
1

Software Security through Targeted Diversification
Nessim Kisserli Jan Cappaert Bart Preneel

Katholieke Universiteit Leuven, Dept. of Electrical Engineering – ESAT Kasteelpark Arenberg 10, B-3001
Heverlee, Belgium

{nessim.kisserli,jan.cappaert,bart.preneel}@esat.kuleuven.be

Abstract— Despite current software protection techniques, ap-
plications are still analysed, tampered with, and abused on a large
scale. Crackers1 compensate for each new protection technique by
adapting their analysis and tampering tools. This paper presents
a low-cost mechanism to effectively protect software against
global tampering attacks. By introducing diversity per programme
instance, we illustrate how to defeat various patching methods
using inlined code snippets. We propose an efficient technique for
creating the snippets based on genetic programming ideas, and
illustrate how our approach might trigger a small-scale arms race
between defending and attacking parties, each forced to evolve
in order to “stay in the game”.

I. INTRODUCTION

Piracy has plagued software vendors for years and still
continues to do so. Efforts to thwart it have largely failed
due to the inherently open architecture of current computing
systems and the prevalence of a healthy software monoculture.
Attempts to address the former can be seen in the current
development of Trusted Protection Modules (TPMs), the lat-
ter impediment however, despite being acknowledged [10],
remains mostly unaddressed.

Table I illustrates the cracking process’ various stages as
described in [12] and the typical countermeasures employed
by software vendors to counter each. We note the lack of any
widespread protection mechanism targeting the automation
stage and propose a low-overhead solution based on the
following sober reflections:

• Users will always attempt to analyse software protection
mechanisms, out of academic curiosity or otherwise.

• It is virtually impossible to prevent a user from modifying
software and processes on a machine they control –given
current architectures.

• It is impossible to police the Internet and remove the
myriad sites currently hosting pirated software.

Software patches contain sufficient information to locate and
replace a set of critical instructions within a programme. We
propose to make automated patching sufficiently unreliable,
and consider our approach successful if crackers:

• Are forced to distribute cracked full-binaries, or
• Develop automated patches whose size approaches that

of the full-binary.

1We use the term for individuals who strip copy-protection mechanisms
from commercial software, enabling its unfettered use. They are also collo-
quially referred to in some circles as warez d00dz [13]

Both cases cause sites hosting pirated software to incur sub-
stantially higher bandwidth and storage costs. Additionally, the
former allows software developers to leverage watermarking
and other origin identification techniques such as [16].

This paper is structured as follows. Section II introduces
snippets, the building blocks of our protection scheme. Sec-
tion III explores increasingly sophisticated existing as well
as hypothetical automated patching techniques, describing
specialised snippets to counter each. We share our experiences
generating such snippets using genetic programming in Sec-
tion IV, and present related research and ideas for further work
in sections V and VI respectively.

II. SNIPPETS

A snippet is a series of one or more assembly instruc-
tions designed to be inserted within an existing assembly
programme which we refer to as the host. We distinguish three
types of snippets based on the net effect of their execution on
a host’s state. Informally, two instances of a programme are
said to be in the same state if the following conditions hold:
• Their instruction pointers refer to the same instruction.
• Their stack pointers refer to the same stack offset.
• The contents of their respective registers are identical,

including the flags register.
A snippet is termed harmless if executing it in a host at

state σ1 yields a new state σ2, identical to σ1. Intuitively such
snippets exhibit similar properties to redundant code. Non-
harmless snippets are further distinguished into semi-harmless
and harmful ones. A Semi-harmless snippet is one which under
certain well defined conditions, we call insertion conditions,
can be rendered harmless. The task of locating in a host
insertion points at which a snippet’s insertion conditions are
satisfied is carried out by an insertion function. Snippets with
a non-empty set of insertion conditions for which no insertion
function can be found are harmful.

A. Immunity from code compaction

Being extraneous code, we must ensure the snippets are
not readily identified using code compaction tools. There is a
paucity of work on code compaction of compiled, stripped
binaries as most available research focuses on compiler-
generated parse trees with full access to authoritative source
code, e.g. [5]. Our snippets can take the following forms:
• Redundant code: Code whose execution has no effect on

the overall output of a programme.



2

TABLE I
THE CRACKING PROCESS AND TYPICAL COUNTERMEASURES

Stage Purpose Industry adopted protection mechanism
Analysis Determine and locate protection mechanisms Obfuscation
Tampering Disable protection mechanisms Tamper resistance
Automation Apply the tampering to other instances of the software with minimal user

knowledge and interaction
None

Distribution Provide others with the ability to obtain cracked software Legal threats + Termination of hosting

• Dead code: Code whose computed results are unused.
• Unreachable code: Code to which there is no control flow

path. Determining whether an arbitrary code snippet is
reachable is considered undecidable.

The use of various obfuscation concepts in our snippets
(such as opaque predicates [3] for branch-confidentiality) can
help reduce the threat of detection. While the remainder of
this paper classifies snippets according to various criteria, we
assume them all immune to detection by code compaction
tools.

III. THE ARMS RACE

While the battle lines between crackers and software ven-
dors are better defined in the analysis phase of the cracking
process, they are no less present in the automation stage. In
this section we systematically examine automated patching
techniques in order of increasing complexity. For each method,
we discuss required properties of both snippets and insertion
functions to counter automation, further escalating the arms
race.

As we approach the limits of sequential instruction-based
comparisons, we explore more “exotic” methods such as
graph-based structural programme analysis. While the patch-
ing methods in sections III-A and III-B are widely used by the
cracking community, those outlined in sections III-C and III-D
are, to the best of our knowledge, currently not.

A. Offset patches

1) How they work: As their name suggests, offset patches
overwrite a number of bytes at a fixed file offset. They may
employ various techniques to maximise successful patching,
such as comparing the binary’s checksum against a “known
good value” or verifying the instruction at the specified offset
is the expected one. Their continued successful use by crackers
is testimony to the inherent weakness of today’s software
monoculture on the one hand, and the failure of current pro-
tection schemes to address all stages of the cracking process
on the other.

2) Defeating them: Any modification to the offset of the
critical instructions will suffice to defeat an offset patch. The
main requirement is that the snippet be inserted before the
critical instructions. Such snippets, which need not exhibit any
special properties, we call basic snippets, and are in fact a
superset of the more specialised harmless snippets introduced
later.

B. Pattern searching patches

1) How they work: Pattern searching patches locate and re-
place specific byte patterns in a binary. They may also employ
similar success maximising techniques to offset patches.

2) Defeating them: There are two main approaches to
defeating pattern matching cracks:
• Destroy the pattern being searched for.
• Duplicate the pattern, inducing multiple false positives.

The first technique requires interleaving snippets with critical
instructions. In the most extreme case, no two consecutive
native instructions are allowed to remain in the critical section.
Harmless snippets, by definition, can be inserted between any
two instructions without disrupting the host’s functionality.
A targeted insertion function is required for inserting the
snippets between the critical section’s instructions. We call
such snippets which actively destroy patterns in their host
parasitic snippets.

The second technique requires the creation of snippets
containing sequences of instructions identical to the critical
ones. However, these instructions are most likely to be harmful
and must first be “neutralised”. Use of opaque predicates can
guarantee such instructions are always skipped (i.e. rendered
dead code). We call these snippets which imitate their host
mimic snippets.

We note that both approaches can be employed simultane-
ously for increased effectiveness.

C. Collusion-based patches

1) How they work: Collusion attacks refer to ones in which
multiple parties share information about a protection scheme
in order to defeat it. At its simplest, such an attack takes the
form of a file comparison between two or more diversified
instances of a programme to establish their commonality.

2) Defeating them: We propose a new kind of snippet for
defeating such collusion attacks, the poisoned snippet, with
the following properties.
• It is composed of two consecutive logical parts S1 and

S2. Crucially, when combined they form the harmless
snippet S = S1‖S2 (where ‖ denotes concatenation).

• Taken separately, both parts are most likely harmful.
• A generation of poisoned snippets all share the exact

same logical part Sx.
Poisoned snippets require the following insertion condition:
• All snippets in a generation are inserted adjacently to the

same native instruction (we call a border instruction) in
all instances of the diversified programme.

The above condition effectively renders the most likely harm-
ful Sx–part of the poisoned snippet indistinguishable from



3

native instructions by including itself in the Longest Common
Substring (LCS) spanning the border instruction.

D. Structural Analysis-based patches

1) How they work: Comparative structural analysis is gen-
erally cast as a graph matching optimisation problem. Two
differing but similar executables E1 and E2 are represented
as graphs G1 and G2 and an optimal isomorphism between
the two is sought.

Nodes from each graph representing the same element in
E1 and E2, called fixed points in [6], are used to map each
function in E1 onto its counterpart in E2 using function
signatures (such as return, number and type of formal pa-
rameters). The same procedure is iterated for each function’s
basic blocks, then for each basic block’s individual instructions
until a partial best-fit isomorphism between G1 and G2 is
achieved. The resulting bijection maps elements of E1 to their
semantic equivalents in E2. Recently both [6] and [15] have
used structural analysis to highlight changes between different
patch-levels of a binary.

It is still not clear whether this type of patch will be feasible.
It incurs higher storage and bandwidth usage to access the
graph of a known-good patched instance, and may be less
economic than simply distributing a fully cracked binary.

2) Defeating them: Structural analysis based patching can
be attacked in two ways:

• Obfuscating a programme’s control and data flow, com-
plicating initial graph construction.

• Minimising iteratively discoverable fixed points across
programme instances.

The first approach can leverage existing obfuscation and
anti-disassembly techniques. The latter requires the creation of
decoy snippets providing fake fixed points upon which graphs
are mapped onto each other. They follow the same principle as
mimic snippets, but are structurally more complex as they must
mimic both function signatures and control flow properties.
To be effective, the insertion function must be coupled with
targeted modifications to the host’s original code. This is
what we propose to explore in more detail in the diversifying
compiler mentioned in section VI.

IV. SNIPPET GENERATION

Manually crafting snippets for our protection scheme
presents a costly endeavour given their required number and
specificity. Rather, we rely on genetic programming techniques
to automate the task, finding the stochastic and evolutionary
elements of the approach particularly appropriate.

In this section we share some of our experiences evolving
various aspects of the snippet species we introduced in section
III. We discuss our main fitness function, different genetic
operators used, and illustrate some of the problems faced.
Due to space constraints, we assume familiarity with the basic
workings of a genetic algorithm.

A. Genetic operators

Genetic operators are the main drivers of diversification
in genetic computing and are broadly divided into so called
sexual and asexual types. The former traditionally combine
traits from two parents to produce an offspring, while the latter
mutate one individual into another.

a) Mutation: Asexual reproduction was limited in our
experiments to infrequent mutations in which one of the
following occurred:
• Two random instructions in a snippet were swapped.
• A register was substituted for another, globally within a

snippet. For example, all references to eax changed to
ebx.

The latter form was introduced in an attempt to curb the
observed general destructiveness of the first mutation, and
to allow for a limited template-like replication of harmless
individuals.

b) Reproduction: We experimented with two operators,
the classical N-point crossover and a more suitable, snippet-
friendly Insertion operator. The former divides two snippets
X and Y into n random parts X1, . . . , Xn and Y1, . . . , Yn

respectively, recombining them into two new child snippets
C1 = X1‖Y2‖ . . . Xn−1‖Yn and C2 = Y1‖X2‖ . . . Yn−1‖Xn.
The operator was found to be extremely destructive in the
majority of cases, including n = 2.

Starting from the observation that harmless snippets can be
safely embedded between any two instructions, we developed
the less destructive insertion operator. Here, one of the two
parent snippets is chosen and randomly split into Y1 and Y2.
The remaining parent, X, is then inserted between the two
parts, creating a new child snippet C=Y1‖X‖Y2.

While particularly well suited at duplicating mimic snippets
and overall less destructive, the insertion operator produces
increasingly longer snippets which must be artificially con-
strained.

B. Snippet Simulation

In order to establish the effect of snippets on a host
programme’s state, we model various IA32 assembly instruc-
tions and a generic x86 little-endian compatible execution
environment as follows:
• Several general purpose 32-bit registers modelled with

bit-level precision.
• An extended 32-bit flags register φ.
• A programme stack and accompanying stack pointer ρ.
We initialise our pre-snippet execution environment σ1 as

follows:
• For each bit i in the extended flags register, set φ[i] = 0.
• For each simulated register, reg set σ1(reg)[] =

reg[31], reg[30], . . . , reg[0].
• Initialise the stack’s pointer ρσ1 to 0.
We then symbolically evaluate, with bit-level precision, the

effect of each assembly instruction on our environment. While
tracking changes to the stack is relatively straight forward, we
rely on a bit vector decision procedure for the individual bits of



4

each register (we use the function rich STP [9] from Stanford
university).

At the end of a snippet’s execution our environment is in
state σ2. Recall from section II that a harmless snippet is one
which does not modify its original environment, i.e. one for
which σ1 == σ2. Practically, for a harmless snippet:
• The stack pointer ρσ2 == 0.
• For each simulated register, reg, the symbolic value

σ2(reg)[i] == σ1(reg)[i] for i=0 to 31.

C. Flags

Up to now we have carefully avoided mentioning the flags
register. This is the most problematic aspect of symbolic eval-
uation. The issue can be sidestepped by restricting ourselves to
only modelling those instructions which do not set any flags,
such as push and pop. This is not a practical solution however.
Our current approach adds an appropriate restriction to the
snippet’s insertion condition set for each simulated instruction
which may trigger a flag. Most such snippets are semi-
harmless, requiring an adequate insertion function. However,
certain snippets which make use of constant values or opaque
predicates may escape such restrictions if the simulator is able
to assert flag setting-conditions are not met.

1) Insertion Conditions: The following fragment for exam-
ple, risks overwriting the Zero Flag (ZF) upon equality and
the Carry Flag (CF) if ebx > eax:2

cmp eax ebx
jnz L1
. . .

The insertion conditions are thus:
• φ[ZF ] is not live.
• φ[CF ] is not live.

This is most likely the case right before a native cmp instruc-
tion.

V. RELATED RESEARCH

Diversification has been leveraged in many security solu-
tions. Cohen explored the feasibility of using similar tech-
niques to ours to increase operating systems’ resistance to
attacks in [2]. Forrest et al. sketched a multi-level holistic
system diversification technique, including instruction block
reordering and use of nonfunctional code in binaries [8]. More
recently, Anckaert et al. discussed the logistics of providing
updates to tailored software instances [1], and although con-
ceptually similar to our idea, no details of the tailoring scheme
were provided.

More generally, Address Space Layout Randomisation [14]
(ASLR), System Call diversification, and Instruction Set Em-
ulation have all been used as countermeasures to certain types
of memory corruption and code-injection attacks. Cox et al.
formalised the use of diversification and equivalent execution
in their N-variant system [4], targeting similar classes of
attacks. Finally, El-Khalil et al. used functionally equivalent
instructions for steganographic purposes [7].

2For simplicity we assume unsigned operands.

VI. CONCLUSIONS AND FURTHER WORK

Besides modelling additional assembly instructions and
exploring new opaque predicates, the problem of the flags
register must be better addressed. We would like to incorporate
our snippets into a diversifying compiler in order to influence
and better exploit the layout of the native assembly. By
producing keyed one-to-many mappings between the high-
level native instructions and their assembly, snippets can be
made harder to distinguish. Currently we lack automated
insertion functions. A compiler lends itself fairly naturally to
this task. Adding such functionality to the LLVM compiler
framework [11] is therefore our next goal.

This paper introduced programme diversifying snippets, a
light-weight software protection scheme designed to thwart
patches relied on for low-overhead, mass distribution of pirated
software. We presented several types of snippets targeting
distinct patching approaches, and showed the feasibility of
automating their creation using genetic programming tech-
niques.

REFERENCES

[1] B. Anckaert, B. De Sutter, and K. De Bosschere. Software Piracy
Prevention Through Diversity. In Proceedings of the 4th ACM workshop
on Digital rights management pp. 63–71, Washington DC, 2004.

[2] F. Cohen. Operating system protection through program evolution.
Computers and Security, 12(6):56–584, 1993.

[3] C. Collberg, C. Thomborson, and D. Low. Manufacturing Cheap, Re-
silient, and Stealthy Opaque Constructs. In Principles of Programming
Languages 1998, San Diego, CA, January 1998.

[4] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser. N-variant systems: A secretless frame-
work for security through diversity. In The 15th USENIX Security
Symposium, pp. 10–120, 2006.

[5] S. K. Debray, W. Evans, R. Muth, and B. De Sutter. Compiler techniques
for code compaction. ACM Transactions on Programming Language and
Systems, Ed. 22(2), March 2000.

[6] T. Dullien and R. Rolles. Graph-based comparision of executable
objects. Symposium sur la Securite des Technologies de l’Information
et des Communications, 2005.

[7] R. El Khalil and A. D. Keromytis. Hydan: Hiding Information Binaries.
In Proceedings of the 6th International Conference on Information and
Communications Security, pp. 187–199, October 2004, Malaga, Spain.

[8] S. Forrest, A. Somayaji, and D. H. Ackley. Building Diverse Computer
Systems. In Proceedings of the Sixth Workshop on Hot Topics in
Operating Systems, pp. 67–72, 1997.

[9] V. Ganesh and D. L. Dill. A Decision Procedure for Bit-Vectors and
Arrays. Computer Aided Verification, Berlin, Germany, July 2007.

[10] D. Geer et al. CyberInsecurity: The Cost of Monopoly, 2003.
[11] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. Proceedings of the 2004 Interna-
tional Symposium on Code Generation and Optimization, Palo Alto, CA,
2004.

[12] A. Main and P.C. van Oorschot. Software Protection and Application
Security: Understanding the Battleground. International Course on State
of the Art and Evolution of Computer Security and Industrial Cryptog-
raphy, Heverlee, Belgium, June 2003.

[13] E. Raymond(ed), The New Hacker’s Dictionary, MIT Press, 1991.
[14] The PaX Team. http://pax.grsecurity.net/docs/aslr.

txt
[15] T. Sabin. Comparing binaries with graph isomorphisms. BindView

RAZOR Team, 2004. http://www.bindview.com/Services/
Razor/Papers/2004/comparing binaries.cfm

[16] Julien P. Stern, G. Hachez, F. Koeune, and J. Quisquater. Robust Object
Watermarking: Application to Code. Information Hiding ’99, volume
1768 of Lectures Notes in Computer Science pp. 368–378, Dresden,
Germany, 2000.


