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Abstract 
An essential component of an intelligent agent is the 
ability to notice, encode, store, and utilize information 
about its environment. Traditional approaches to 
program induction have focused on evolving functional 
or reactive programs. This paper presents 
MAPMAKER, a method for the automatic generation of 
agents that discover information about their 
environment, encode this information for later use, and 
create simple plans utilizing the stored mental models. 
In this method, agents are multi-part computer programs 
that communicate through a shared memory. Both the 
programs and the representation scheme are evolved 
using genetic programming. An illustrative problem of 
'gold' collection is used to demonstrate the method in 
which one part of a program makes a map of the world 
and stores it in memory, and the other part uses this 
map to find the gold The results indicate that the 
method can evolve programs that store simple 
representations of their environments and use these 
representations to produce simple plans. 

1 Introduction 
The ability to notice, encode, store, and utilize information 
about the environment is an essential component of 
intelligent behavior. Storing a model or map of the 
environment increases the problem solving capacity of an 
intelligent agent. However, much of the research on the 
artificial induction of computer programs has focused on 
reactive programs with no use or only a minimal use of state. 
These programs, although generated by an artificial process, 
do not themselves learn or produce plans of action. 

Genetic programming (Koza 1992) is a variant of the 
genetic algorithm in which the genetic population consists 
of computer programs rather than of fixed length bitstrings 
or other fixed data structures. The initial population of 
programs consists of randomly generated programs 
represented as parse trees that are composed of the available 
simple programmatic ingredients. Genetic programming then 
breeds these programs using the Darwinian principle of 
survival of the fittest and the crossover operation, which is 
similar to sexual recombination in nature. Tackett (1994) 
provides analysis that genetic programming can be viewed as 
a method of stochastic beam search. 

This paper presents MAPMAKER, a method for the 
automated generation of computer programs that discover 
information about their environment, encode this 
information, store it, and then utilize this information to 
produce plans of action. These programs are evolved using 
genetic programming and the structures of the evolving 

programs are constrained so as to facilitate the development 
of learning and the use of memory. The method evolves 
solutions to the gold collection problem, where the agent 
must learn the positions of gold in each of several worlds, 
store this information in a usable fashion, and then later 
utilize this information to produce simple plans to collect 
the gold. Several evolved solutions to the problem are 
discussed that generalize perfectly to worlds on which they 
have not been trained. In addition, the mental models 
created by these successful individuals are understandable 
and clearly represent models of the world. Also, evidence is 
presented that random search could not find even partial 
solutions to the problem in any reasonable time. 

2 Background on Genetic Programming 
As described in John Koza's seminal work (1992), genetic 
programming is a method that breeds populations of 
computer programs (such as those shown in Fig. 1). The 
genetic programming performed in this research employs 
steady-state selection (Syswerda 1989), a minor variant on 
Koza's methods (Koza 1992). Genetic programming with 
steady-state selection consists of the following steps: 
(1) Create an initial population by randomly generating 

programs composed of the primitive functions. 
(2) Execute each program in the population and determine 

its fitness based on its ability to solve the problem. 
(3) Loop over the following until either a complete 

solution or a satisfactory result is found, or a limit on 
the number of reproductions is exceeded. 
(a) Create two new offspring by applying the crossover 

operation. Crossover creates two new programs by 
swapping randomly chosen subtrees of two existing 
programs (the parents - Fig. 1). The parents are 
selected probabilistically based on high fitness. 
Programs with high fitness will be selected often, 
programs with low fitness will seldom be selected. 

(b) Kill two members of the population to provide 
space for the two new children. Choose these 
individuals probabilistically based on poor fitness. 

(c) Evaluate both children and determine their fitness. 
Although the programs expressed in Fig. 1 are simple, 

genetic programming can evolve much more complex 
programs, utilizing complicated programmatic structures. 
Genetic programming can evolve programs utilizing iteration 
and subroutine calls, as discussed in Koza (1994). 
Automatically defined functions (ADFs) are subroutines 
that are co-evolved with the main program, and can increase 
the power of genetic programming (Koza 1994). For more 
information on genetic programming, see Kinnear (1994), 
which reviews advances in genetic programming. 
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3 Related Work 
The acquisition of mental models and the automatic 
synthesis of agents that learn are not new areas for the field 
of evolutionary computation. Neural network learning 
methods have often been combined with genetic algorithms 
that specify the layout of the network and/or the initial 
weights (Belew et. al. 1991; Ackley and Littman 1991). 
However, these methods do not use explicit representations 
of state - the 'memories' learned are stored in the weights 
and are thus closed both to introspection and to human 
understanding. Additionally, the role that the neural net 
plays in the individual is often pre-specified, and thus the 
learned representations can only be used in limited ways. In 
genetic programming, the use of branching operators that 
depend upon the state of the environment is common 
(Kinnear 1994). When an evolved program combines 
several actions and branching statements through the use of 
progn statements it incorporates an implicit use of state. 
However, this state represents at best only an implicit 
representation of the world, is not available for 
introspection, and often can be difficult to comprehend. 
Occasionally, GP applications allow the evolving programs 
to use a few variables of state (Andre 1994b; Koza 1994), 
but this is hardly representational memory. 

One successful use of evolved representational structures 
is Teller's (1994a) on work on using indexed memory in 
genetic programming. Teller evolved programs that could 
solve a simple problem - that of pushing blocks up against 
the boundaries of a world. Teller used an interesting 
strategy to facilitate the use of memory in his evolving 
programs; he strictly limited the function sets so that the 
evolved programs could move only once per evaluation and 
receive only limited sensory feedback. Without using 
memory, only minimal fitness was possible. In addition, 
Teller has proved that his indexed memory paradigm is 
Turing complete (Teller 1994b). Although it is valuable 
work, Teller's indexed memory scheme poses several flaws 
for the study of the evolution of agents utilizing mental 
models. First, the evolved representations developed by his 
programs are difficult to interpret. Second, Teller's 
representation allows individuals to perform well using only 
indirect models of their world, such as simple counters. 

In some preliminary work with the MAPMAKER method, 
we demonstrated that agents could evolve to solve the gold 
collection problem when programs had access to only one 
memory cell for each world location (Andre 1994a). This 
previous work used the same multi-module MAPMAKER 
architecture used in the current work, but the evolved agents 
utilized a two-dimensional memory that simplified the 

computation. The function set was too complex: movement 
in memory was hard-coded to movement in the world to 
reduce the demands on evolution. The evolving 
representations were constrained so that they exactly 
matched the structure of the world. 

The present research addresses these issues by extending 
Teller's (1994a) indexed memory scheme. Indexed memory 
allows for a wide variety of representations. In addition, 
because the system uses a multi-module architecture for the 
evolving programs and a multi-phasic fitness environment in 
which the input and output processes of the individual 
programs are kept separate, the evolved representations of 
the world are easily available and comprehensible. 

4 The MAPMAKER Architecture 
One problem inherent in investigating the use of memory 

and internal representation in program induction is that 
many problems can be solved without state. Solutions 
using memory may be less complex than those not using 
memory, but may be harder to evolve. Genetic programming 
is known for exploiting loopholes, and thus to evolve the 
use of memory, one must constrain the fitness environment 
in order to promote its evolution. Teller (1994a) required 
the use of memory by restricting the building blocks and 
the sensory inputs. The MAPMAKER architecture, (Fig. 
2a), depends on multi-modularity and sensory deprivation 
to force the evolution of memory. Each individual consists 
of two modules, each of which is executed separately with 
different inputs and outputs. The first module, the map-
maker, can examine sensory information and may store and 
read information in memory, but may not act in the world. 
The second module, the map-user, is blind with respect to 
the world; it must use only its stored representation to 
produce a plan. The plan is then evaluated and its fitness 
determined. Assuming that the task requires specific 
knowledge about the current world, memory representations 
of the world are required to achieve good fitness, because of 
the separation of perception and action into the two 
modules. 

The MAPMAKER architecture facilitates in 
understanding the representations used by the evolving 
agents because it provides an opportunity to examine the 
exact internal state that represents the world: the 
information contained in memory at the moment after the 
map-maker is executed is all the information the map-user 
may use in creating a plan, and thus represents the entire 
representation of the world. Another aspect of the 
MAPMAKER approach is that it parallels the stages often 
used in psychological studies of memory - stimulus, delay, 
and retrieval. 
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Figure 2 a) The MAPMAKER architecture, b) Toroidal worlds for the gold collection problem 

In this architecture, the fitnesses for both modules of the 
individual are determined only by the output of the map-
user. This is an extension of the credit assignment problem 
inherent in program induction - which part of the program 
caused the high or low fitness? Although this sort of 
indirect fitness is normally encountered when multi-part 
programs are evolved, it is especially salient in this approach 
because the two modules are executed separately, and the 
behavior of the map-maker only affects fitness if the map-
user utilizes information from memory. 

5 The Gold Collection Problem 
The goal in the gold collection problem is to dig up all the 
gold, without digging on squares that have no gold. The 
agent operates in an NxN toroidal world (Fig. 2b). The 
squares in the world can be identified by the vector of 
integers modulo (7V-1) of the form (i,j) where 0 
These can be stored and manipulated as a single integer 
when N < 10. Thus, 11 is the square (1,1), and 43 is the 
square (4,3). This representation was used to allow the 
programs access to their position and still allow the 
functions to always return integers. The agent initially 
starts off in square 11. An individual interacts with the 
world as follows (Fig. 2a) . First the map-maker module of 
the individual is iteratively allowed to observe the positions 
of each gold in the world, one gold at a time. This module 
can store this information in memory. Then, the map-user 
module is allowed to examine the contents of memory, and 
to output actions into the plan This plan is then executed, 
and the numbers of golds collected and erroneous digs 
performed are calculated and used to determine the fitness of 
the individual. Each evolving individual is evaluated on 
several worlds with different arrangements of gold to 
promote solutions that will generalize well to worlds not 
used in evolution. 
Though many world sizes and gold densities are possible, 
we used world sizes of 2x2, 4x4, and 8x8. The number of 
gold in the worlds is approximately half the number of 
squares in the world, with the exception that in the 8x8 
world, gold densities of 1, 2, and 3 golds per world were 
also investigated. Although it may seem that these world 
sizes are trivial to map, such is not the case. In order to 
succeed, the map-maker and the map-user must evolve to 
agree on a representation. The map-maker must evolve to 
store all gold positions in memory in some fashion, and the 
map-user must evolve to use this information to constrain 
and guide its digging and movement actions. Although in 
the 2x2 world with 1 gold there are only 4 possible 
configurations of gold, there are infinitely many ways to 

encode this information and the map-user and the map-maker 
must evolve a shared representation. Evolving a map-user to 
select what the plan for gold collection should be is not 
trivial because there are infinitely many plans that attempt to 
dig only once, infinitely many that dig N times on the same 
square, etc. The map-user must also evolve the code to move 
around the world to the squares with gold. If the map-user 
takes the simplest option and avoids path planning by 
visiting every square, then it must solve Koza's Lawnmower 
problem (Koza 1994). Koza found this problem to be 
difficult when no ADFs were used, and straightforward, 
although not trivial, when ADFs were used. Solutions are 
thus not easily generated, even for the tiniest worlds. The 
2x2 world is also similar to Square World, a problem in the 
AI literature used to illustrate planning strategies 
(Genesereth and Nourbakhsh 1993). 

6 Algorithmic Details 
There are four steps in preparing to use genetic 

programming on any problem, namely specifying the 
architecture of the programs to be evolved, the set of 
primitive programmatic ingredients, the fitness function, and 
the parameters for controlling the run. 

The architecture of the evolving programs is shown in 
Fig. 3. The map-maker module has an easier task than the 
map-user; because it is directly shown the positions of the 
gold, it must only store the gold locations in some fashion 
that the map-user can comprehend. Therefore, ADFs 
(subroutines) are not needed in the map-maker, but are in the 
map-user. The ADFs in the map-user are arranged 
hierarchically; the Result Producing Branch for the map-
user (RPBU) can call both of the ADFs, and ADFU2 can call 
ADFU1. Both ADFs take a single argument. 
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The set of primitive programmatic ingredients must be 
specified prior to a run of genetic programming. These 
ingredients are the basic building blocks for the programs to 
be evolved. For the gold collection problem, we choose the 
functions shown in Table 1. 

Each module and ADF of the program has a slightly 
different function set to account for the varied behaviors 
allowed in each. The map-maker has no access to functions 
for motion, for example, but has access to view the world 
through the GoldPos function. Additionally, some 
functions are constrained to occur only in the ADFs to 
engender their widespread, consistent use. Previous work 
(Andre 1994a) indicated that runs that had no such 
restrictions were largely unsuccessful. Restricting key 
functions to an ADF forces that ADF to be used when the 
behavior produced by those functions is needed. When the 
ADF is changed, the modifications occur in all places where 
the functionality is used. 

The function sets for each of the different branches for the 
gold collection problem are shown in Table 1 0, 01,10, and 
11 are constants chosen for their usefulness in this problem 
because, for example, 10 represents the vector (1,0) which is 
one step in the x direction. R refers to the ephemeral 
random constant, Ephemeral random constants 
provide a method for creating constants in GP (Koza 1992). 
ADFU1 and ADFU2 are one-argument functions that call 
the appropriate ADF (subroutine). Arg_l is a zero-
argument function that contains the dummy variable (formal 
parameter) passed to an ADF. 

The add and sub functions act on a pair of integer 
vectors. These operations use digit by digit arithmetic 
modulo the size of the world. For example, in a 4x4 world, 
(add 33 12) = 01. Not returns a 1 if its argument 
evaluates to 0, otherwise it returns a 0. Progn evaluates 
both its arguments and returns the value of the second 
argument. Self returns the individual's current location in 
the world. Dignow outputs a 'Dig' command to the plan. 

Jump (a) outputs a command to the plan that changes the 
agent's position by a displacement of a in the world. For 
example, if an individual were at position 1,1 in the world, 
(Jump 12) would move the individual to position (2,3) 
in the world. 

GoldPos ( ) , used by the map-maker, returns the 
position of the gold that the map-maker is currently allowed 
to view. Repeat (a,b) takes the result of its first 
argument a, modulo the size of the world, and iteratively 
executes the second argument b that many times. Repeat 
returns the value of the last execution of the second 
argument b. Repeati(a,b) is much like Repeat, 
excepting that Repeat_Index () is set within Repeat 1. 
The Repeat_Index () is equal to the current iteration 
number. PutMexn(a,b) puts b into memory cell a and 
returns the previous value of cell a. ReadMem(a) returns 
the value of cell a. IncMem(a) increases cell a by 1. 
The fitness function in the gold collection problem is 
straightforward. The goal is to collect all of the gold in 
each of several worlds without making any incorrect digs. 
Thus, to attain a perfect score, the individual acting in the 
2x2 world must collect all 4 golds - one from each of 4 
worlds - without any false-digs, and the individual acting in 
the 8x8 world with 20 golds per world must collect 600 
golds - 20 from each of 30 worlds. The golds were 
distributed randomly in each world. The fitness of an 
individual is a weighted sum of the number of golds not 
picked up and the number of false digs. In addition, there 
is a large penalty for picking up no golds. Thus the fitness 
function is equal to the following expression, where lower 
fitness is better. 

5*Gold_Remaining+2 0*Num_of_FalseDigs+ 
(10,000 i f Gold=0). 

The next step in preparing to run genetic programming is 
to choose values for various parameters of the run. 
Tournament selection (Goldberg and Deb 1991) with a 
tournament size of 8 was used to choose parents for 
crossover. To choose parents to be removed from the 
population to make room for the newly created children, 
tournament selection with a tournament of size 2 was used. 
Larger tournament sizes for the removal operation result in 
overly greedy evolution. The population size and maximum 
number of generation equivalents for the presented research 
are shown in Table 2. One generation equivalent is defined 
as the number of reproductions necessary to create as many 
children as there are individuals in the population. 

Table 1. Function sets for the branches of the evolving programs, and the argument structure for each of the functions. 
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7 Results 
The runs were performed on a variety of machines, including 
Sun Sparc 2's, a DEC Alpha, and 486-66 machines. Runs 
took an average of 2 days to complete. In all world sizes, 
approximately 1/3 of the runs produced solutions. On the 
non-successful runs, nearly correct individuals emerged that 
collected most of the gold and dug on very few squares with 
no gold. Successful results for each world size will be 
briefly discussed. On the 2x2 world, four solutions emerged 
out of ten runs. One such solution emerged after processing 
1,100,742 individuals. The behavior of this individual was 
straightforward. The map-maker would fill memory elements 
directly corresponding to locations in the world with the 
value 1, and then would reset these cells to 0 if a gold was 
found there. Additionally, the symbol 13 was also used to 
signify a non-gold. Memory traces from four worlds after 
the map-maker has been executed are shown in Table 3. 
When golds were at (0,0) and (0,1), for example, memory 
cells 0 and 1 are set to 0, whereas cells 10 and 11 are set to 
1. The map-maker also stores some redundant information 
that is not used by the map-user. For example, whenever 
there is a gold in position (1,0), memory cell 19 is filled 
with a 12. It seems that the process of development might 
be that the map-maker first evolves to store information 
about the world in many redundant ways, and then the map-
user learns enough of one of these representations to be able 
to achieve a better fitness. 

On other successful runs on the 2x2 world, representation 
schemes were similar, although different symbols were used. 
In one scheme, the map-maker stored the representation for 
locations in the memory cell corresponding to the square one 
square to the left of the location. This offset was learned by 
both the map-maker and the map-user, and changed the 
notion of what correspondence to the world meant. 

One of the 100% correct solutions to the 4x4 world 
evolved after 487,068 individuals had been processed. The 
program code for this individual is shown below: 

Although this individual looks complicated, its behavior 
is actually quite simple to understand, because of the 
MAPMAKER architecture. Not only can the behavior be 
largely understood from the output plan and the state of 
memory between the execution of the modules, the code can 
also be understood through analysis. This individual stores 
a 1 in the memory cells corresponding to gold positions in 
the world, a scheme similar to that shown in the 2x2 
solution. However, the map-user in this world shows some 
other interesting uses of memory. The map-user in this case 
learned a single route over the 4x4 world and checked its 
memory at each square to see if it should dig. However, the 
route it learned overlapped, so it would pass over some 
squares more than once. To avoid digging on squares that 
had already been dug, the map-user stored a 11 in memory at 
each cell after having been there. In addition, it stored a '21' 
in the memory cell corresponding to the initial square. 

The learned world representation not only allowed 
communication between map-maker and map-user, but 
allowed the map-user to use memory to avoid redigging at 
any locations. This individual's solution to the 4x4 world 
with 8 golds was completely general as well; although only 
trained on 15 different combinations of 8 golds per world, 
the individual collects without error any and all gold that is 
given to it in the 4x4 world. The ability of this individual 
to collect gold on all 4x4 worlds is shown in two ways: 1) 
it was tested experimentally on 100 worlds not included in 
the original evolution, and 2) is also a provable consequence 
of the code. 

Successful individuals emerged at all four gold 
concentrations examined in the 8x8 world. When there was 
only one gold per world, one evolved individual - found 
after processing 840,296 individuals - utilized a quite 
different representation scheme than did the solutions to the 
2x2 and 4x4 worlds. The individual stored the position of 
the gold in a hard coded memory location, cell 0, and then 
used this information to choose where to dig. 
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The actual code that evolved contained a great deal of code 
that was never executed, and the actual executed code is 
quite simple to understand; such a simplified version is 
shown in Fig. 4. The individual stores the correct gold 
position in cell 0, calculates the displacement from the 
starting position to the gold's location, jumps to that square, 
and digs.Thus, the individual evolved to be a planner that 
produces optimal plans for a single gold. Although the 
output behavior is simple, evolving such a behavior in the 
space of all possible plans is not.In addition, this individual 
was only trained on 30 worlds, with a gold at a different 
space in each world. This evolved individual generalized 
correctly to all 64 possible 8x8 worlds with 1 gold. 

Successful individuals evolved for the 8x8 worlds with 2, 
3, and 20 golds that used memory schemes similar to those 
used by the solutions to the 2x2 worlds. Andre (1994c) 
contains more detailed analysis of these results.. One 
successful individual on the 8x8 worlds with 20 golds 
evolved to use a memory scheme similar to that used by the 
solution discussed for the 4x4 worlds.lt uses a 'I' to 
represent a gold, and a '0' to represent a non-gold.After 
digging each gold, the corresponding memory cell is reset to 
a '0', so no multiple digs occur. The individual is provably 
a correct solution for all 8x8 worlds, with any gold 
distribution, even though it had been trained on only 30 
worlds with 20 golds in each. 

Overall, the experiments indicate that the MAPMAKER 
method can successfully evolve individuals to solve the 
gold collection problem. Many of the solutions were 
completely general - they extended perfectly to any number 
and arrangements of gold in their world, even though they 
were trained on a small subset of the possible worlds. In the 
case of the 8x8 world with 1 gold per world, an individual 
evolved that produced optimal plans of action for obtaining 
the gold. Many different representation systems emerged; 
these are shown in Table 4. All of these representation 
schemes are evolved models of the world; importantly, these 
models differ from the models evolved in the previous work 
with the MAPMAKER architecture (Andre 1994a) in that 
the exact mapping between memory and the world is 
evolved, rather than forced by the function set. Many of the 
solutions involve a direct mapping, but several utilize 
offsets, translations, or exchanges of cells that are more 
complex. In addition, preliminary research indicates that 

general solutions will evolve even if the direct mapping is 
prohibited by limited memory damage (Andre 1995). 

Thus, MAPMAKER can evolve programs to control a 
simple agent that uses indexed memory to store information 
and then uses this information to create simple plans. 

8 Comparison to Random Search 
Many researchers, when first encountering genetic 

algorithms, often wonder if the results are due to a modified 
version of random search. Although Koza (1992) has 
shown that genetic programming performs much better than 
random search for many problems, it is important to rule out 
random search as a possibility for MAPMAKER's success. 

To test this possibility, twenty million random 
individuals that followed the MAPMAKER architecture 
were created and evaluated on the 8x8 worlds with 20 golds 
per world. This version of the gold collection problem was 
chosen because it required the least computational effort to 
solve for MAPMAKER using genetic programming, and 
was thus felt to be the easiest of the problems (see Andre 
1994c for more explanation). The best of these twenty 
million randomly generated individuals only collected 56 
golds out of 600, and incurred 3 penalties for digging on 
squares with no golds. The individual did store some 
information about the world; an 11 was stored in some but 
not all squares with gold. . Although the map-user looked 
at several memory locations per world, the map-user used a 
different 'language' than the map-maker as to when it 
expected a gold, and thus , failed to correctly plan its actions 
even for the golds that were stored in its memory. 

In comparison to the twenty million individuals that were 
evaluated for random search, which found only a 9% correct 
solution, MAPMAKER required processing fewer than six 
hundred thousand individuals to find a 100% correct 
solution on the 8x8 worlds with 20 golds per world. 
Random search thus seems unable to discover, in any 
reasonable amount of time, the cooperation between the 
map-maker and the map-user, the development of a shared 
representational system, and the programs to control both 
modules that are all required to solve the gold collection 
problem. 
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9 Conclusions 
This paper has presented MAPMAKER, a method for the 

automatic generation of programs that observe their 
environment, store information, and then later use this 
information to formulate simple plans of action. The 
experiments with the gold collection problem indicated that 
MAPMAKER with genetic programming could generate 
solutions that were generalizable, robust, and in some cases 
optimal solutions to the problem. Future work will examine 
more complex representational schemes, more difficult 
problems, the possibility of memory structure that itself 
evolves, and cooperation among multiple agents. 

The gold collection problem is, of course, a toy problem, 
and the solutions generated by MAPMAKER are not 
exemplary in and of themselves. However, what is 
noteworthy is that the solutions were created automatically 
through the artificial evolution of programs following the 
MAPMAKER architecture. The MAPMAKER architecture 
was successful at generating agents that discover information 
about their environment, encode this information for later 
use, and create simple plans using the stored mental models. 
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