Skip to main content

Intelligent Data Analysis in Electric Power Engineering Applications

  • Chapter
  • First Online:
Machine Learning Paradigms

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 149 ))

  • 1616 Accesses

Abstract

This chapter presents various intelligent approaches for modelling, generalization and knowledge extraction from data, which are applied in different electric power engineering domains of the real world. Specifically, the chapter presents: (1) the application of ANNs, inductive ML, genetic programming and wavelet NNs, in the problem of ground resistance estimation, an important problem for the design of grounding systems in constructions, (2) the application of ANNs, genetic programming and nature inspired techniques such as gravitational search algorithm in the problem of estimating the value of critical flashover voltage of insulators, a well-known difficult topic of electric power systems, (3) the application of specific intelligent techniques (ANNs, fuzzy logic, etc.) in load forecasting problems and in optimization tasks in transmission lines. The presentation refers to previously conducted research related to the application domains and briefly analyzes each domain of application, the data corresponding to the problem under consideration, while are also included a brief presentation of each intelligent technique and presentation and discussion of the results obtained. Intelligent approaches are proved to be handy tools for the specific applications as they succeed to generalize the operation and behavior of specific parts of electric power systems, they manage to induce new, useful knowledge (mathematical relations, rules and rule based systems, etc.) and thus they effectively assist the proper design and operation of complex real world electric power systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Std 80–2013: IEEE guide for safety in AC substation grounding. IEEE Std 80-2013 Cor 1-2015 (2015)

    Google Scholar 

  2. S. 81–2012: Std A.E.E.E.: IEEE guide for measuring earth resistivity, ground impedance, and earth surface potentials of a grounding system. IEEE Std 81-2012 (2012)

    Google Scholar 

  3. Tsekouras, G.J., Kanellos, F.D., Mastorakis, N.: Short term load forecasting in electric power systems with artificial neural networks. In: Mastorakis, N., Bulucea, A., Tsekouras, G. (eds.) Computational Problems in Science and Engineering, vol. 343, pp. 19–58, Cham, Springer International Publishing (2015)

    Google Scholar 

  4. Androvitsaneas, V.P., Gonos, I.F., Stathopulos, I.A.: Experimental study on transient impedance of grounding rods encased in ground enhancing compounds. Electr. Power Syst. Res. 139, 109–115 (2016)

    Article  Google Scholar 

  5. Banton, O., Cimon, M.-A., Seguin, M.-K.: Mapping field-scale physical properties of soil with electrical resistivity. Soil Sci. Soc. Am. J. 61(4), 1010–1017 (1997)

    Article  Google Scholar 

  6. Gonos, I.F., Stathopulos, I.A.: Estimation of multilayer soil parameters using genetic algorithms. IEEE Trans. Power Deliv. 20(1), 100–106 (2005)

    Article  Google Scholar 

  7. Gonos, I.F., Moronis, A.X., Stathopulos, I.A.: Variation of soil resistivity and ground resistance during the year. In: Presented at the Proceedings of the 28th International Conference on Lightning Protection (ICLP 2006), pp. 740–744. Kanazawa, Japan (2006)

    Google Scholar 

  8. Sudha, K., Israil, M., Mittal, S., Rai, J.: Soil characterization using electrical resistivity tomography and geotechnical investigations. J. Appl. Geophys. 67(1), 74–79 (2009)

    Article  Google Scholar 

  9. Tagg, G.F.: Earth resistances. George Newnes Limited, London (1964)

    Google Scholar 

  10. Ahmad, W.F.W., Rahman, M.S.A., Jasni, J., Ab Kadir, M.Z.A., Hizam, H.: Chemical enhancement materials for grounding purposes. In: Proceedings of ICLP, pp. 1233–1241 (2010)

    Google Scholar 

  11. Galván, A.D., Pretelin, G.G., Gaona, E.E.: Practical evaluation of ground enhancing compounds for high soil resistivities. In: Presented at the Proceedings of ICLP, pp. 1233–1241 (2010)

    Google Scholar 

  12. Jasni, J., Siow, L.K., Ab Kadir, M.A., Ahmad, W.W.: Natural Materials as Grounding Filler For Lightning Protection System, pp. 1101–1111 (2010)

    Google Scholar 

  13. Gomes, C., Lalitha, C., Priyadarshanee, C.: Improvement of earthing systems with backfill materials. In: 2010 30th International Conference Lightning Protection (ICLP). Cagliary, Italy (2010)

    Book  Google Scholar 

  14. Androvitsaneas, V.P., Gonos, I.F., Stathopulos, I.A.: Performance of ground enhancing compounds during the year, in 2012 Int. Conf, Lightning Protection (ICLP) (2012)

    Google Scholar 

  15. Boulas, K., Androvitsaneas, V.P., Gonos, I.F., Dounias, G., Stathopulos, I.A.: Ground resistance estimation using genetic programming. In: 5th International Symposium and 27th National Conference Operation Research, pp. 66–71. Aigaleo, Athens (2016)

    Google Scholar 

  16. Blattner, C.J.: Prediction of soil resistivity and ground rod resistance for deep ground electrodes. IEEE Trans. Power Appar. Syst. PAS-99(5): 1758–1763 (1980)

    Article  Google Scholar 

  17. Salam, M.A., Al-Alawi, S.M., Maqrashi, A.A.: An artificial neural networks approach to model and predict the relationship between the grounding resistance and length of buried electrode in the soil. J. Electrost. 64(5), 338–342 (2006)

    Article  Google Scholar 

  18. Gouda, O., Amer, M., El Saied, M.: Optimum design of grounding systems in uniform and non-uniform soils using ANN. Int. J. Soft Comput. 1(3), 175–180 (2006)

    Google Scholar 

  19. Asimakopoulou, F.E., Kourni, E.A., Kontargyri, V.T., Tsekouras, G.J., Stathopulos, I.A.: Artificial neural network methodology for the estimation of ground resistance. In: Presented at the 15th WSEAS International Conference on Systems 2011, pp. 453–458. Corfu Island, Greece (2011)

    Google Scholar 

  20. Asimakopoulou, F.E., Tsekouras, G.J., Gonos, I.F., Stathopulos, I.A.: Estimation of seasonal variation of ground resistance using artificial neural networks. Electr. Power Syst. Res. 94, 113–121 (2013)

    Article  Google Scholar 

  21. Androvitsaneas, V.P., Asimakopoulou, F.E., Gonos, I.F., Stathopulos, I.A.: Estimation of ground enhancing compound performance using artificial neural network. In: Paper Presented at the 2012 International Conference on High Voltage Engineering and Application (ICHVE), pp. 145–149. Shanghai, China (2012)

    Google Scholar 

  22. Androvitsaneas, V.P., Gonos, I.F., Stathopulos, I.A.: Artificial neural network methodology for the estimation of ground enhancing compounds resistance. IET Sci. Meas. Technol. 8(6), 552–570 (2014)

    Article  Google Scholar 

  23. Androvitsaneas, V.P., Tsekouras, G.J., Gonos, I.F., Stathopulos, I.A.: Design of an artificial neural network for ground resistance forecasting. In: Proceedings of 9th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (Med Power 2014), Athens, Greece (2014)

    Google Scholar 

  24. Cao, L., Hong, Y., Fang, H., He, G.: Predicting chaotic time series with wavelet networks. Phys. Nonlinear Phenom. 85(1), 225–238 (1995)

    MATH  Google Scholar 

  25. Fang, Y., Chow, T.W.S.: Wavelets based neural network for function approximation. In: Advances in Neural Networks—ISNN 2006, vol. 3971, pp. 80–85 (2006)

    Chapter  Google Scholar 

  26. Alexandridis, A.K., Zapranis, A.D.: Wavelet neural networks: with applications in financial engineering, chaos, and classification. Wiley, New Jersey (2014)

    Book  Google Scholar 

  27. Androvitsaneas, V.P., Alexandridis, A.K., Gonos, I.F., Dounias, G.D., Stathopulos, I.A.: Wavelet neural network methodology for ground resistance forecasting. Electr. Power Syst. Res. 140, 288–295 (2016)

    Article  Google Scholar 

  28. Zhang, Q.: Using wavelet network in nonparametric estimation. IEEE Trans. Neural Netw. 8(2), 227–236 (1997)

    Article  Google Scholar 

  29. Androvitsaneas, V., Gonos, I., Dounias, G., Stathopulos, I.: Ground resistance estimation using inductive machine learning. In: Presented at the the 19th International Symposium on High Voltage Engineering, Pilsen Czech Republic (2015)

    Google Scholar 

  30. Mitchell, T.M.: Machine Learning, vol. 1, McGraw-Hill (1997)

    Google Scholar 

  31. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  32. Quinlan, R.J.: C4.5: Programs for Machine Learning. San Mateo, California, USA: Morgan Kaufmann (1993)

    Google Scholar 

  33. Androvitsaneas, V.P.: Contribution to Behavioral Study of Grounding Systems Encased in Ground Enhancing Compounds, PhD Thesis, NTUA, Athens, Greece, (in Greek) (2016)

    Google Scholar 

  34. Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer, Berlin, Heidelberg (2006)

    MATH  Google Scholar 

  35. Looms, J.: Insulators for high voltages. IET (1988)

    Google Scholar 

  36. Mackevich, J., Shah, M.: Polymer outdoor insulating materials. Part I: Comparison of porcelain and polymer electrical insulation. IEEE Electr. Insul. Mag. 13(3), 5–12 (1997)

    Article  Google Scholar 

  37. Obenaus, F.: Fremdschichtueberschlag und kriechweglaenge. Dtsch. Elektrotechnik 4, 135–136 (1958)

    Google Scholar 

  38. Topalis, F.V., Gonos, I.F., Stathopulos, I.A.: Dielectric behaviour of polluted porcelain insulators. IEE Proc. Gener. Transm. Distrib. 148(4), 269–274(5) (2001)

    Article  Google Scholar 

  39. International Electrotechnical Commission: Artificial pollution tests on high voltage insulators to be used on AC systems. Int. Stand. IEC 507 (1991)

    Google Scholar 

  40. Ikonomou, K., Katsibokis, G., Panos, G., Stathopoulos: Cool fog tests on artificially polluted insulators. In: Presented at the 5th International Symposium on High Voltage Engineering, Braunschweig, vol. 2, p. paper 52.13 (1987)

    Google Scholar 

  41. Guan, Z., Zhang, R.: Calculation of DC and AC flashover voltage of polluted insulators. IEEE Trans. Electr. Insul. 25(4), 723–729 (1990)

    Article  Google Scholar 

  42. Sundararajan, R., Sadhureddy, N.R., Gorur, R.S.: Computer-aided design of porcelain insulators under polluted conditions. IEEE Trans. Dielectr. Electr. Insul. 2(1), 121–127 (1995)

    Article  Google Scholar 

  43. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning (1989)

    Google Scholar 

  44. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press (1992)

    Google Scholar 

  45. Kramer, O.: Genetic Algorithm Essentials, vol. 679. Springer (2017)

    Book  Google Scholar 

  46. Gonos, I.F., Topalis, F.V., Stathopolos, I.A.: Genetic algorithm approach to the modelling of polluted insulators. IEE Proc. Gener. Transm. Distrib. 149(3), 373–376(3) (2002)

    Article  Google Scholar 

  47. Rizk, F.A.: Mathematical models for pollution flashover. Electra 78(5), 71–103 (1981)

    Google Scholar 

  48. Ghosh, P., Chatterjee, N.: Polluted insulator flashover model for AC voltage. IEEE Trans. Dielectr. Electr. Insul. 2(1), 128–136 (1995)

    Article  Google Scholar 

  49. Kontargyri, V.T., Gialketsi, A.A., Tsekouras, G.J., Gonos, I.F., Stathopulos, I.A.: Design of an artificial neural network for the estimation of the flashover voltage on insulators. Electr. Power Syst. Res. 77(12), 1532–1540 (2007)

    Article  Google Scholar 

  50. Ghosh, P., Chakravorti, S., Chatterjee, N.: Estimation of time-to-flashover characteristics of contaminated electrolytic surfaces using a neural network. IEEE Trans. Dielectr. Electr. Insul. 2(6), 1064–1074 (1995)

    Article  Google Scholar 

  51. Cline, P., Lannes, W., Richards, G.: Use of pollution monitors with a neural network to predict insulator flashover. Electr. Power Syst. Res. 42(1), 27–33 (1997)

    Article  Google Scholar 

  52. Ugur, M., Auckland, D.W., Varlow, B.R., Emin, Z.: Neural networks to analyze surface tracking on solid insulators. IEEE Trans. Dielectr. Electr. Insul. 4(6), 763–766 (1997)

    Article  Google Scholar 

  53. Dixit, P., Gopal, H.G.: ANN based three stage classification of arc gradient of contaminated porcelain insulators. In: Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, 2004. ICSD 2004, vol. 1, pp. 427–430. Toulouse, France (2004)

    Google Scholar 

  54. Ghosh, S., Kishore, N.: Modeling PD inception voltage of epoxy resin post insulators using an adaptive neural network. IEEE Trans. Dielectr. Electr. Insul. 6(1), 131–134 (1999)

    Article  Google Scholar 

  55. Jahromi, A.N., El-Hag, A.H., Cherney, E.A., Jayaram, S.H., Sanaye-Pasand, M., Mohseni, H.: Prediction of leakage current of composite insulators in salt fog test using neural network. In: CEIDP’05. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 309–312 (2005)

    Google Scholar 

  56. Jahromi, A.N., El-Hag, A.H., Jayaram, S.H., Cherney, E.A., Sanaye-Pasand, M., Mohseni, H.: A neural network based method for leakage current prediction of polymeric insulators. IEEE Trans. Power Deliv. 21(1), 506–507 (2006)

    Article  Google Scholar 

  57. da Silva, A.P.A., Moulin, L.S.: Confidence intervals for neural network based short-term load forecasting. IEEE Trans. Power Syst. 15(4), 1191–1196 (2000)

    Article  Google Scholar 

  58. Asimakopoulou, G., Kontargyri, V., Tsekouras, G., Asimakopoulou, F., Gonos, I., Stathopulos, I.: Artificial neural network optimisation methodology for the estimation of the critical flashover voltage on insulators. IET Sci. Meas. Technol. 3(1), 90–104 (2009)

    Article  Google Scholar 

  59. Karampotsis, E. et al.: Computational intelligence techniques for modelling the critical flashover voltage of insulators: from accuracy to comprehensibility. In: Advances in Artificial Intelligence: From Theory to Practice: 30th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017, Arras, France, June 27–30, In: Benferhat, S., Tabia, K., Ali, M. (eds.) Proceedings, Part I, pp. 295–301 Cham, Springer International Publishing (2017)

    Chapter  Google Scholar 

  60. Popescu, M.-C., Balas, V.E., Perescu-Popescu, L., Mastorakis, N.: Multilayer perceptron and neural networks. WSEAS Trans. Circuits Syst. 8(7), 579–588 (2009)

    Google Scholar 

  61. Ganatra, A., Kosta, Y., Panchal, G., Gajjar, C.: Initial classification through back propagation in a neural network following optimization through GA to evaluate the fitness of an algorithm. Int. J. Comput. Sci. Inf. Technol. 3(1), 98–116 (2011)

    Google Scholar 

  62. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: LIU, L., ÖZSU, M.T. (eds.) Encyclopedia of database systems, pp. 532–538. Boston, MA, Springer, US (2009)

    Google Scholar 

  63. Androvitsaneas, V.P., Karampotsis, E., Gonos, I.F., Dounias, G., Stathopolos, I.A.: Critical Flashover Voltage on Polluted Insulators Estimated Using Conventional and Intelligent Techniques. In: Presented at the 20th International Symposium on High-Voltage Technology (ISH). Buenos Aires, Argentina (2017)

    Google Scholar 

  64. Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press (1992)

    Google Scholar 

  65. Crane, E.F., McPhee, N.F.: The effects of size and depth limits on tree based genetic programming. In: Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice III, pp. 223–240. Boston, MA, Springer, US (2006)

    Google Scholar 

  66. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  Google Scholar 

  67. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  68. Yang, H.-T., Huang, C.-M., Huang, C.-L.: Identification of ARMAX model for short term load forecasting: an evolutionary programming approach. IEEE Trans. Power Syst. 11(1), 403–408 (1996)

    Article  Google Scholar 

  69. Haida, T., Muto, S.: Regression based peak load forecasting using a transformation technique. IEEE Trans. Power Syst. 9(4), 1788–1794 (1994)

    Article  Google Scholar 

  70. Hippert, H.S., Pedreira, C.E., Souza, R.C.: Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans. Power Syst. 16(1), 44–55 (2001)

    Article  Google Scholar 

  71. Mastorocostas, P.A., Theocharis, J.B., Bakirtzis, A.G.: Fuzzy modeling for short term load forecasting using the orthogonal least squares method. IEEE Trans. Power Syst. 14(1), 29–36 (1999)

    Article  Google Scholar 

  72. Bakirtzis, A.G., Petridis, V., Kiartzis, S.J., Alexiadis, M.C., Maissis, A.H.: A neural network short term load forecasting model for the Greek power system. IEEE Trans. Power Syst. 11(2), 858–863 (1996)

    Article  Google Scholar 

  73. Kiartzis, S.J., Zoumas, C.E., Theocharis, J.B., Bakirtzis, A.G., Petridis, V.: Short-term load forecasting in an autonomous power system using artificial neural networks. IEEE Trans. Power Syst. 12(4), 1591–1596 (1997)

    Article  Google Scholar 

  74. Elias, C.N., Tsekouras, G., Kavatza, S., Contaxis, G.: A midterm energy forecasting method using fuzzy logic. WSEAS Trans. Syst. 3(5), 2128–2135 (2004)

    Google Scholar 

  75. Tsekouras, G.J., Hatziargyriou, N.D., Dialynas, E.N.: An optimized adaptive neural network for annual midterm energy forecasting. IEEE Trans. Power Syst. 21(1), 385–391 (2006)

    Article  Google Scholar 

  76. Tsekouras, G. et al.: A comparison of artificial neural networks algorithms for short term load forecasting in Greek intercontinental power system. In: Presented at the WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal Processing, Canary Islands, Spain, pp. 15–17 (2008)

    Google Scholar 

  77. Ekonomou, L., Iracleous, D., Gonos, I., Stathopulos, I.: Lightning performance identification of high voltage transmission lines using artificial neural networks. Eng. Intell. Syst. Electr. Eng. Commun. 13(3), 219–223 (2005)

    Google Scholar 

  78. Ekonomou, L., Liatsis, P., Gonos, I.F., Stathopulos, I.A.: Artificial neural network-based software tool for calculating the lightning performance of high-voltage transmission lines. IEE Proc. Sci. Meas. Technol. 153(5), 188–193(5) (2006)

    Article  Google Scholar 

  79. Ekonomou, L., Gonos, I.F., Iracleous, D.P., Stathopulos, I.A.: Application of artificial neural network methods for the lightning performance evaluation of Hellenic high voltage transmission lines. Electr. Power Syst. Res. 77(1):55–63 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Androvitsaneas or G. D. Dounias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Androvitsaneas, V.P., Boulas, K., Dounias, G.D. (2019). Intelligent Data Analysis in Electric Power Engineering Applications. In: Tsihrintzis, G., Sotiropoulos, D., Jain, L. (eds) Machine Learning Paradigms. Intelligent Systems Reference Library, vol 149 . Springer, Cham. https://doi.org/10.1007/978-3-319-94030-4_11

Download citation

Publish with us

Policies and ethics