Skip to main content

Advertisement

Log in

Multi-objective optimization of an aluminum torch brazing process by means of genetic programming and R-NSGA-II

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a hybrid of genetic programming (GP) and reference-point-based non-dominated sorting genetic algorithm (R-NSGA-II) for the multi-objective optimization of an aluminum torch brazing process for the fabrication of condensers for the automotive industry. The objectives to be optimized are a vacuum leakage test (quality of product), cycle time, and energy consumption (production cost). GP is used to find a mathematical model that describes the relationship between input and output process parameters. Thereafter, reference-point-based NSGA-II procedure is employed to provide the decision maker with a set of solutions close to her/his preferences. Results show that this approach may support the decision makers of the process to set the optimal input process parameters in order to achieve competitive advantages in quality and production costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Humpston G, Jacobson D (2004) Principles of soldering. ASM International, Materials Park

    Google Scholar 

  2. Lin HL (2012) Optimizing the auto-brazing process quality of aluminum pipe and flange via a Taguchi-neural-genetic approach. J Intell Manuf 23:679–686

    Article  Google Scholar 

  3. Schütze O, Martin A, Lara A, Alvarado S, Salinas E, Coello-Coello CA (2016) The directed search method for multi-objective memetic algorithms. Comput Optim Appl 63:305–332

    Article  MathSciNet  MATH  Google Scholar 

  4. Coello-Coello CA, Lamont GB, Van-Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems. Springer, New York

    MATH  Google Scholar 

  5. Deb K (2001) Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, New York

    MATH  Google Scholar 

  6. Ghosh A, Tsutsui S (2003) Advances in evolutionary computing: theory and applications. Springer-Verlag, Berlin Heidelberg, New York

    Book  MATH  Google Scholar 

  7. Zhang Q, Li H (2007) MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE T Evolut Comput 11:712–731

    Article  Google Scholar 

  8. Deb K, Sundar J, Rao NUB, Chaudhuri S (2006) Reference point based multi-objective optimization using evolutionary algorithms. Int J Comput Intell Res 2:273–286

    Article  MathSciNet  Google Scholar 

  9. Chan KY, Kwong CK, Dillon TS, Tsim YC (2011) Reducing overfitting in manufacturing processes modeling using backward elimination based genetic programming. Appl Soft Comput 11:1648–1656

    Article  Google Scholar 

  10. Garg A, Tai K, Savalani MM (2014) Formulation of bead width model of an SLM prototype using modified multi-gene genetic programming approach. Int J Adv Manuf Tech 73:375–388

    Article  Google Scholar 

  11. Garg A, Tai K, Lee CH, Savalani MM (2014) A hybrid M5′-genetic programming approach for ensuring greater trustworthiness of prediction ability in modeling of FDM process. J Intell Manuf 25:1349–1365

    Article  Google Scholar 

  12. Garg A, Tai K, Vijayaraghavan V, Singru PM (2014) Mathematical modelling of burr height of the drilling process using a statistical-based multi-gene genetic programming approach. Int J Adv Manuf Tech 73:113–126

    Article  Google Scholar 

  13. Koza J (1992) Genetic programming: on the programming of computers by means of natural evolution. MIT Press, Cambridge

    MATH  Google Scholar 

  14. Koza J (1994) Genetic programming II: automatic discovery of reusable programs. MIT Press, Cambridge

    MATH  Google Scholar 

  15. Chan KY, Kwong CK, Fogarty TC (2010) Modeling manufacturing processes using a genetic programming-based fuzzy regression with detection of outliers. Inform Sci 180:506–518

    Article  MathSciNet  Google Scholar 

  16. Graff M, Pe R (2013) Wind speed forecasting using genetic programming. IEEE Congress on Evolutionary Computation 408–415

  17. Lee YS, Tong LI (2011) Forecasting energy consumption using a grey model improved by incorporating genetic programming. Energ Convers Manage 52:147–152

    Article  Google Scholar 

  18. Lee DG, Lee BW, Chang SH (1997) Genetic programming model for long-term forecasting of electric power demand. Electr Power Syst Res 40:17–22

    Article  Google Scholar 

  19. Griffin J, Chen X (2009) Multiple classification of the acoustic emission signals extracted during burn and chatter anomalies using genetic programming. Int J Adv Manuf Tech 45:1152–1168

    Article  Google Scholar 

  20. Griffin J (2014) The prediction of profile deviations when creep feed grinding complex geometrical features by use of neural networks and genetic programming with real-time simulation. Int J Adv Manuf Tech 74:1–16

    Article  Google Scholar 

  21. Brezocnik M, Gusel L (2004) Predicting stress distribution in cold-formed material with genetic programming. Int J Adv Manuf Tech 23:467–474

    Article  Google Scholar 

  22. Kök M, Kanka E, Eyercioglu O (2011) Prediction of surface roughness in abrasive waterjet machining of particle reinforced MMCs using genetic expression programming. Int J Adv Manuf Tech 55:955–968

    Article  Google Scholar 

  23. Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming. Lulu Enterprises, San Francisco

    Google Scholar 

  24. Z-Flores E, Trujillo L, Schütze O, Legrand P (2015) A local search approach to genetic programming for binary classification. Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation 1151–1158

  25. Pareto V (1906) Manuale di economia politica (English translation by AS Schwier: Manual of 367 political economy, Macmillan, New York).

  26. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast elitist multi- objective genetic algorithm: NSGA-II. IEEE T Evolut Comput 6:182–197

    Article  Google Scholar 

  27. Miettinen K (1999) Nonlinear multiobjective optimization. Springer, New York

    MATH  Google Scholar 

  28. Kim IS, Jeong YJ, Lee CW, Yarlagadda P (2003) Prediction of welding parameters for pipeline welding using an intelligent system. Int J Adv Manuf Tech 22:713–719

    Article  Google Scholar 

  29. Tseng HY (2006) Welding parameters optimization for economic design using neural approximation and genetic algorithm. Int J Adv Manuf Tech 27:897–901

    Article  Google Scholar 

  30. Wang YQ, Afsar AM, Song J (2009) Optimization of brazing conditions for OFHC Cu and ASTM A501 low carbon steel by Taguchi method. Int J Precis Eng Man 10:97–104

    Article  Google Scholar 

  31. Edwin Raja Dhas J, Kumanan S (2011) Optimization of parameters of submerged arc weld using non-conventional techniques. Appl Soft Comput 11:5198–5204

    Article  Google Scholar 

  32. Liukkonen M, Havia E, Leinonen H, Hiltunen Y (2011) Quality-oriented optimization of wave soldering process by using self-organizing maps. Appl Soft Comput 11:214–220

    Article  Google Scholar 

  33. Katherasan D, Elias JV, Sathiya P, Noorul Haq A (2014) Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. J Intell Manuf 25:67–76

    Article  Google Scholar 

  34. Schütze O, Jourdan L, Legrand T, Talbi E, Wojkiewicz JL (2008) New analysis of the optimization of electromagnetic shielding properties using conducting polymers and a multi-objective approach. Polym Advan Technol 19:762–769

    Article  Google Scholar 

  35. Cheng J, Liu Z, Tan J (2013) Multi-objective optimization of injection molding parameters based on soft computing and variable complexity method. Int J Adv Manuf Tech 66:907–916

    Article  Google Scholar 

  36. Li L, Liu F, Chen B, Li CB (2015) Multi-objective optimization of cutting parameters in sculptured parts machining based on neural network. J Intell Manuf 26:891–898

    Article  Google Scholar 

  37. Yadav R, Yadava V, Singh GK (2013) Multi-objective optimization of process parameters in electro-discharge diamond face grinding based on ANN-NSGA-II hybrid technique. Front Mech Eng 8:319–332

    Article  Google Scholar 

  38. Nayak SK, Patro JK, Dewangan S, Gangopadhyay S (2014) Multi-objective optimization of machining parameters during dry turning of AISI 304 austenitic stainless steel using grey relational analysis. Procedia Mater Sci 6:701–708

    Article  Google Scholar 

  39. Torres-Treviño LM, Reyes-Valdes FA, Lopez V, Praga-Alejo R (2011) Multi-objective optimization of a welding process by the estimation of the Pareto optimal set. Expert Syst Appl 38:8045–8053

    Article  Google Scholar 

  40. Kondapalli SP, Chalamalasetti SR, Damera NR (2014) Multi-objective optimization of weld bead geometry parameters of pulsed current micro plasma arc welded AISI 304 L stainless steel sheets using enhanced non dominated sorting genetic algorithm. J Manuf Sci Prod 14:79–85

    Google Scholar 

  41. Moradpour MA, Hashemi SH, Khalili K (2015) Multi-objective optimization of welding parameters in a submerged arc welding of API X65 steel plates. J Iron Steel Res Int 22:870–878

    Article  Google Scholar 

  42. Fan LF, Gao Y, Yun JB, Li ZP (2015) Multi-objective optimization of crimping of large-diameter welding pipe. J Cent South Univ T 22:2540–2548

    Article  Google Scholar 

  43. Ghetiya ND, Patel KM, Kavar AJ (2016) Multi-objective optimization of FSW parameters of aluminium alloy using Taguchi-based grey relational analysis. T Indian I Metals 69:917–923

    Article  Google Scholar 

  44. Satheesh M, Edwin Raja Dhas J (2014) Multi objective optimization of weld parameters of boiler steel using fuzzy based desirability function. J Eng Sci Technol Rev 7:29–36

    Google Scholar 

  45. Morris MX, Mitchell TJ (1995) Exploratory designs for computational experiments. J Stat Plan Infer 43:381–402

    Article  MATH  Google Scholar 

  46. Korhonen P, Wallenius J (2008) Visualization in the multiple objective decision-making framework. In: Multi-objective optimization. Springer-Verlag, Berlin Heidelberg, New York, pp 195–212

    Google Scholar 

  47. Silva S, Almeida J (2003) GPLAB—a genetic programming toolbox for MATLAB. In: Gregersen L (ed) Proceedings of the Nordic MATLAB conference, pp 273–278.

  48. Song L (2011) NGPM—a NSGA-II program in MATLAB v1.4 MATLAB code. Available from https://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Alvarado-Iniesta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarado-Iniesta, A., Tlapa-Mendoza, D.A., Limón-Romero, J. et al. Multi-objective optimization of an aluminum torch brazing process by means of genetic programming and R-NSGA-II. Int J Adv Manuf Technol 91, 4117–4126 (2017). https://doi.org/10.1007/s00170-017-0102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0102-y

Keywords

Navigation