
The A u t o m a t i c P r o g r a m m i n g o f Agents t ha t L e a r n M e n t a l Mode ls and Create
S imple Plans o f A c t i o n

David Andre
Visiting Scholar, Computer Science Department, Stanford University

860 Live Oak Ave, Apt 4, Menlo Park, CA 94025
andre@flamingo.stanford.edu

Abstract
An essential component of an intelligent agent is the
ability to notice, encode, store, and utilize information
about its environment. Traditional approaches to
program induction have focused on evolving functional
or reactive programs. This paper presents
MAPMAKER, a method for the automatic generation of
agents that discover information about their
environment, encode this information for later use, and
create simple plans utilizing the stored mental models.
In this method, agents are multi-part computer programs
that communicate through a shared memory. Both the
programs and the representation scheme are evolved
using genetic programming. An illustrative problem of
'gold' collection is used to demonstrate the method in
which one part of a program makes a map of the world
and stores it in memory, and the other part uses this
map to find the gold The results indicate that the
method can evolve programs that store simple
representations of their environments and use these
representations to produce simple plans.

1 Introduction
The ability to notice, encode, store, and utilize information
about the environment is an essential component of
intelligent behavior. Storing a model or map of the
environment increases the problem solving capacity of an
intelligent agent. However, much of the research on the
artificial induction of computer programs has focused on
reactive programs with no use or only a minimal use of state.
These programs, although generated by an artificial process,
do not themselves learn or produce plans of action.

Genetic programming (Koza 1992) is a variant of the
genetic algorithm in which the genetic population consists
of computer programs rather than of fixed length bitstrings
or other fixed data structures. The initial population of
programs consists of randomly generated programs
represented as parse trees that are composed of the available
simple programmatic ingredients. Genetic programming then
breeds these programs using the Darwinian principle of
survival of the fittest and the crossover operation, which is
similar to sexual recombination in nature. Tackett (1994)
provides analysis that genetic programming can be viewed as
a method of stochastic beam search.

This paper presents MAPMAKER, a method for the
automated generation of computer programs that discover
information about their environment, encode this
information, store it, and then utilize this information to
produce plans of action. These programs are evolved using
genetic programming and the structures of the evolving

programs are constrained so as to facilitate the development
of learning and the use of memory. The method evolves
solutions to the gold collection problem, where the agent
must learn the positions of gold in each of several worlds,
store this information in a usable fashion, and then later
utilize this information to produce simple plans to collect
the gold. Several evolved solutions to the problem are
discussed that generalize perfectly to worlds on which they
have not been trained. In addition, the mental models
created by these successful individuals are understandable
and clearly represent models of the world. Also, evidence is
presented that random search could not find even partial
solutions to the problem in any reasonable time.

2 Background on Genetic Programming
As described in John Koza's seminal work (1992), genetic
programming is a method that breeds populations of
computer programs (such as those shown in Fig. 1). The
genetic programming performed in this research employs
steady-state selection (Syswerda 1989), a minor variant on
Koza's methods (Koza 1992). Genetic programming with
steady-state selection consists of the following steps:
(1) Create an initial population by randomly generating

programs composed of the primitive functions.
(2) Execute each program in the population and determine

its fitness based on its ability to solve the problem.
(3) Loop over the following until either a complete

solution or a satisfactory result is found, or a limit on
the number of reproductions is exceeded.
(a) Create two new offspring by applying the crossover

operation. Crossover creates two new programs by
swapping randomly chosen subtrees of two existing
programs (the parents - Fig. 1). The parents are
selected probabilistically based on high fitness.
Programs with high fitness will be selected often,
programs with low fitness will seldom be selected.

(b) Kill two members of the population to provide
space for the two new children. Choose these
individuals probabilistically based on poor fitness.

(c) Evaluate both children and determine their fitness.
Although the programs expressed in Fig. 1 are simple,

genetic programming can evolve much more complex
programs, utilizing complicated programmatic structures.
Genetic programming can evolve programs utilizing iteration
and subroutine calls, as discussed in Koza (1994).
Automatically defined functions (ADFs) are subroutines
that are co-evolved with the main program, and can increase
the power of genetic programming (Koza 1994). For more
information on genetic programming, see Kinnear (1994),
which reviews advances in genetic programming.

ANDRE 741

3 Related Work
The acquisition of mental models and the automatic
synthesis of agents that learn are not new areas for the field
of evolutionary computation. Neural network learning
methods have often been combined with genetic algorithms
that specify the layout of the network and/or the initial
weights (Belew et. al. 1991; Ackley and Littman 1991).
However, these methods do not use explicit representations
of state - the 'memories' learned are stored in the weights
and are thus closed both to introspection and to human
understanding. Additionally, the role that the neural net
plays in the individual is often pre-specified, and thus the
learned representations can only be used in limited ways. In
genetic programming, the use of branching operators that
depend upon the state of the environment is common
(Kinnear 1994). When an evolved program combines
several actions and branching statements through the use of
progn statements it incorporates an implicit use of state.
However, this state represents at best only an implicit
representation of the world, is not available for
introspection, and often can be difficult to comprehend.
Occasionally, GP applications allow the evolving programs
to use a few variables of state (Andre 1994b; Koza 1994),
but this is hardly representational memory.

One successful use of evolved representational structures
is Teller's (1994a) on work on using indexed memory in
genetic programming. Teller evolved programs that could
solve a simple problem - that of pushing blocks up against
the boundaries of a world. Teller used an interesting
strategy to facilitate the use of memory in his evolving
programs; he strictly limited the function sets so that the
evolved programs could move only once per evaluation and
receive only limited sensory feedback. Without using
memory, only minimal fitness was possible. In addition,
Teller has proved that his indexed memory paradigm is
Turing complete (Teller 1994b). Although it is valuable
work, Teller's indexed memory scheme poses several flaws
for the study of the evolution of agents utilizing mental
models. First, the evolved representations developed by his
programs are difficult to interpret. Second, Teller's
representation allows individuals to perform well using only
indirect models of their world, such as simple counters.

In some preliminary work with the MAPMAKER method,
we demonstrated that agents could evolve to solve the gold
collection problem when programs had access to only one
memory cell for each world location (Andre 1994a). This
previous work used the same multi-module MAPMAKER
architecture used in the current work, but the evolved agents
utilized a two-dimensional memory that simplified the

computation. The function set was too complex: movement
in memory was hard-coded to movement in the world to
reduce the demands on evolution. The evolving
representations were constrained so that they exactly
matched the structure of the world.

The present research addresses these issues by extending
Teller's (1994a) indexed memory scheme. Indexed memory
allows for a wide variety of representations. In addition,
because the system uses a multi-module architecture for the
evolving programs and a multi-phasic fitness environment in
which the input and output processes of the individual
programs are kept separate, the evolved representations of
the world are easily available and comprehensible.

4 The MAPMAKER Architecture
One problem inherent in investigating the use of memory

and internal representation in program induction is that
many problems can be solved without state. Solutions
using memory may be less complex than those not using
memory, but may be harder to evolve. Genetic programming
is known for exploiting loopholes, and thus to evolve the
use of memory, one must constrain the fitness environment
in order to promote its evolution. Teller (1994a) required
the use of memory by restricting the building blocks and
the sensory inputs. The MAPMAKER architecture, (Fig.
2a), depends on multi-modularity and sensory deprivation
to force the evolution of memory. Each individual consists
of two modules, each of which is executed separately with
different inputs and outputs. The first module, the map-
maker, can examine sensory information and may store and
read information in memory, but may not act in the world.
The second module, the map-user, is blind with respect to
the world; it must use only its stored representation to
produce a plan. The plan is then evaluated and its fitness
determined. Assuming that the task requires specific
knowledge about the current world, memory representations
of the world are required to achieve good fitness, because of
the separation of perception and action into the two
modules.

The MAPMAKER architecture facilitates in
understanding the representations used by the evolving
agents because it provides an opportunity to examine the
exact internal state that represents the world: the
information contained in memory at the moment after the
map-maker is executed is all the information the map-user
may use in creating a plan, and thus represents the entire
representation of the world. Another aspect of the
MAPMAKER approach is that it parallels the stages often
used in psychological studies of memory - stimulus, delay,
and retrieval.

742 GENETIC ALGORITHMS

Figure 2 a) The MAPMAKER architecture, b) Toroidal worlds for the gold collection problem

In this architecture, the fitnesses for both modules of the
individual are determined only by the output of the map-
user. This is an extension of the credit assignment problem
inherent in program induction - which part of the program
caused the high or low fitness? Although this sort of
indirect fitness is normally encountered when multi-part
programs are evolved, it is especially salient in this approach
because the two modules are executed separately, and the
behavior of the map-maker only affects fitness if the map-
user utilizes information from memory.

5 The Gold Collection Problem
The goal in the gold collection problem is to dig up all the
gold, without digging on squares that have no gold. The
agent operates in an NxN toroidal world (Fig. 2b). The
squares in the world can be identified by the vector of
integers modulo (7V-1) of the form (i,j) where 0
These can be stored and manipulated as a single integer
when N < 10. Thus, 11 is the square (1,1), and 43 is the
square (4,3). This representation was used to allow the
programs access to their position and still allow the
functions to always return integers. The agent initially
starts off in square 11. An individual interacts with the
world as follows (Fig. 2a) . First the map-maker module of
the individual is iteratively allowed to observe the positions
of each gold in the world, one gold at a time. This module
can store this information in memory. Then, the map-user
module is allowed to examine the contents of memory, and
to output actions into the plan This plan is then executed,
and the numbers of golds collected and erroneous digs
performed are calculated and used to determine the fitness of
the individual. Each evolving individual is evaluated on
several worlds with different arrangements of gold to
promote solutions that will generalize well to worlds not
used in evolution.
Though many world sizes and gold densities are possible,
we used world sizes of 2x2, 4x4, and 8x8. The number of
gold in the worlds is approximately half the number of
squares in the world, with the exception that in the 8x8
world, gold densities of 1, 2, and 3 golds per world were
also investigated. Although it may seem that these world
sizes are trivial to map, such is not the case. In order to
succeed, the map-maker and the map-user must evolve to
agree on a representation. The map-maker must evolve to
store all gold positions in memory in some fashion, and the
map-user must evolve to use this information to constrain
and guide its digging and movement actions. Although in
the 2x2 world with 1 gold there are only 4 possible
configurations of gold, there are infinitely many ways to

encode this information and the map-user and the map-maker
must evolve a shared representation. Evolving a map-user to
select what the plan for gold collection should be is not
trivial because there are infinitely many plans that attempt to
dig only once, infinitely many that dig N times on the same
square, etc. The map-user must also evolve the code to move
around the world to the squares with gold. If the map-user
takes the simplest option and avoids path planning by
visiting every square, then it must solve Koza's Lawnmower
problem (Koza 1994). Koza found this problem to be
difficult when no ADFs were used, and straightforward,
although not trivial, when ADFs were used. Solutions are
thus not easily generated, even for the tiniest worlds. The
2x2 world is also similar to Square World, a problem in the
AI literature used to illustrate planning strategies
(Genesereth and Nourbakhsh 1993).

6 Algorithmic Details
There are four steps in preparing to use genetic

programming on any problem, namely specifying the
architecture of the programs to be evolved, the set of
primitive programmatic ingredients, the fitness function, and
the parameters for controlling the run.

The architecture of the evolving programs is shown in
Fig. 3. The map-maker module has an easier task than the
map-user; because it is directly shown the positions of the
gold, it must only store the gold locations in some fashion
that the map-user can comprehend. Therefore, ADFs
(subroutines) are not needed in the map-maker, but are in the
map-user. The ADFs in the map-user are arranged
hierarchically; the Result Producing Branch for the map-
user (RPBU) can call both of the ADFs, and ADFU2 can call
ADFU1. Both ADFs take a single argument.

ANDRE 743

The set of primitive programmatic ingredients must be
specified prior to a run of genetic programming. These
ingredients are the basic building blocks for the programs to
be evolved. For the gold collection problem, we choose the
functions shown in Table 1.

Each module and ADF of the program has a slightly
different function set to account for the varied behaviors
allowed in each. The map-maker has no access to functions
for motion, for example, but has access to view the world
through the GoldPos function. Additionally, some
functions are constrained to occur only in the ADFs to
engender their widespread, consistent use. Previous work
(Andre 1994a) indicated that runs that had no such
restrictions were largely unsuccessful. Restricting key
functions to an ADF forces that ADF to be used when the
behavior produced by those functions is needed. When the
ADF is changed, the modifications occur in all places where
the functionality is used.

The function sets for each of the different branches for the
gold collection problem are shown in Table 1 0, 01,10, and
11 are constants chosen for their usefulness in this problem
because, for example, 10 represents the vector (1,0) which is
one step in the x direction. R refers to the ephemeral
random constant, Ephemeral random constants
provide a method for creating constants in GP (Koza 1992).
ADFU1 and ADFU2 are one-argument functions that call
the appropriate ADF (subroutine). Arg_l is a zero-
argument function that contains the dummy variable (formal
parameter) passed to an ADF.

The add and sub functions act on a pair of integer
vectors. These operations use digit by digit arithmetic
modulo the size of the world. For example, in a 4x4 world,
(add 33 12) = 01. Not returns a 1 if its argument
evaluates to 0, otherwise it returns a 0. Progn evaluates
both its arguments and returns the value of the second
argument. Self returns the individual's current location in
the world. Dignow outputs a 'Dig' command to the plan.

Jump (a) outputs a command to the plan that changes the
agent's position by a displacement of a in the world. For
example, if an individual were at position 1,1 in the world,
(Jump 12) would move the individual to position (2,3)
in the world.

GoldPos () , used by the map-maker, returns the
position of the gold that the map-maker is currently allowed
to view. Repeat (a,b) takes the result of its first
argument a, modulo the size of the world, and iteratively
executes the second argument b that many times. Repeat
returns the value of the last execution of the second
argument b. Repeati(a,b) is much like Repeat,
excepting that Repeat_Index () is set within Repeat 1.
The Repeat_Index () is equal to the current iteration
number. PutMexn(a,b) puts b into memory cell a and
returns the previous value of cell a. ReadMem(a) returns
the value of cell a. IncMem(a) increases cell a by 1.
The fitness function in the gold collection problem is
straightforward. The goal is to collect all of the gold in
each of several worlds without making any incorrect digs.
Thus, to attain a perfect score, the individual acting in the
2x2 world must collect all 4 golds - one from each of 4
worlds - without any false-digs, and the individual acting in
the 8x8 world with 20 golds per world must collect 600
golds - 20 from each of 30 worlds. The golds were
distributed randomly in each world. The fitness of an
individual is a weighted sum of the number of golds not
picked up and the number of false digs. In addition, there
is a large penalty for picking up no golds. Thus the fitness
function is equal to the following expression, where lower
fitness is better.

5*Gold_Remaining+2 0*Num_of_FalseDigs+
(10,000 i f Gold=0).

The next step in preparing to run genetic programming is
to choose values for various parameters of the run.
Tournament selection (Goldberg and Deb 1991) with a
tournament size of 8 was used to choose parents for
crossover. To choose parents to be removed from the
population to make room for the newly created children,
tournament selection with a tournament of size 2 was used.
Larger tournament sizes for the removal operation result in
overly greedy evolution. The population size and maximum
number of generation equivalents for the presented research
are shown in Table 2. One generation equivalent is defined
as the number of reproductions necessary to create as many
children as there are individuals in the population.

Table 1. Function sets for the branches of the evolving programs, and the argument structure for each of the functions.

744 GENETIC ALGORITHMS

7 Results
The runs were performed on a variety of machines, including
Sun Sparc 2's, a DEC Alpha, and 486-66 machines. Runs
took an average of 2 days to complete. In all world sizes,
approximately 1/3 of the runs produced solutions. On the
non-successful runs, nearly correct individuals emerged that
collected most of the gold and dug on very few squares with
no gold. Successful results for each world size will be
briefly discussed. On the 2x2 world, four solutions emerged
out of ten runs. One such solution emerged after processing
1,100,742 individuals. The behavior of this individual was
straightforward. The map-maker would fill memory elements
directly corresponding to locations in the world with the
value 1, and then would reset these cells to 0 if a gold was
found there. Additionally, the symbol 13 was also used to
signify a non-gold. Memory traces from four worlds after
the map-maker has been executed are shown in Table 3.
When golds were at (0,0) and (0,1), for example, memory
cells 0 and 1 are set to 0, whereas cells 10 and 11 are set to
1. The map-maker also stores some redundant information
that is not used by the map-user. For example, whenever
there is a gold in position (1,0), memory cell 19 is filled
with a 12. It seems that the process of development might
be that the map-maker first evolves to store information
about the world in many redundant ways, and then the map-
user learns enough of one of these representations to be able
to achieve a better fitness.

On other successful runs on the 2x2 world, representation
schemes were similar, although different symbols were used.
In one scheme, the map-maker stored the representation for
locations in the memory cell corresponding to the square one
square to the left of the location. This offset was learned by
both the map-maker and the map-user, and changed the
notion of what correspondence to the world meant.

One of the 100% correct solutions to the 4x4 world
evolved after 487,068 individuals had been processed. The
program code for this individual is shown below:

Although this individual looks complicated, its behavior
is actually quite simple to understand, because of the
MAPMAKER architecture. Not only can the behavior be
largely understood from the output plan and the state of
memory between the execution of the modules, the code can
also be understood through analysis. This individual stores
a 1 in the memory cells corresponding to gold positions in
the world, a scheme similar to that shown in the 2x2
solution. However, the map-user in this world shows some
other interesting uses of memory. The map-user in this case
learned a single route over the 4x4 world and checked its
memory at each square to see if it should dig. However, the
route it learned overlapped, so it would pass over some
squares more than once. To avoid digging on squares that
had already been dug, the map-user stored a 11 in memory at
each cell after having been there. In addition, it stored a '21'
in the memory cell corresponding to the initial square.

The learned world representation not only allowed
communication between map-maker and map-user, but
allowed the map-user to use memory to avoid redigging at
any locations. This individual's solution to the 4x4 world
with 8 golds was completely general as well; although only
trained on 15 different combinations of 8 golds per world,
the individual collects without error any and all gold that is
given to it in the 4x4 world. The ability of this individual
to collect gold on all 4x4 worlds is shown in two ways: 1)
it was tested experimentally on 100 worlds not included in
the original evolution, and 2) is also a provable consequence
of the code.

Successful individuals emerged at all four gold
concentrations examined in the 8x8 world. When there was
only one gold per world, one evolved individual - found
after processing 840,296 individuals - utilized a quite
different representation scheme than did the solutions to the
2x2 and 4x4 worlds. The individual stored the position of
the gold in a hard coded memory location, cell 0, and then
used this information to choose where to dig.

ANDRE 745

The actual code that evolved contained a great deal of code
that was never executed, and the actual executed code is
quite simple to understand; such a simplified version is
shown in Fig. 4. The individual stores the correct gold
position in cell 0, calculates the displacement from the
starting position to the gold's location, jumps to that square,
and digs.Thus, the individual evolved to be a planner that
produces optimal plans for a single gold. Although the
output behavior is simple, evolving such a behavior in the
space of all possible plans is not.In addition, this individual
was only trained on 30 worlds, with a gold at a different
space in each world. This evolved individual generalized
correctly to all 64 possible 8x8 worlds with 1 gold.

Successful individuals evolved for the 8x8 worlds with 2,
3, and 20 golds that used memory schemes similar to those
used by the solutions to the 2x2 worlds. Andre (1994c)
contains more detailed analysis of these results.. One
successful individual on the 8x8 worlds with 20 golds
evolved to use a memory scheme similar to that used by the
solution discussed for the 4x4 worlds.lt uses a 'I' to
represent a gold, and a '0' to represent a non-gold.After
digging each gold, the corresponding memory cell is reset to
a '0', so no multiple digs occur. The individual is provably
a correct solution for all 8x8 worlds, with any gold
distribution, even though it had been trained on only 30
worlds with 20 golds in each.

Overall, the experiments indicate that the MAPMAKER
method can successfully evolve individuals to solve the
gold collection problem. Many of the solutions were
completely general - they extended perfectly to any number
and arrangements of gold in their world, even though they
were trained on a small subset of the possible worlds. In the
case of the 8x8 world with 1 gold per world, an individual
evolved that produced optimal plans of action for obtaining
the gold. Many different representation systems emerged;
these are shown in Table 4. All of these representation
schemes are evolved models of the world; importantly, these
models differ from the models evolved in the previous work
with the MAPMAKER architecture (Andre 1994a) in that
the exact mapping between memory and the world is
evolved, rather than forced by the function set. Many of the
solutions involve a direct mapping, but several utilize
offsets, translations, or exchanges of cells that are more
complex. In addition, preliminary research indicates that

general solutions will evolve even if the direct mapping is
prohibited by limited memory damage (Andre 1995).

Thus, MAPMAKER can evolve programs to control a
simple agent that uses indexed memory to store information
and then uses this information to create simple plans.

8 Comparison to Random Search
Many researchers, when first encountering genetic

algorithms, often wonder if the results are due to a modified
version of random search. Although Koza (1992) has
shown that genetic programming performs much better than
random search for many problems, it is important to rule out
random search as a possibility for MAPMAKER's success.

To test this possibility, twenty million random
individuals that followed the MAPMAKER architecture
were created and evaluated on the 8x8 worlds with 20 golds
per world. This version of the gold collection problem was
chosen because it required the least computational effort to
solve for MAPMAKER using genetic programming, and
was thus felt to be the easiest of the problems (see Andre
1994c for more explanation). The best of these twenty
million randomly generated individuals only collected 56
golds out of 600, and incurred 3 penalties for digging on
squares with no golds. The individual did store some
information about the world; an 11 was stored in some but
not all squares with gold. . Although the map-user looked
at several memory locations per world, the map-user used a
different 'language' than the map-maker as to when it
expected a gold, and thus , failed to correctly plan its actions
even for the golds that were stored in its memory.

In comparison to the twenty million individuals that were
evaluated for random search, which found only a 9% correct
solution, MAPMAKER required processing fewer than six
hundred thousand individuals to find a 100% correct
solution on the 8x8 worlds with 20 golds per world.
Random search thus seems unable to discover, in any
reasonable amount of time, the cooperation between the
map-maker and the map-user, the development of a shared
representational system, and the programs to control both
modules that are all required to solve the gold collection
problem.

746 GENETIC ALGORITHMS

9 Conclusions
This paper has presented MAPMAKER, a method for the

automatic generation of programs that observe their
environment, store information, and then later use this
information to formulate simple plans of action. The
experiments with the gold collection problem indicated that
MAPMAKER with genetic programming could generate
solutions that were generalizable, robust, and in some cases
optimal solutions to the problem. Future work will examine
more complex representational schemes, more difficult
problems, the possibility of memory structure that itself
evolves, and cooperation among multiple agents.

The gold collection problem is, of course, a toy problem,
and the solutions generated by MAPMAKER are not
exemplary in and of themselves. However, what is
noteworthy is that the solutions were created automatically
through the artificial evolution of programs following the
MAPMAKER architecture. The MAPMAKER architecture
was successful at generating agents that discover information
about their environment, encode this information for later
use, and create simple plans using the stored mental models.

Acknowledgments
I would like to thank John Koza and Nils Nilsson for

their help, advice, and many comments regarding this work.

References
Ackley, D. and Littman M. (1991). Interactions between

learning and evolution. In Artificial Life II, SFI Studies
in the Sciences of Complexity, vol. X, ed. C.G. Langton,
C.Taylor, J.D. Farmer, & S. Rasmussen, Addison-Wesley.

Andre, D., (1994a). Evolution of Mapmaking: Learning,
planning, and memory using genetic programming.
Proceedings of the 1994 IEEE World Congress on
Computational Intelligence. IEEE Press.

Andre, D., (1994b). Learning and upgrading rules for an
OCR system using Genetic Programming. Proceedings of
the 1994 IEEE World Congress on Computational
Intelligence. IEEE Press.

Andre, D., (1994c). Artificial Evolution of Intelligence:
Lessons from natural evolution: An illustrative approach
using Genetic Programming. Unpublished BS Honors
Thesis. Stanford University. Symbolic Systems Program.

Andre, D., (1995). The Evolution of Agents that Build
Mental Models and Create Simple Plans Using Genetic
Programming. To appear in Proceedings of the 1995
International Conference on Genetic Algorithms.
Morgan Kaufmann.

Belew, R.K., Mclnemey, J., and Schraudolph, N.N. (1991).
Evolving Networks: Using the genetic algorithm with
connectionist learning. In Artificial Life II, SFI Studies in
the Sciences of Complexity, vol. X, ed. C.G. Langton,
C.Taylor, J.D. Farmer, & S. Rasmussen, Addison-Wesley.

Genesereth, M. and Nourbakhsh, I.. (1993). Time-saving
tips for problem solving with incomplete information. In
Proceedings of the 11th National Conference on Artificial
Intelligence, AAAI-Press.

Goldberg, D.E., and Deb, K. (1991). A comparative
analysis of selection schemes used in genetic algorithms.
In Rawlins, G. (editor), Foundations of Genetic
Algorithms. Morgan Kaufmann.

Kinnear, K. E. Jr. (ed). (1994). Advances in Genetic
Programming. The MIT Press.

Koza, J.R., (1992). Genetic Programming: on the
programming of computers by means of natural selection,
Cambridge, Mass: MIT Press.

Koza, J.R., (1994) Genetic Programming II: Automatic
Discovery of Reusable Programs . Cambridge, MA: The
MIT Press.

Syswerda, G. (1989). Uniform crossover in genetic
algorithms. Proceedings of the Third International
Conference on Genetic Algorithms. (J. Schaffer, Ed,)
San Mateo, CA: Morgan Kaufmann.

Tackett, W.A. (1994). Recombination, Selection, and the
Genetic Construction of Computer Programs. Ph.D.
dissertation, University of Southern California, Department
of Electrical Engineering Systems.

Teller, A. (1994a) Turing Completeness in the language of
genetic programming with indexed memory. Proceedings
of the 1994 IEEE World Congress on Computational
Intelligence. IEEE Press.

Teller, A. (1994b). The Evolution of Mental Models.
Advances in Genetic Programming. (Kim Kinnear, Ed.).
Cambridge, MA: MIT Press.

ANDRE 747

