16. The EDF approach also used feature 9.
We examined what the evolved feature extractors do to the
input variable (x) by presenting all possible feature values
to the evolved S-expressions and plotting the results.
Figure 4 shows examples of each type of feature extractor
seen, where their behaviour can be described as “linear”,
“exponential”, “polynomial” and “pulse”. Feature 6 is an
exponential, feature 14 is linear, features 5, 7, 8, 15 and 16
are pulses, and features 11 and 13 are polynomial. The
evolved extractor for feature 9, the extra feature used by
EDF, has the same characteristics as feature 6, i.e. it is an
exponential. It was assumed that the extractor for feature 9
would be simple, i.e. linear, since its use does not appear
to provide any significant benefit. However, it is assumed
that if a cost was added to encourage the use of the least
possible number of features, this use of feature 9 would
disappear; feature 9 is not critical/misleading.

5 Conclusions

In this paper we have presented a coevolutionary approach
to the use of automatically defined functions (ADFs) in
genetic programming for classification tasks. This was
based on the work of Raymer et al. [1996] in which each
ADF is a feature extractor for the Knn algorithm. We
examined our coevolutionary approach’s performance,
along with a coevolutionary and an EDF-like version in
which the main program is a binary feature selector rather
than a full S-expression tree. It was found that all coevolu-
tionary approaches performed better than Raymer et al.’s
approach and that the use of feature selection in conjunc-
tion with feature extraction performed best of all.

It is noted that the different approaches have different
computational overheads since some involve the creation

0.0 10.0 20.0 30.00.0

200.0

400.0

600.0

800.0

0.0 10.0 20.0 30.0-2000.0
-1500.0
-1000.0

-500.0
0.0

500.0
1000.0

(-
(* x (*(- (- x (* x (- x (- (- x x) x))))

(/ 0.31 (* (- x 0.42) 0.16)))) 0.16))
(- (- x 0.42) (- 0.31 (/ (- x 0.42) (* 0.16 x)))))

Feature 11:

Input feature value

Input feature value

O
ut

pu
t f

ea
tu

re
 v

al
ue

Feature 6:
(* x
(* 0.9 x))

Feature 14:
(+ x

(+ x
(* 2.64 0.82)))

(N.B. linear filter, not shown)

O
ut

pu
t f

ea
tu

re
 v

al
ue

0.0 10.0 20.0-200.0
-100.0

0.0
100.0
200.0

.

O
ut

pu
t f

ea
tu

re
 v

al
ue

Input feature value

Feature 5:
(N.B. tree too long to show here)

.

Function for feature 5

30.0

Function for feature 6

Figure 4: Showing example evolved feature extractor
 behaviour across all possible input ranges.

Function for feature 11

of sub-populations via mutation. Table 1 shows the rela-
tive number of evaluations required by each approach to
classify the training data correctly and the performance of
the resulting system on the full data set, for both tasks. It
can be seen that the our coevolutionary approaches always
require less computational effort to achieve greater per-
formance.

References

Ahluwalia M, Bull L, & Fogarty T C (1997), “Coevolving
Functions in Genetic Programming: A Comparison in
ADF Selection Schemes”, in J R Koza, K Deb, M Dorigo,
D B Fogel, M Garzon, H Iba & R Riolo (eds.)Proceedings
of the Second Annual Conference on Genetic Program-
ming, Morgan Kaufmann, pp3-8.

Ahluwalia M & Bull L (1998), “Coevolving Functions in
Genetic Programming: Dynamic ADF Creation using
GLiB”, in V W Porto, N Saravanan, D Waagen & A E
Eiben (eds.)Proceedings of the Seventh Annual Confer-
ence on Evolutionary Programming, Springer-Verlag,
pp809-818.

Angeline P J & Pollack J B (1994), "Coevolving High-
Level Representations”, in C G Langton (ed.)Artificial
Life III, Addison-Wesley, pp55-72.

Eiben A E, Euverman T J, Kowalczyk W and Slisser F
(1997), “Modelling Customer Retention with Statistical
Techniques, Rough Data Models and Genetic Program-
ming”, in A Skowron and S K Pal (eds.),Fuzzy Sets,
Rough Sets and Decision Making Processes, Springer, in
press.

Frey P W & Slate D J (1991), “Letter Recognition Using
Holland-style Adaptive Classifier Systems”,Machine
Learning 6(2):161-182.

Husbands P & Mill F (1991), “Simulated Coevolution as
the Mechanism for Emergent Planning and Scheduling”,
in R L Belew & L B Booker (eds.)Proceedings of the
Fourth International Conference on Genetic Algorithms,
Morgan Kaufmann, pp264-270.

Koza J R (1992)(ed.),Genetic Programming, MIT Press.

Koza J R (1994)(ed.),Genetic Programming II: Auto-
matic Discovery of Reusable Programs, MIT Press.

Raymer M L, Punch W, Goodman E D & Kuhn L (1996),
“Genetic Programming for Improved Data Mining -
Application to the Biochemistry of Protein Interactions”,
in J R Koza, K Deb, M Dorigo, D B Fogel, M Garzon, H
Iba & R Riolo (eds.)Proceedings of the First Annual Con-
ference on Genetic Programming, Morgan Kaufmann,
pp375-380.

Siedlecki W & Sklansky J (1988), “On Automatic Feature
Selection”,International Journal of Pattern Recognitiona
and Artificial Intelligence 2:197-220.

Statlog (), data and documentation at fttp.ncc.up.pt/pub/
statlog

Syswerda G (1989), "Uniform Crosssover in Genetic
Algorithms", in J D Schaffer (ed.)Proceedings of the
Third International Conference on Genetic Algorithms,
Morgan Kaufmann, pp2-9.

Raymer

 CO-ADF*

 CO-ADF**

 EDF**

Letter: 461040

Letter: 482922

Aust:

Letter:

 Aust:

 Letter:

 Letter: 94%

 Aust:

 95%

 : 95%

 : 98%

 92%

 : 94%

Aust: 76230

Letter: 537600

Aust: 59290

Letter: 489600

Aust: 42375

Letter: 92%

 Aust: 48683 Aust: 98%

 Tecnnique Classification
 Rate

Number of individ-
dual processed

Table 1: Tableau for total number of individuals pro-
 cessed during training and resulting performance.
The total number of individuals processed depends

ion events in each case.

on number of individuals processed per generation
and the total cost which is compression and expans-

