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Abstract

Motivated by difficulties in engineering adaptive distributed
systems, we consider a method to evolve cooperation in
swarms to model dynamical systems. We consider an in-
formation processing swarm model that we find to be use-
ful in studying control methods for adaptive distributed sys-
tems and attempt to evolve systems that form consistent pat-
terns through the interaction of constituent agents or parti-
cles. This model considers artificial ants as walking sensors
in an information-rich environment. Grammatical Evolution
is combined with this swarming model as we evolve an ant’s
response to information. The fitness of the swarm depends on
information processing by individual ants, which should lead
to appropriate macroscopic spatial and/or temporal patterns.
We discuss three primary issues, which are tractability, rep-
resentation and fitness evaluation of dynamical systems and
show how Grammatical Evolution supports a promising ap-
proach to addressing these concerns.

Introduction
Nature clearly sets the standard on complex system regula-
tion. However her principles can be difficult to apply forc-
ing us to ask difficult questions about how to allow open-
ended evolvability, how to reach high levels of adaptabil-
ity or how to regulate developmental processes. We take an
evolutionary automatic programmingapproach in address-
ing some early issues in using natural principles to program
artificial complex systems. Specifically we begin by consid-
ering how synergy in swarms can be evolved to produce con-
sistent patterns from the interaction of simple agents. Using
Grammatical Evolution (O’Neill and Ryan, 2003) we evolve
templates for simple transducers that describe how environ-
mental information should be modelled by ants to produce
responses that favour a swarm’s fitness.
Background to evolving adaptive behaviour is outlined in
section 2 and we discuss issues in engineering distributed
adaptive systems. We provide background on grammatical
evolution in section 3. In Section 4 we describe informa-
tion processing swarms as an interesting model for regulat-
ing complex dynamical systems and describe a new model
for evolving swarms. We outline three issues which we con-
sider crucial; tractability, representation, and fitness evalu-

ation. Section 5 describes the swarm model. Results com-
paring two experiments can be found in section 6. We close
with a discussion of results.

Background

Swarm Intelligence, which is comprised of Particle Swarm
(Kennedy and Eberhart, 1995; Kennedy and Eberhart, 2001)
and Ant Algorithms (Colorini et al., 1992; Dorigo et al.,
1996; Bonabeau et al., 1999), has the potential to be used as
a model for regulating distributed adaptive systems. It has
been said in the context of dynamical systems and morpho-
genesis that finding a solution to a particular [distributed]
problem is equivalent to finding a specific pattern in space or
time (Bonabeau, 1997). It is of interest to understand how
patterns unfold through random processes and interactions
among elementary constituents or agents (Bonabeau, 1997).
Swarms of interacting, information processing agents can
yield the emergence of a computational power not present at
the level of individual organisms. Examples of artificial sys-
tems that possess this computational power are dynamical
systems such as Swarms and Cellular Automata (CA) (Wol-
fram, 1983; Crutchfield et al., 2003). Dynamical systems are
often considered cognitive or purposeful and considered in
light of achievements such as crop harvesting in ant colonies
or pathogen detection in the immune system. The current
study is interested in the system regulationper se, consider-
ing these achievements or patterns simply as by-products of
system dynamics.
Dynamical systems are characterised by a continual cou-
pling between systems and their environment. They are
spatially extended, consisting of a large number of simple
components each with limited communication to other com-
ponents and each following simple transition rules that de-
pend on their inputs. Properties of such systems although
attractive are difficult to formalize for engineering purposes
(Rosen, 1985; Kubrik, 2003). These principles are likely
to be of great importance to adaptive distributed systems de-
sign over the coming years in fields such as amorphous com-
puting (Abelson et al., 1995; Nagpal, 2001). Researchers in
this field prefer to understand the construction of these sys-



tems so that they function as intended not as they evolve. In
support of the direct engineering approach, (Nagpal, 2002;
Nagpal, 2001) observes that in CA research, local rules are
constructed empirically without providing a framework for
construction of local rules to obtain any desired goal and that
these approaches are difficult to generalize. On the other
hand Nagpal observes that evolutionary computing, while
generalising well, uses local rules that are evolved with-
out any understanding of how they work. This problem is
compounded when evolving dynamical systems as the emer-
gent computation performed is determined by space-time
behaviour (Crutchfield et al., 2003). Designing an appropri-
ate fitness function can be as difficult as designing a control
algorithm from scratch (Nagpal, 2001).
Yet we ask how evolution can be used to produce a better
learning system, which could be called adaptive, dynamical
or emergent. Similar work has been done in the fields of
Artificial Neural Networks, which has been termed Evolu-
tionary Artificial Neural Networks (EANN) (e.g. see (Yao,
1999)), evolving Cellular Automata (e.g. see (Crutchfield
et al., 2003)). Very recently similar work has been carried
out in the field of Swarm Intelligence (Williams, 2002) and
the evolution of mulitcelluar programs using genetic pro-
gramming (Schmutter, 2002).
Our work bears only principle similarities of varying degrees
with past work in EANNs and evolving CA. CA are more
akin to swarms as both are dynamical systems unlike ANNs,
which are computational and have different properties. We
are interested in evolving dynamical systems which are char-
acterized by continual change, have less imposition of struc-
ture giving rise to an enabling substrate whereby higher level
functionality can emerge. See (Mitchell, 1998) for discus-
sion on dynamical versus computational systems. We delib-
erately avoid discussion of cooperation and the evolution of
cooperation stemming from Robert Axelrod’s work (Axel-
rod, 1987) as this work is largely concerned with coopera-
tion among self-interested agents.

Grammatical Evolution
Grammatical Evolution (GE) is an evolutionary algorithm
that can evolve computer programs in any language (O’Neill
and Ryan, 2003; O’Neill, 2001; O’Neill and Ryan, 2001;
Ryan et al., 1998), and can be considered a form of
grammar-based genetic programming. Rather than repre-
senting the programs as parse trees, as in GP (Koza, 1992;
Koza, 1994; Banzhaf et al., 1998; Koza et al., 1999; Koza
et al., 2003), a linear genome representation is used. A
genotype-phenotype mapping is employed such that each
individual’s variable length binary string, contains in its
codons (groups of 8 bits) the information to select produc-
tion rules from a Backus Naur Form (BNF) grammar. The
grammar allows the generation of programs in an arbitrary
language that are guaranteed to be syntactically correct, and
as such it is used as a generative grammar, as opposed to the

classical use of grammars in compilers to check syntactic
correctness of sentences. The user can tailor the grammar to
produce solutions that are purely syntactically constrained,
or they may incorporate domain knowledge by biasing the
grammar to produce very specific forms of sentences.

BNF is a notation that represents a language in the form of
production rules. It is comprised of a set of non-terminals
that can be mapped to elements of the set of terminals (the
primitive symbols that can be used to construct the out-
put program or sentence(s)), according to the production
rules. A simple example BNF grammar is given below,
where<expr> is the start symbol from which all programs
are generated. These productions state that<expr> can
be replaced with either one of<expr><op><expr> or
<var> . An <op> can become either+, - , or * , and a
<var> can become eitherx , or y .

<expr> ::= <expr><op><expr> (0)
| <var> (1)

<op> ::= + (0)
| - (1)
| * (2)

<var> ::= x (0)
| y (1)

The grammar is used in a developmental process to con-
struct a program by applying production rules, selected by
the genome, beginning from the start symbol of the gram-
mar. In order to select a production rule in GE, the next
codon value on the genome is read, interpreted, and placed
in the following formula:

Rule= Codon Value% Num. Rules

where % represents the modulus operator.

Beginning from the the left hand side of the genome, codon
integer values are generated and used to select appropriate
rules for the left-most non-terminal in the developing pro-
gram from the BNF grammar, until one of the following sit-
uations arise: (a) A complete program is generated. This
occurs when all the non-terminals in the expression being
mapped are transformed into elements from the terminal set
of the BNF grammar. (b) The end of the genome is reached,
in which case thewrapping operator is invoked. This re-
sults in the return of the genome reading frame to the left
hand side of the genome once again. The reading of codons
will then continue unless an upper threshold representing
the maximum number of wrapping events has occurred dur-
ing this individuals mapping process. (c) In the event that
a threshold on the number of wrapping events has occurred
and the individual is still incompletely mapped, the mapping
process is halted, and the individual assigned the lowest pos-
sible fitness value. A full description of GE can be found
in (O’Neill and Ryan, 2003).



Swarm Evolution
We consider three primary concerns in evolving dynamical
systems.

Tractability The problem tends to be intractable in terms
of evolutionary time and search. Emergent computation
performed by CA is determined by its overall space-time
behavior (Crutchfield et al., 2003). This is also true of
swarms. Individual experiments evaluated by the evolu-
tionary system may run for several minutes. The problem
contains non-linearities and therefore mirrors a rugged
search space. On a desktop PC it could take weeks to
evolve a solution, if a solution is to be found at all.

Representation As an automatic programming problem we
must consider how to encode the problem, what termi-
nals to use and how to map the genetic material onto the
swarm program. This representation should contribute
to a Language that allows us to relate microscopic and
macroscopic phenomena (Kubrik, 2003).

Fitness Evaluation A Method to determine the fitness of
the swarm can be difficult to produce for dynamical sys-
tems problems (Williams, 2002). Methods to identify pat-
terns in space or time are required. For example Spatial
Entropy values (Bonabeau et al., 1999), Hough Trans-
forms (Williams, 2002) and techniques from computa-
tional mechanics (Crutchfield et al., 2003) each describe
patterns and hence fitness of dynamical pattern-forming
systems. This is not to say there is a one-size-fits-all fit-
ness evaluation method for complex systems but that dy-
namical systems might be evaluated based on the recog-
nition of patterns.

In previous work we ran a number of experiments that con-
sidered the information processing capability of swarms on
clustering tasks and considered the impact of different in-
formation usage. We concluded that different functions of
information did effect the swarm’s ability to model its en-
vironment although it was difficult to determine appropri-
ate information and functions. Each dynamical environment
has its own properties and information - where information
is the meaning of events. In complex environments there
are consistent patterns in space and time. If an entity can
recognise relevant patterns it has the potential to be adaptive
and anticipatory (Rosen, 1985). The information-theoretic
notion of relevant information and the potential of taking
an agent-centered theoretic approach to the design of dis-
tributed adaptive systems is discussed in (Nehaniv et al.,
2002).
Every creature in nature survives by modelling its environ-
ment as it senses it and through a transducer system makes
a response that is fit for that environment. Using GE, we
evolve templates for simple transducers that describe how
environmental information should be modelled by an ant to
produce a response that favours the swarm’s fitness.

Many of the distributed systems envisioned are data and
event-centric and closely tied to their environments. Agents
will make appropriate responses in the presence of certain
environmental information. Grammar-based Genetic Pro-
gramming approaches such as GE are a powerful means to
describe legal interpretations of such terminal information
yet still allow the open-ended evolution of novel solutions.
GE’s distinction between genotype and phenotype aids in
representation of the problem and provides a substrate for
processes that will regulate swarm construction.

Experimental Setup
We describe a multi-agent or swarm simulation model where
information processing ants cooperate to solve an abstract
clustering problem. Ants cluster identical objects which is a
distinct problem from sorting (where a similarity measure
is used to sort like objects). The ant’s world is a square
toroidal grid of 177*177 pixels (similar area to the circu-
lar world used in (Bonabeau et al., 1999))and uses a Moore
neighbourhood. We use the Repast simulation tool and the
Colt math library (Repast, 2004). Ants will move one pixel
per time step. Ants can move in random directions based
on a Gaussian probability distribution centered around the
forward direction. A ’left antenna’ at the north-west Moore
pixel surrounding the ant and a ’right antenna’ at the north-
east are used to sense the concentration gradient. An ant will
move deterministically in the direction of highest concentra-
tion or will continue moving straight if there is no difference
in concentrations. These design choices are based on natural
phenomena (Wilson, 1971; Hölldobler and Wilson, 1990).
An ant will deposit a single pheromone signal of a certain
concentration as it moves. This pheromone signal diffuses
and evaporates at a constant rate. Diffusion and evaporation
is implemented by the repast simulation tool (Repast, 2004).
An ant may pickup or deposit objects in it’s environment.
Ants have a ’browsing’ function whereby objects and other
ants are observed and ’remembered’. The ant has a limited
memory map where each object type encounter over a cer-
tain period is stored.
Ants use non-deterministic threshold functions (Bonabeau
et al., 1999) to determine action. Equations 1 and 2 give the
probability to pick up and drop an object respectively.k1 is
the threshold value for picking up and object andk2 is the
threshold value for dropping an object.f is the stimulus that
the ant perceives - here it is the fraction of objects perceived
over some period i.e. the ant’s memory length.

ρp = (
k2

k1+ f
)2 (1)

ρd = (
k1

k2+ f
)2 (2)

The parameters used in the simulation model are shown in
Table 1. We experimentally decided the simulation time.



Parameter Value
World Dimensions 177 X 177

Ant Count 400
Object Count 1000

Memory Length 50
Decay factor 80 timesteps

Evaporation Rate 0.87
Diffusion Rate 0.42

Simulation Duration 5000 timesteps

Table 1: Swarm simulation parameters.

This time is a short duration that can be used to effectively
evaluate the clustering performance. Evaporation and dif-
fusion rates were chosen to represent ’recruitment’ signals
with medium spatial effect and short temporal effect. Other
parameters were chosen over a number of trials. In the clus-
tering task, ants have a number of behaviours. There is a
behaviour for picking up objects, dropping objects, sensing
stimulus, dropping pheromone and depositing ’pheromone
traces’ on objects. Each of these has a correspondinggene,
which is the evolved template mentioned above. These tem-
plates are equivalent to GP S-Expressions, arranged in se-
quences that make up a complex of S-Expressions or genes.
These genes regulate ant responses using environmental in-
formation as inputs. Each ant individual is encoded by a
complex of genes mapped to behaviours. These genes reg-
ulate the values used for k1, k2 andf in equations 1 and 2.
When objects are deposited, they emit pheromone traces of
concentration specified by the appropriate gene. The con-
centration of pheromone used in ant trails is also regulated
by a gene. Pheromone is emitted for a period of time spec-
ified by the decay factor in Table 1. GE uses the following
grammar to map a genome to an S-Expression, or a com-
plex of S-Expressions called GeneComplex. Start Symbol,
S, Non-terminals, N, Production rules, P, and Terminals, T
are shown below.

S = GeneComplex
P = GeneComplex> ::= <expr> <expr>

<expr> <expr>
<expr> (0)

<expr> ::= <expr> <op> <expr> (0)
| <var> (1)

<op> ::= + (0)
| - (1)
| / (2)
| * (3)

<var> ::= 10 (0)
| 100 (1)
| ants (2)
| working_ants (3)
| current_pheromone (4)
| pheromone (5)
| objects (6)

Notice the terminal symbols of the grammar correspond to
environmental information. Production rule 1 describes a
complex of 5 S-Expressions. These expressions are mapped
onto ant behaviours. A complex of S-Expressions are
mapped in an arbitrary but consistent manner from a single
genome using the grammar above. This complex is passed
to a swarm simulation and used to construct genes in ants
using a sequential mapping of S-Expressions onto the be-
haviour to be encoded. During the simulation at each time
step, the ant senses its environment and passes in a table of
all sensed variables corresponding to terminal symbols. Ter-
minal symbols represent the number of ants, working ants,
objects etc. (see grammar) encountered at each time step.
Each behaviour class then computes a response value based
on the environmental information supplied. These computed
values are used for example in equations 1 and 2 to de-
cide when to pick up and drop objects. In this way, each
S-expression determines the value for a gene or parameter
that determines the expression of a behaviour based on in-
formation inputs.
After the specified experiment length, the fitness of the
swarm is computed and returned to the evolutionary engine.
Spatial Entropy (Gutowiz, 1993; Bonabeau et al., 1999) was
used as a measure for clustering performance in a lattice di-
vided into a number of grids. The equation below gives the
spatial entropy E, at a certain grid scale, s. P is the fraction
of objects in one grid of total objects. In our experiments s
= 6, there are 36 grids.

Es =−
∑

I∈s−patches

PI logPI (3)

Spatial Entropy (Gutowiz, 1993) is a macroscopic measure
that corresponds to the individual ant’s microscopic goals.
As the ants ’work’, spatial entropy values tend to decrease as
the world becomes more ordered. In time-dependant prob-
lems it is advantageous to have fitness evaluation measures
where the fitness value tends towards the optimum. In pre-
vious work we ran experiments for 50,000 time steps. This
was a reasonable ’convergence’ time over different cluster-
ing models. As mentioned, we run simulations for only
5,000. However, this time reasonably approximates clus-
tering behaviour over 50,000 time steps.
It is the nature of the swarm clustering task that it should
be easy to find a good solution (approximate ratio between
stimulus and threshold values) while it can be difficult to
identify the features of the multi-parameter problem. Conse-
quently we focus on showing evidence of progressive search
rather than on finding an optimal solution. GE genome indi-
viduals are evaluated only once (assuming they are not mu-
tated). We use a variable-length generational GA with tour-
nament selection, one-point crossover and integer mutation
(as opposed to bit mutation). See evolutionary parameters
table 2.



Parameter Value
Mutation rate .1

Crossover Rate .7
Population size 200

Generations 5
Fitness Measure Spatial Entropy

Table 2: GE parameters.

Generations 1 2 3 4 5
GE(mean) 1.79 1.79 1.70 1.43 1.70
GE(sd) 0.47 0.11 0.11 0.35 0.33
Rand(mean) 2.02 1.99 2.42 1.65 1.98
Rand(sd) 0.60 0.45 0.49 0.47 0.15

Table 3: Comparison between random run (Rand) and
Grammatical Evolution (GE) showing mean Spatial Entropy
results and standard deviation. (Initial entropy values ap-
prox. 2.7 on average)

Results
Results showing best solutions found in each generation for
both GE search and random search are shown in Table 3.
Random search generates and evaluates a random popula-
tion on each generation. Due to computational time require-
ments, we have only taken 5 samples of each. We expected
to observe evidence of evolvability (Altenberg, 1994) rather
than find optimal solutions. In evolving complex systems
it would seem more important to enablescaffolding, where
we maintain good sub-structures in a population and build
on them. Although not discernable from the tables above,
GE did find the most favourable spatial entropy value of
1.059 although only marginally better than the best value
in the random search which was 1.127. However GE made
improvements over successive generations in most samples.
Over many clustering experiments, spatial entropy values
ranged from average 2.7 (worst and) to 0.9 (best) using given
parameters.
We observed a number of clustering patterns. All experi-
ments used the same agent models and differed only in the
information-processing templates used. Clustering models
in the literature show consistent formation of several small
clusters, gradually becoming three or four large clusters. We
observed these similar patterns but also observed patterns
where objects seemed to be ’swept’ into regions of the ant’s
world. The regions first contained sparse clusters that were
gradually swept into dense compact clusters. We observed
clusters that formed stripe-like patterns in addition to ’spots’
although this may have been as a result of agent trajectories.

Conclusions
The purpose of this article was to demonstrate evolution-
ary patter-forming swarms using Grammatical Evolution,

with the result that the ant colony successfully evolved tem-
plates that exhibited clustering behaviour based on a spatial
entropy measure. We have focused on the representation
of evolving dynamical systems. We feel our information-
theoretic representation could be easily generalized. GE
provides independence between the evolutionary aspects
and the program representation. Many complex systems can
be considered in terms of swarms of information process-
ing particles. The use of grammars provides a means to
describe transducers for information processing in complex
system nodes. Grammars provide a powerful means to de-
scribe legal interpretations of information yet still allow the
open-ended evolution of novel solutions.
Fitness evaluation methods that evaluate patterns are an in-
teresting way to evolve dynamical systems. The choice of
fitness function is important, as depending on how well it ap-
proximates or anticipates performance of the dynamical sys-
tem in the early stages of a simulation, one can use shorter
simulation times and less runs in the evolutionary stages.
The use of templates in a homogenous colony leads to be-
haviorally heterogenous ants based on their environmental
information context. In a sense it also realises a type of
ontogeny in that over time, the ant has features that may
have variable fitness. This is an important aspect to ex-
ploit given the temporal development of simulations and
makes the colony more adaptive. We have observed this
through comparisons between models using static parame-
ters and those using template-based parameters. In all areas
of complex system research, a bridge of understanding be-
tween microscopic and macroscopic phenomena is required.
Some research perspectives focus more on one or the other
of these suffering the critique of others. Templates represent
for us loci at which to study this connection. The evolution-
ary search implicitly identifies these templates as features of
complex systems where for some global task, we can see
how individuals process information. For example, even on
the simple clustering task we observed several patterns of
clustering. Given that we can observe these macroscopic
patterns, can we analyze the templates and find out what the
ants were thinking?
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