Skip to main content
Log in

Multi-objective sizing and topology optimization of truss structures using genetic programming based on a new adaptive mutant operator

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Most real-world engineering problems deal with multiple conflicting objectives simultaneously. In order to address this issue in truss optimization, this paper presents a multi-objective genetic programming approach for sizing and topology optimization of trusses. It aims to find the optimal cross-sectional areas and connectivities between the nodes to achieve a set of trade-off solutions to satisfy all the optimization objective functions subjected to some constraints such as kinematic stability, maximum allowable stress in members and nodal deflections. It also uses the variable-length representation of potential solutions in the shape of computer programs and evolves to the potential final set of solutions. This approach also employs an adaptive mutant factor besides the classical genetic operators to improve the exploring capabilities of Genetic Programming in structural optimization. The intrinsic features of genetic programming help to identify redundant truss members and nodes in the design space, while no violation of constraints occurs. Our approach applied to some numerical examples and found a better non-dominated solution set in the most cases in comparison with the competent methods available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kicinger R, Arciszewski T, De Jong K (2005) Evolutionary computation and structural design: a survey of the state-of-the-art. Comput Struct 83(23–24):1943–1978

    Article  Google Scholar 

  2. Dorn WS (1964) Automatic design of optimal structures. J Mech 3:25–52

    Google Scholar 

  3. Deb K (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465

    Article  MATH  Google Scholar 

  4. Chun-Yin W, Tseng K-Y (2010) Truss structure optimization using adaptive multi-population differential evolution. Struct Multidiscip Optim 42(4):575–590

    Article  Google Scholar 

  5. Hare W, Nutini J, Tesfamariam S (2013) A survey of non-gradient optimization methods in structural engineering. Adv Eng Softw 59:19–28

    Article  Google Scholar 

  6. Talatahari S, Kheirollahi M, Farahmandpour C, Gandomi AH (2013) A multi-stage particle swarm for optimum design of truss structures. Neural Comput Appl 23(5):1297–1309. https://doi.org/10.1007/s00521-012-1072-5

    Article  Google Scholar 

  7. Ho-Huu V, Nguyen-Thoi T, Truong-Khac T, Le-Anh L, Vo-Duy T (2016) An improved differential evolution based on roulette wheel selection for shape and size optimization of truss structures with frequency constraints. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2426-1

    Article  Google Scholar 

  8. Hosseinzadeh Y, Taghizadieh N, Jalili S (2016) Hybridizing electromagnetism-like mechanism algorithm with migration strategy for layout and size optimization of truss structures with frequency constraints. Neural Comput Appl 27(4):953–971. https://doi.org/10.1007/s00521-015-1912-1

    Article  Google Scholar 

  9. Hajela P, Lin C-Y (1992) Genetic search strategies in multicriterion optimal design. Struct Optim 4(2):99–107

    Article  Google Scholar 

  10. Coello CA, Christiansen AD (2000) Multiobjective optimization of trusses using genetic algorithms. Comput Struct 75(6):647–660

    Article  Google Scholar 

  11. Büche D, Dornberger R (2001) New evolutionary algorithm for multi-objective optimization and its application to engineering design problems. In: Proceedings of the fourth world congress of structural and multidisciplinary optimization, Dalian, China

  12. Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  13. Deb K, Goel T (2001) A hybrid multi-objective evolutionary approach to engineering shape design. In: Zitzler E, Thiele L, Deb K, Coello Coello CA, Corne D (eds) Evolutionary multi-criterion optimization. Springer, Berlin, pp 385–399. ISBN: 978-3-540-44719-1

  14. Hamda H, Roudenko O, Schoenauer M (2002) Application of a multi-objective evolutionary algorithm to topology optimum design. In: Fifth international conference on adaptive computing in design and manufacture (ACDM02), Exeter, UK, pp 16–18

  15. Luh G-C, Chueh C-H (2004) Multi-objective optimal design of truss structure with immune algorithm. Comput Struct 82(11–12):829–844

    Article  MathSciNet  Google Scholar 

  16. Kelesoglu O (2007) Fuzzy multiobjective optimization of truss-structures using genetic algorithm. Adv Eng Softw 38(10):717–721

    Article  Google Scholar 

  17. Izui K, Nishiwaki S, Yoshimura M, Nakamura M, Renaud JE (2008) Enhanced multiobjective particle swarm optimization in combination with adaptive weighted gradient-based searching. Eng Optim 40(9):789–804

    Article  MathSciNet  Google Scholar 

  18. Ruiyi S, Wang X, Gui L, Fan Z (2010) Multi-objective topology and sizing optimization of truss structures based on adaptive multi-island search strategy. Struct Multidiscip Optim 43(2):275–286

    Google Scholar 

  19. Greiner D, Hajela P (2011) Truss topology optimization for mass and reliability considerations? Co-evolutionary multiobjective formulations. Struct Multidiscip Optim 45(4):589–613

    Article  MathSciNet  MATH  Google Scholar 

  20. Noilublao N, Bureerat S (2011) Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms. Comput Struct 89(23–24):2531–2538

    Article  Google Scholar 

  21. Takada T (2012) Multiobjective optimization of truss topology by linear/sequential linear programming method. J Mech Eng Autom 2:585–593

    Google Scholar 

  22. Kaveh A, Laknejadi K (2012) A hybrid multi-objective optimization and decision making procedure for optimal design of truss structures. Iranian J Sci Technol Trans Civ Eng 35(2):137–154

    Google Scholar 

  23. Pholdee N, Bureerat S (2012) Performance enhancement of multiobjective evolutionary optimisers for truss design using an approximate gradient. Comput Struct 106–107(C):115–124

    Article  Google Scholar 

  24. Richardson JN, Adriaenssens S, Bouillard P, Coelho RF (2012) Multiobjective topology optimization of truss structures with kinematic stability repair. Struct Multidiscip Optim 46(4):513–532

    Article  MATH  Google Scholar 

  25. Kaveh A, Laknejadi K (2012) A hybrid evolutionary graph-based multi-objective algorithm for layout optimization of truss structures. Acta Mech 224(2):343–364

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaveh A, Laknejadi K (2013) A new multi-swarm multi-objective optimization method for structural design. Adv Eng Softw 58(C):54–69

    Article  MATH  Google Scholar 

  27. Pholdee N, Bureerat S (2013) Hybrid real-code population-based incremental learning and approximate gradients for multi-objective truss design. Eng Optim 46(8):1032–1051

    Article  MathSciNet  Google Scholar 

  28. Coelho RF (2013) Co-evolutionary optimization for multi-objective design under uncertainty. J Mech Des 135(2):021006–021008

    Article  Google Scholar 

  29. Zavala GR, Nebro AJ, Luna F, Coello Coello CA (2013) A survey of multi-objective metaheuristics applied to structural optimization. Struct Multidiscip Optim 49(4):537–558

    Article  MathSciNet  Google Scholar 

  30. Zavala GR, Nebro AJ, Durillo JJ, Luna F (2014) Integrating a multi-objective optimization framework into a structural design software. Adv Eng Softw 76(C):161–170

    Article  Google Scholar 

  31. Xu B, Jin YJ (2014) Multiobjective dynamic topology optimization of truss with interval parameters based on interval possibility degree. J Vib Control 20(1):66–81

    Article  MathSciNet  MATH  Google Scholar 

  32. Angelo JS, Bernardino HS, Barbosa HJC (2015) Ant colony approaches for multiobjective structural optimization problems with a cardinality constraint. Adv Eng Softw 80:101–115

    Article  Google Scholar 

  33. Richardson JN, Coelho RF, Adriaenssens S (2015) Robust topology optimization of truss structures with random loading and material properties: a multiobjective perspective. Comput Struct 154(C):41–47

    Article  Google Scholar 

  34. Hosseini SS, Hamidi SA, Mansuri M, Ghoddosian A (2015) Multi objective particle swarm optimization (MOPSO) for size and shape optimization of 2D truss structures. Period Polytech Civ Eng 59(1):9–14

    Article  Google Scholar 

  35. Milajić A, Beljaković D, Solovev V, Murgul V (2016) Multi-objective truss optimization using different types of the BB–BC algorithm. Proc Eng 165:947–953

    Article  Google Scholar 

  36. Dey S, Kumar Roy T (2016) Multi-objective structural design problem optimization using parameterized t-norm based fuzzy optimization programming technique. J Intell Fuzzy Syst 30(2):971–982

    Article  MATH  Google Scholar 

  37. Yang I-T, Hsieh Y-H, Kuo C-G (2016) Integrated multiobjective framework for reliability-based design optimization with discrete design variables. Autom Constr 63:162–172

    Article  Google Scholar 

  38. Luis Mroginski J, Alejandro Beneyto P, Gutierrez GJ, Di Rado A (2016) A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis. Multidiscip Model Mater Struct 12(2):423–435

    Article  Google Scholar 

  39. Yu S, Tang H, Xue S, Li D (2016) Multi-objective differential evolution for truss design optimization with epistemic uncertainty. Adv Struct Eng 19(9):1403–1419

    Article  Google Scholar 

  40. Xie L, Tang H, Changyuan H, Xue S (2016) An adaptive multi-objective immune algorithm for optimal design of truss structures. J Asian Archit Build Eng 15(3):557–564

    Article  Google Scholar 

  41. Martini K (2016) Multiobjective structural optimization of frameworks using enumerative topology. Comput Struct 173(C):61–70

    Article  Google Scholar 

  42. Gholizadeh S (2017) Multi-objective seismic design optimization of steel frames by a chaotic meta-heuristic algorithm. Eng Comput 33:1045–1060

    Article  Google Scholar 

  43. Tawhid MA, Savsani V (2018) \(\varepsilon\)-constraint heat transfer search (\(\varepsilon\)-hts) algorithm for solving multi-objective engineering design problems. J Comput Des Eng 5(1):104–119

    Google Scholar 

  44. Pedroso DM, Bonyadi MR, Gallagher M (2017) Parallel evolutionary algorithm for single and multi-objective optimisation: differential evolution and constraints handling. Appl Soft Comput 61(Supplement C):995–1012

    Article  Google Scholar 

  45. Mokarram V, Reza BM (2017) A new PSO-based algorithm for multi-objective optimization with continuous and discrete design variables. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-017-1764-7

    Article  Google Scholar 

  46. Koza JR (1992) Genetic programming—on the programming of computer programs by natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  47. Koza JR, Poli R (2005) Genetic programming. In: Burke EK, Kendall G (eds) Search methodologies: introductory tutorials in optimization and decision support techniques. Springer, Boston, MA, pp 127–164. ISBN: 978-0-387-28356-2. https://doi.org/10.1007/0-387-28356-0_5

  48. Soh CK, Yang Y (2000) Genetic programming-based approach for structural optimization. J Comput Civ Eng 14(1):31–37

    Article  Google Scholar 

  49. Yang Y, Soh CK (2002) Automated optimum design of structures using genetic programming. Comput Struct 80(18–19):1537–1546

    Article  Google Scholar 

  50. Yang Y, Soh KC (2000) Fuzzy logic integrated genetic programming for optimization and design. J Comput Civ Eng 14(4):249–254

    Article  Google Scholar 

  51. Zheng QZ, Querin OM, Barton DC (2006) Geometry and sizing optimisation of discrete structure using the genetic programming method. Struct Multidiscip Optim 31(6):452–461

    Article  Google Scholar 

  52. Fenton M, McNally C, Byrne J, Hemberg E, McDermott J, O’Neill M (2014) Automatic innovative truss design using grammatical evolution. Autom Constr 39(C):59–69

    Article  Google Scholar 

  53. Fenton M, McNally C, Byrne J, Hemberg E, McDermott J, O’Neill M (2015) Discrete planar truss optimization by node position variation using grammatical evolution. IEEE Trans Evol Comput 20(4):577–589

    Article  Google Scholar 

  54. Assimi H, Jamali A, Nariman-zadeh N (2017) Sizing and topology optimization of truss structures using genetic programming. Swarm Evol Comput 37(Supplement C):90–103

    Article  Google Scholar 

  55. Assimi H, Jamali A (2018) A hybrid algorithm coupling genetic programming and Nelder–Mead for topology and size optimization of trusses with static and dynamic constraints. Expert Syst Appl 95(Supplement C):127–141

    Article  Google Scholar 

  56. Jamali A, Nariman-zadeh N, Atashkari K (2008) Multi-objective uniform-diversity genetic algorithm (MUGA), In: Zhihui X (ed) Advances in evolutionary algorithms. InTech. https://doi.org/10.5772/6125. https://www.intechopen.com/books/advances_in_evolutionary_algorithms/multi-objective_uniform-diversity_genetic_algorithm__muga_

  57. Jamali A, Ghamati M, Ahmadi B, Nariman-zadeh N (2013) Probability of failure for uncertain control systems using neural networks and multi-objective uniform-diversity genetic algorithms (MUGA). Eng Appl Artif Intell 26(2):714–723

    Article  Google Scholar 

  58. Jamali A, Khaleghi E, Gholaminezhad I, Nariman-zadeh N, Gholaminia B, Jamal-Omidi A (2014) Multi-objective genetic programming approach for robust modeling of complex manufacturing processes having probabilistic uncertainty in experimental data. J Intell Manuf 28(1):149–163

    Article  Google Scholar 

  59. Jamali A, Khaleghi E, Gholaminezhad I, Nariman-zadeh N (2014) Modelling and prediction of complex non-linear processes by using Pareto multi-objective genetic programming. Int J Syst Sci 47(7):1675–1688

    Article  MATH  Google Scholar 

  60. Gholaminezhad I, Assimi H, Jamali A, Vajari DA (2016) Uncertainty quantification and robust modeling of selective laser melting process using stochastic multi-objective approach. Int J Adv Manuf Technol 86(5–8):1425–1441

    Article  Google Scholar 

  61. Gholaminezhad I, Jamali A, Assimi H (2016) Multi-objective reliability-based robust design optimization of robot gripper mechanism with probabilistically uncertain parameters. Neural Comput Appl 28(1):659–670

    Google Scholar 

  62. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, London

    MATH  Google Scholar 

  63. Mazzoni S, McKenna F, Scott MH, Fenves GL et al (2006) OpenSees command language manual. Pacific Earthquake Engineering Research (PEER) Center, Berkeley

    Google Scholar 

  64. Usmani A, Zhang J, Jiang J, Jiang Y, May I (2012) Using Opensees for structures in fire. J Struct Fire Eng 3(1):57–70

    Article  Google Scholar 

  65. Yuan L, Panagiotou M (2014) Three-dimensional cyclic beam-truss model for nonplanar reinforced concrete walls. J Struct Eng 140(3):04013071

    Article  Google Scholar 

  66. Gholaminezhad I (2015) A multi-objective differential evolution approach based on \(\varepsilon\)-elimination uniform-diversity for mechanism design. Struct Multidiscip Optim 52(5):861–877

    Article  Google Scholar 

  67. Salehpour M, Jamali A, Bagheri A, Nariman-zadeh N (2017) A new adaptive differential evolution optimization algorithm based on fuzzy inference system. Int J Eng Sci Technol 20(2):587–597

    Article  Google Scholar 

  68. Das S, Subhra Mullick S, Suganthan PN (2016) Recent advances in differential evolution? An updated survey. Swarm Evol Comput 27:1–30

    Article  Google Scholar 

  69. Seok Lee K, Woo Geem Z (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82(9–10):781–798

    Google Scholar 

  70. Li LJ, Huang ZB, Liu F, Wu QH (2007) A heuristic particle swarm optimizer for optimization of pin connected structures. Comput Struct 85(7–8):340–349

    Article  Google Scholar 

  71. Li LJ, Huang ZB, Liu F (2009) A heuristic particle swarm optimization method for truss structures with discrete variables. Comput Struct 87(7–8):435–443

    Article  Google Scholar 

  72. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2012) Mine blast algorithm for optimization of truss structures with discrete variables. Comput Struct 102–103(C):49–63

    Article  Google Scholar 

  73. Degertekin SO, Hayalioglu MS (2013) Sizing truss structures using teaching–learning-based optimization. Comput Struct 119(C):177–188

    Article  Google Scholar 

  74. Kaveh A, Bakhshpoori T, Afshari E (2014) An efficient hybrid particle swarm and swallow swarm optimization algorithm. Comput Struct 143(C):40–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Jamali.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assimi, H., Jamali, A. & Nariman-zadeh, N. Multi-objective sizing and topology optimization of truss structures using genetic programming based on a new adaptive mutant operator. Neural Comput & Applic 31, 5729–5749 (2019). https://doi.org/10.1007/s00521-018-3401-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3401-9

Keywords

Navigation