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Abslracl-This paper proposes a framework for automati- 
cally evolving constraint satisfaction algorithm using genetic 
programming. The aim is to overcome the difficulties associ- 
ated with matching algorithm to specific constraint satisfaction 
problems. A representation is introduced that is suitable for 
genetic programming and that can handle both complete and 
local search heuristics. In addition, the representation is shown to 
have considerably more flexibility than existing alternatives, being 
able to discover entirely new heuristics and to exploit synergies 
between heuristics. In a preliminary empirical study, it is shown 
that the new framework is capable of evolving algorithm for 
solving the well-studied problem of hwlean satisfiability testing. 

I .  INTRODUCTION 
The notion that a universally effective problem solver may 

still exist, and is simply waiting to be found is slowly being 
abandoned in the light of a growing body of work reporting on 
the narrow applicability of individual heuristics. A heuristic’s 
success on one particular problem is not an a priori guarantee 
of its effectiveness on another, structurally dissimilar problem. 
In fact, the “no free lunch” theorems [I] hold that quite 
the opposite is true, asserting that a heuristic algorithm’s 
performance, averaged over the set of all possible problems, 
is identical to that of any other algorithm. Hence, superior 
performance on a particular class of problem is necessarily 
balanced by inferior performance on the set of all remaining 
problems. 

Adaptive problem solving aims to overcome these difficul- 
ties by employing more than one individual heuristic, or by 
providing the facility to modify heuristics to suit the current 
problem. More generally, an adaptive system can be consid- 
ered to embody a space of possible heuristics. As the search 
progresses, information gathered about the structure of the 
problem or the efficacy of the various heuristics is used by the 
system to explore the space of possible heuristics and locate 
the one most applicable to the current problem. In addition 
to overcoming the limitations imposed by a single heuristic, 
an adaptive system removes the need for the developer to 
determine the most appropriate heuristic beforehand. 

Despite this, much of the research into adaptive algorithms 
has concerned the identification of which heuristics, from a set 
of completely specified heuristics, are best suited for solving 
particular problems. Heuristics in these methods are declared 
a priori, based on the developer’s knowledge of appropriate 
heuristics for the problem domain. This is disingenuous, in that 
it assumes knowledge of the most appropriate heuristics for a 
given problem, when the very motivation for using adaptive 

algorithms is the difficulty associated with matching heuristics 
to problems. 

Existing work on adaptive algorithms will be discussed in 
section 11, before a new representation that overcomes these 
difficulties is presented in section 111. An example of its use, 
and how it has been extended with compound heuristics, will 
be presented in sections IV and V respectively. How the 
search space of algorithms may be explored and expanded is 
described in sections VI and VII, followed by the presentation 
of experimental results in section VIII. 

11. BACKGROUND 

One paradigm that has proven particularly popular for 
representing finite domain problems is that of the constrninf 
sarisfaction pmblem (CSP). All CSPs are characterised by the 
inclusion of a finite set of variables; a set of domain values for 
each variable; and a set of constraints that are only satisfied by 
assigning particular domain values to the problem’s variables. 
Whilst a multitude of algorithms have been proposed to locate 
solutions to such problems, this paper focuses on methods 
that can adapt to the particular problem they are solving. A 
number of previously proposed adaptive methods will first be 
discussed. 

The MULTI-TAC system proposed by Minton [2], [3] is 
designed to synthesise heuristics for solving CSPs. Such 
heuristics are extrapolated from “meta-level theories” i.e. basic 
theories that describe properties of a partial solution to a 
CSP. The theories explicated for use with MULTI-TAC lead 
primarily to variable and value ordering heuristics for complete 
(backtracking) search. Exploration is by way of a beam search, 
designed to control the number of candidate heuristics that 
will be examined. Unlike some of the other adaptive methods, 
MULTI-TAC is able to learn new heuristics from base theories. 

The use of chains of low-level heuristics to adapt to individ- 
ual problems has also been proposed. Two such systems are 
the Adaptive Constraint Satisfaction (ACS) system suggested 
by Borrett et al. [4] and the hyper-heuristic GA system pro- 
posed by Han and Kendall [5]. ACS relies on a pre-specified 
chain of algorithms and a supervising “monitor” function 
that recognises when the current heuristic is not performing 
well and directs the search to advance to the next heuristic 
in the chain. In contrast to a pre-specfied chain, the hyper- 
heuristic system evolves a chain of heuristics appropriate for a 
particular problem using a genetic algorithm. Although Borrett 
exclusively considered complete search methods, their work 
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would allow the use of chains of local search algorithms 
instead. The same can be said vice versa for Han and Kendall’s 
work which considered chains of local search heuristics. 

Gratch and Chien [6] propose an adaptive search system 
specifically for scheduling satellite communications, although 
the underlying architecture could address a range of similar 
problems. An algorithm is divided into four seperate levels, 
each in need of a heuristic assignment. All possibilities for a 
particular level are searched before a commitment is made to 
a particular one, and the search proceeds to the next level. In 
this way, the space of possible methods is pruned and remains 
computationally feasible. Unfortunately such a method is 
unable to recognise synergies that may occur between the 
various levels. 

The premise of Nayerek‘s work [7] is that a heuristic’s past 
performance is indicative of its future performance within the 
scope of the same sub-problem. Each constraint is considered 
a sub-problem, and has a cost function and a set of associ- 
ated heuristics. A utility value for each heuristic records its 
past success in improving its constraint’s cost function, and 
provides an expectation of its future usefulness. Heuristics are 
in no way modified by the system, and their association to 
a problem’s constraints must be determined a priori by the 
developer. 

Epstein et al. proposed the Adaptive Constraint Engine 
(ACE) [SI as a system for learning search order heuristics. 
ACE is able to learn the appropriate importance of individual 
heuristics (termed “advisors”) for particular problems. The 
weighted sum of advisor output determines the evaluation 
order of variables and values. ACE is only applicable for use 
with complete search, as a trace of the expanded search tree 
is necessary to update the advisor weights. 

With the exception of MULTI-TAC, the primary limitation 
of these methods is their inability to discover new heuris- 
tics. Although ACE is able to multiplicatively combine two 
advisors to create a new one, it is primarily, like Nayarek‘s 
work, only learning which heuristics are best suited to par- 
ticular problems. Neither [6] ,  which learns a problem-specific 
conjunctive combination of heuristics, nor [SI, which learns 
a problem-specific ordering of heuristics, actually learn new 
heuristics. 

A secondary limitation of the methods discussed (specif- 
ically MULTI-TAC and Gratch and Chien’s work) is their 
inability to exploit synergies. Heuristics that perform well 
in conjunction with other methods, but poorly individually, 
will not be identified by these two methods. A discussion 
of synergies is not applicable to the remaining methods, 
except for the hyper-heuristic CA, where the use of a genetic 
algorithm permits the identification of synergies. Other factors 
that should be mentioned include the ability of the methods 
to handle both complete and local search; the maximum 
complexity of the heuristics they permit to be learned; and 
whether the methods are able to learn from failure. How 
the new representation and genetic programming will address 
these points will be discussed in the following sections. 
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111. A NEW REPRESENTATION FOR CSP ALGORITHMS 

A constraint satisfaction algorithm can be viewed as an 
iterative procedure that repeatedly assigns domain value:; to 
variables, terminating when all constraints are satisfied, the 
problem is proven unsolvable, or the available computational 
resources have been exhausted. How the values and the 
variables are chosen depends on the heuristics of the particiJlar 
algorithm. Such a heuristic algorithm can be defined in the 
new representation by the specification of three functions: the 
move contention function; the move preference function; and 
the move selection function. 

ALGORITHM { 
CONTEND some-moves-to-consider-further; 
PREFER these-moves-according-to-some-metric; 
SELECT one-of-these-moves-to-enact 

I 
Fig. 1. Representation of a constraint algorithm 

Each move is passed in sequence to the move contention 
function to determine which moves (assignments of values to 
variables) are to he further considered by the search algorithm. 
Examples of this type of function are: “all moves that involve 
unsatisfied constraints”; “all moves that haven’t been t:ken 
recently”; or “all moves involving unassigned variables”. The 
resultant list of moves is then passed one move at a time to the 
move preference function, which assigns a numeric preference 
value to each move. Examples of preference functions include: 
“the count of unsatisfied constraints”; “the time since this 
move was last taken”; or “the maximally constrained variable”. 
Once preference values have been assigned, the move selection 
function uses the preference values to choose one move from 
the contention list to enact. Two commonly used sebction 
functions are “a random selection from the best moves”’ and 
“a random selection from improving moves”. 

The example functions mentioned have been drawn from 
both the local and complete search domains to demonstrate 
that that the proposed representation is applicable to both types 
of search. Both backtracking and local search algorithms for 
constraint satisfaction can be viewed as iteratively assigning 
values to variables. The traditional difference between the two 
methods is that backtracking search instantiates variables only 
up to the point where constraints are violated, whereas all vari- 
ables are instantiated in local search regardless of constraint 
violations. As backtracking maintains a complete record of its 
search, it is capable of exploring the entire search space. .Local 
search routines rarely record so much information, selecting a 
promising new solution from the neighbourhood of the current 
solution on the basis of a heuristic function. 

Despite these differences, at every iteration both types of 
search make two decisions: “What variable will be instantiated 
next?” and “Which value will be assigned to it?”. Although 
the representation is capable of handling complete search 
algorithms, overcoming one of the limitations of some ex.isting 



work, the rest of the paper will concentrate on its use for local 
search methods. 

IV. THE REPRESENTATION IN OPERATION 
A demonstration of the representation in operation will 

be presented using the well-known GSAT algorithm [9] and 
reference to a small graph colouring problem. GSAT was 
selected because it is widely known, relatively simple, and was 
instrumental in the development of local search for constraint 
satisfaction. Figure 2 presents the GSAT algorithm in the new 
representation and the graph colouring problem is shown in 
Figure 3. 

GSAT { 
CONTEND all-moves-for-unsatisfied-constraints; 
PREFER moves-on-total-constraint-violations; 
SELECT randomly-from-minimal-cost-moves 

1 
Fig. 2. Reprerentalion of the GSAT algorithm 

The aim of the problem is to find an assignment of colours 
to each of the three countries, such that no countries sharing 
a border are coloured the same. For this problem, there are 
3 variables (the three countries); 3 domain values for each 
variable (the colours black, gray and white); and 3 constraints 
(for the three contiguous borders). Local search is being 
considered, so the problem begins with a random instantiation 
of values to variables that has resulted in one constrain! 
violation, as shown in Figure 3. 
A.  Step I - Move Contention 

Move contention determines which moves are currently 
available for the search algorithm. All moves are considered, 
being passed in sequence to the GSAT heuristic that returns 
True if (and only if) the move involves a variable in an 
unsatisfied constraint. In this case, this heuristic returns True 
for the variables B and C. The possible moves are: 

1) B t Black 
2 )  B t White 
3) c c Black 
4 )  C t White 
These potential moves are now passed to the move prefer- 

ence stage of the algorithm. 

Fig. 3. A graph colouring problem 

E. Step 2 - Move Preference 

Move preference involves assigning to each of the contend- 
ing moves a numeric value representing how well that move 
satisfies a particular metric. GSAT ranks moves according to 
the total number of constraints that would be unsatisfied if 
each move was taken. The number of constraints that would 
be unsatisfied for each of the four contending moves is as 
follows: 

1 )  B t White = 0 
2 )  C t White = 0 
3) B t Black = 1 
4) G t Black = 1 

The moves and their preference values are now passed to 
the final stage of the algorithm. 

C. Step 3 - Move Selection 

Move selection uses the results of the preference stage to 
select a move to enact. GSAT makes a random selection from 
amongst the (two) best moves, which in this case both lead to 
a satisfying solution. After enacting this move, the problem is 
solved and the algorithm terminates. 

V. COMPOUND HEURISTICS 

A number of published local search algorithms can be posed 
in the representation as it has been described so far, A selection 
of these algorithms are listed in Table I. Some algorithms 
however, are not able to he posed in such simple terms. For this 
reason, three compound heuristics aTe presented: probabilistic 
choice; possibilistic choice; and comparative choice. 

A. Probabilistic choice 

Probabilistic choice is employed by the WSAT heuristic 
[lo]. Instead of applying a single strategy, probabilistic choice 
allows two seperate algorithms to be used. One of the two 
algorithms is selected probabilistically for use each turn. This 
introduces an element of randomness that may assist a search 
in escaping a local minimum. 

E. Possibilistic choice 

Possibilistic choice occurs in a number of algorithms (such 
as DLM [I I ] ) ,  that repeatedly use a single algorithm until it is 
no longer able to be applied. As an example, the search may 
operate in a greedy manner until no improving moves exist. 
When an improving move is no longer possible, the algorithm 
may begin making random or cost neutral moves that would 
not normally be accepted. Possibilistic choice requires three 
algorithms as arguments, only if the first algorithm is possible 
is the second algorithm enacted. Otherwise the third algorithm 
will be used. There is no restriction that all algorithms must 
be distinct. 
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C. Comparative choice 

Comparative choice has been used by the Novelty [I21 
family of algorithms, and references four different algorithms 
as arguments. The moves that would be taken by the first 
two specified algorithms are compared, in the case of Nov- 
elty, these are the "best" move and the most "recent" move 
algorithms. If both algorithms would make the same move, 
the third algorithm is enacted, otherwise the fourth algorithm 
would be used. 

In Novelty, the CONTEND heuristic requires the selection 
of a random constraint (see Table I), which recurs throughout 
the algorithm. This creates an ambiguity: either each instance 
of CONTEND randomly picks its own constraint or a single 
randomly selected constraint applies to all instances (for 
Novelty, the same constraint does apply to all instances). This 
ambiguity could be removed by enforcing the rule that all 
duplications of a given heuristic (within the same algorithm) 
become exact copies of a single underlying heuristic. Hence, 
if a random choice is made, it will be the same for all 
versions. Alternatively, the expression trees could be treated as 
directed acyclic graphs, so that only particular duplications are 
equivalentt. An algorithm would not be restricted to a single 
instance of each heuristic, allowing for cases where different 
evaluations might be desired. Determining which of the two 
methods is most appropriate is an ongoing area of research. 

VI. ADAPTING ALGORITHMS 

The aim in developing a new representation has been to 
provide a framework for the adaptation and discovery of new 
algorithms. One of the underlying premises of this work is 
that a representation capable of expressing the diverse range of 
current algorithms, without dictating their explicit definition, 
implies a suitable level of complexity for new algorithms. 
Preceding sections have demonstrated that the representation is 
capable of handling the level of complexity present in existing 
algorithms. 

One method that has been proposed for discovering solu- 
tions when the form of the solution is not pre-determined (or is 
unknown) is genetic programming [13]. Genetic programming 
uses a dynamic, tree-based data structure to overcome the 
limitation of the linear (and often fixed length) data structures 
used by genetic algorithms. As a brief example of genetic 
programming, consider regressing some data to a linear func- 
tion, mz + c. Providing that the data is from a linear function, 
regression requires the determination of values for m and c. 
Using a genetic algorithm, m and c would entirely comprise 
the chromosome, and we are limited to discovering equations 
of a linear form. Alternatively, a genetic program for the same 
purpose would allow the same two constants m and c but 
possibly more, the argument z and the operators + & x to 
form part of the solution. These are combined by genetic 
programming into an expression tree representing the function 
to he learned. Where the genetic algorithm is restricted to 

'The authors would like to acknowledge the input of Peter Stuckey, 
University of Melbourne. for ulis suggestion. 

TABLE I 
TABLE OF WELL-KNOWN LOCAL SEARCH HEURISTICS 

jsAT 

HSAT 

rABu 

UrEIGHT- 
:NG 

WSAT 

VOVELTY 

- 
{ CONTEND all-moves-for-unsatissed-consuaints; 
PREFER maves-on-total-consuaint-violation~; 
SELECT randomly-fram-miwmalI-cast-moves } 
{ CONTEND all-moves-for-unsatisfied-consuaints: 
PREFER on-left-shifted-cansVaincviolations-trecencv; 

- 

- SELECT minimal-cast-move } 
{ CONTEND all-moves-not-taken-recently: 
PREFER moves-on-tolal-constnt-violations; 
SELECT randomly-fmm-minimal-cost-moves } - 

SELECT randomly-fmrr;minimal-cost-moves } - 
{ PROBABILISTIC 

{ CONTEND al-maves-for-~-random-consuaint: 
PREFER moves-on-new-canstnt-violations; 
SELECT randomlv-fmm-minim~I-cast-moves 1; 
{ CONTEND al l -moves-far-a-rand~m.co~~~~~t:  
PREFER moves-on-new-constraint-violationa: 

i F  { CONTEND ali-moves-for-a-random-c~"~~~nt; 
PREFER moves-on-total-const"[-viol~tions; 
SELECT randomly-fmm-minimal-cast-moves ] 

== { CONTEND all-moves-far-a-random-cansuaint; 
PREFER moves-on-recency-of-mave; 
SELECT randomly-fmm-minimal-cas(-moves }; 

THEN { PROBABILISTIC { 
{ CONTEND all-maves-for-a-random-cans(rain1; 
PREFER moves-on-tag-constnt-"iolatians; 
SELECT randamly-from-minimal-cost-m~"~s }; 
{ CONTEND all-maves-for-a-random-cansuainl; 
PREFER moves-on-total-constnt-"i~l~ti~~s; 
SELECT from-second-lowest-cost-moves ) } ; 

ELSE { CONTEND all-maves-for-a-random-~~"~~"t; 
PREFER moves-on-tag-constraint-violatians: 
SELECT randomly-from-minimal-cost-moves ] 

1 1  - 

learning first-order polynomials, this method has the advantage 
of being able to learn a range of polynomial functions. 

Adaptation of a genetic program takes place using meth- 
ads analagous to those employed in a genetic algorithm 
for selection, cross-over and mutation, except that the GP 
variants are designed to operate on trees, rather than a string 
of symhols. An example of a heuristic represented as an 
expression tree is diagrammed in Figure 4. The selection 
operation is very similar, as the fitness of tentative solutions 
must still be evaluated to determine which solutions will beget 
the next generation. Cross-over operates differently than in 
the standard GA, selecting a random subtree from each of 
two parent solutions and interchanging them to create two 
new solutions. Finally, mutation in a genetic program creates 
a new solution by replacing an existing subtree with a new, 
randomly-generated one. 

Genetic programming addresses two of the limitations 
identified in existing work. Synergies can he exploited, as 
individuals are not removed from the population as a result of 
poor performance. As individuals are selected probabilistically 
to participate in cross-over, individuals that have performed 
poorly on their own may still form part of a subsequent 
generation. The other limitation of some existing approaches 
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is their inability to leam from failure. Even if an algorithm 
does not locate any solutions, information about how close it 
came to solutions or how much of the search space it explored 
can form part of a fitness function. 

Algorithms in the proposed representation are adapted by 
genetic programming operations that must preserve the syn- 
tactic structure of the original algorithm. This is easily ac- 
complished with both the cross-over and mutation operations. 
In cross-over, only similarly-typed structures from two parents 
may be interchanged. All functions and terminals that compose 
the three different heuristics also have associated types that 
must be preserved. This is always preserved by any genetic 
operation that operates on an algorithm. 

The algorithms listed in Table I were described using easily 
recognisable English descriptions of their heuristics. If the 
genetic operators were unable to decompose heuristics any 
further than these descriptions, it could still explore a bounded 
space of algorithms simply by interchanging the component 
heuristics. The aim of this work is to develop new heuristics 
by combining individual functions and terminals in novel 
ways, which requires that heuristics be broken down into their 
component parts. The space of heuristics can then be expanded 
by combining these functions and terminals with a number 
of generic functions. The more detailed expressions behind 
the English description will now be presented for the GSAT 
algorithm as an example, using the functions and terminals 
lists found in Table 11. 

Contention in GSAT passes every move currently possible 
to the “InUnsatisfied(Move)” function, which returns Boolean 
True if the move will be in contention or False if the 
move is not to be considered further. This function can be 
expressed in more detail as: “num-constraints-that-would-be- 
satisfied(Move)>V’. 

The GSAT algorithm prefers “moves-on-total-constraint. 
violations”. Preference assigns to each move in the contention 
list a numeric value, which in the case of GSAT, is the 
difference between the number of constraints that will become 
satisfied by a particular move and the number of constraints 
that will become unsatisfied. The expression for this function 
is “NumWillSatisfy(Move) - NumWillUnsatisfy(Move)”. It is 
shown as an expression tree in Figure 4. 

I Mmc I I Ma”r I 
Fig. 4. The GSAT preference heuristic as an expression tree 

The selection heuristics have not yet been modelled in 
sufficient detail that they could be adapted through cross-over 

or mutation. However, four different selection heuristics are 
listed in Table 11. Selection heuristics can still be represented 
as expression trees, only the set of functions and terminals is 
currently limited, such that only a fixed set of heuristics is 
possible. 

VII. LEARNING NEW HEURISTICS 

The previous section has described how heuristics may 
be represented as expression trees that can then be adapted 
with genetic programming. Although the set of functions and 
terminals is fixed for all heuristics, the presence of a mixture 
of functions such as “AND,  “ O R  and “NOT” for contention, 
and “PLUS”, “MINUS” and “TIMES” for preference, permit 
a range of new heuristics to be learned, as well as existing 
heuristics to be combined in novel ways. No limit is placed 
on the complexity (size) of the algorithms that may be learned, 
which will vary depending on the fitness offered by such levels 
of complexity. The ability of this representation to learn new 
algorithms and without an a priori complexity bound address 
the two remaining limitations identified from the literature. 

It is believed that a further level of “granularity” may be 
exploited, where appropriate functions and terminals are not 
specified, but are instead learned from a much more finely 
grained meta-knowledge of a constraint system. This is beyond 
the scope of the current paper, but will form the basis of our 
future work into evolving algorithms. The experimental study 
presented in the next section will be limited to the function 
and terminal sets tabulated in Table 11. 

VIII. EXPERIMENTAL STUDY AND RESULTS 

An initial experimental study has been conducted to test the 
ability of the new representation and genetic programming to 
successfully evolve heuristic expression trees. This study is 
the precursor to a more detailed and extensive study to be pre- 
sented in future work. Performing multiple runs of a constraint 
algorithm is a time-consuming task, and adapting algorithms 
with a method such as genetic programming is even more so, 
as the performance of an entire population of algorithms must 
be evaluated. The challenges facing an evolutionary algorithm 
with a computationally intensive fitness function cannot be 
overstated. It is not the authors’ intention to demonstrate that 
this method can immediately generate algorithms competitive 
with state-of-the-art constraint satisfaction algorithms. The 
object of this exploratory study is to demonstrate that from 
a random starting population, an evolutionary technique can 
improve a population of algorithms’ performance over time, 
within the framework of the presented representation. 

Algorithm performance is most often presented in the con- 
straint literature in terms of the number of moves required to 
find a solution or in terms of the time taken to locate a solution. 
Results are averaged over a number of attempts, as many 
heuristic algorithms employ an element of randomness when 
navigating the search space, as well as randomly initialising 
their solution vector. This randomness makes the algorithms 
non-deterministic, and a single, possibly “lucky”, run is not 
necessarily indicative of an algorithm’s performance. For this 
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TABLE II 
FUNCTION AND TERMINAL SETS 

. . _. . .. 7 

InUosatbfied :: Move -+ Boo1 
WontUnsatisfy :: Move -+ Bod 
hloveNotTaken :: Move --f Bod 
IoRandom :: Move i Boo1 
AgeOverInt :: Move i Integer i B o d  
RandomlyTrne :: Integer i Bod 
And, Or :: Bod  -+ Boo1 -+ Boa1 
Not :: Bad 

True iff Move is in an unsatisfied constraint. 
True iff Move won't unsatisfy any consuainu. 
True iff Move hasn't been previously taken. 
True iff Move is in a persistent random constraint. The constraint is persistent this tum only, 
True iff this Move hasn't been laken far Integer turns. 
Randomly True Integer percent of the time. 
The Boolean AND and OR functions. Definition as expected. 
The Boolean NOT function. Definition as expected 

.. 
NumWillUnsatisfy :: Move i Integer 
Degree :: Move -+ Integer 
PosDegree, NegDegree :: Move i Integer 
DependentDegree, OppasiteDegree :: 

TimesTaken :: Move i Integer 
SumTimesSat, 

Degree returns the number of consuainu this Move (variable) affects 
Return the number of constraints satisfied by respective variable settings. 
DcpendenlDegree returns PasDegree if Move involves a currently 
True variable or NegDegree for a False variable. The reverse occurs for OppDegree. 
Retums the number of times Move has been taken. 
Retums the sum of the number of times all conslrainls affected by 

Move i Integer 
~ . .. " I 

Move i Integer I True variable or NegDegree for a False variable. The reverse occurs for OppDegree. 
I Retums the number of times Move has been taken. 
I Retums the sum of the number of times all conslrainls affected by 

TimesTaken :: Move i Integer 
SumTimesSat, 
SumTimesUnsat :: Move -+ Integer Move have been satisfied or unsatisfied respectively. 

has been unsatisfied. 
Retums the number of consuaints that will be satisfied bv Move that 

SumCoustraintAges :: Move -+ Integer For all constraints Move panicipates in. retums the sum of the lengths of time each 

NumNewSatiafied, 

U, 1 :: Integer 

RandomFmmMax, RandomFmmMin, 
RandomFmmPasitive, RandomFromAll :: 
MoveList i CosUisl -+ Move 

ListOtMoves :: MoveList 
Lismfcosts :: Costlist 

I The integers U and 1. 

Functions for use in Selection Heuristics 
The first two functions make a random selection from the maximum or minimum cost 
respectively. The third makes a random selection from all moves with a positive preference 
value. The final function m&s a random selection from all moves in the preference 

Terminals for use in Selection Heuristics 
1 The list of moves determined by the contention stage. 
I The list of costs determined by &e preference stage. 

reason, figures presented for the time or number of moves 
required to locate a solution are averaged over a number of 
trials. 

An initial random population of algorithms was generated 
and the fitness of each member evaluated. One of the fitness 
measures being used is the fewest constraint violations that 
the algorithm was able to achieve during its search. This is 
averaged over all rons of an algorithm and then standardised 
(in the usual genetic programming sense) to the worst per- 
forming element of the population. The second figure is the 
number of times that the algorithm found a solution, scaled 
between (I-IOO), which rapidly becomes the dominant part of 
the fitness function, as the problem has only 100 constraints 

to be satisfied. This fitness function is included in Table 111. 
The constraint problem selected for this test is a randomly 
generated satisfiability problem with 100 variables and 430 
constraints, available from the SATLIB benchmark set'. Each 
constraint in this 3-SAT problem has exactly 3 variables and 
the problem is drawn from the phase-transition region vvhere 
problems are (on average) the most difficult for traditional 
backtracking solvers. The maximum number of moves (per 
run) that each algorithm is given is well in excess of the 
number required by state-of-the-art algorithms'. 

The three heuristics that compose each algorithm are not 

2http://www.satlib.org 
'Determined using the S A P S  weighting algorithm of I141 

270 



TABLE 111 
EXPERIMENT CONDLTIONS 

permitted to “interbreed”. That is, contention heuristics may 
only be crossed with other contention heuristics and so on. 
Which of the three heuristics are crossed is determined ran- 
domly, and more than one of the heuristics may be crossed in a 
single cross-over operation. Although new selection heuristics 
cannot be learned due to the limited set of functions and 
terminals specified, cross-over can swap selection heuristics 
between two algorithms, pairing each selection heuristic with 
a different contention and preference combination. 

Experimental results are shown in Table IV and Figure 5 .  
The use of elitism to convey the best performing elements of 
one generation to the next would generally provide a mono- 
tonically improving “hest” papulation member. In these results 
however, the evaluation of each algorithm from generation to 
generation is in itself a stochastic process. Only a relatively 
small number of runs was performed. which was insufficient to 
remove all of the noise introduced by the inherent randomness 
of the algorithms. 

TABLE 1V 
RESULTS O f  ALGORITHM EVOLUTION 

Despite occasional decreases in the performance of the 
population, a steady improvement can he observed up until 
generation 20. By this time, although convergence did not oc- 
cur until around generation 50, the population was composed 
of a small subset of the available functions and terminals. 
This was particularly true of the hest performing members of 
the population. A total of 49 functions and terminals were 
presented in Table 11. The best performing algorithms relied 
only on the “InUnsatisfied(Move)” contention function, al- 
though redundant extensions involving the “ O R  function were 
common. The preference functions were additive combinations 
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Fig. 5. Resulu of genetic programming experimeni 

(through “Plus”) of “NumWillUnsatisfy(Move)” and “Times- 
Taken(Move)” with “RandomFromMinimum(Move)” used for 
selection. Both the contention and preference functions tended 
to grow significantly, with sizable trees (approximately 20 
nodes each) composed entirely of the functions mentioned. 

The cumulative genetic diversity of the population is shown 
for a number of generations in Figure 6. Cumulative genetic 
diversity is measured by counting the number of unique 
functions and terminals observed, when iterating through a 
population that has been ranked in order of fitness. Diverse 
populations are characterised by large areas under their genetic 
diversity graphs, whereas uniform populations will have less 
area under theirs. As can be seen from this figure, most of 
the hest performing individuals in the later populations were 
drawn from a very small subset of the available functions and 
terminals. 

f-1 D ’- iiJ il 

Fig. 6.  Cumulative diversity graphs far a number of generations 

The performance of the best individual algorithm improved 
by a factor of 40 during the course of evolution. During the 
same period, the average success rate of the population rose 
from less than 1% to over 90%. Best performance is the more 



important measure however, as it reflects an undeniable im- 
provement in the system, whereas average performace can be 
increased simply by removing poorly performing individuals 
and does not necessarily reflect an improvement in individual 
algorithms. It is evident from these results that even from a 
relatively poor performing initial population, the proposed al- 
gorithm representation used with genetic programming allows 
significantly improved algorithms to be evolved. 

0 List (-j List 

IimesTaken - 
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Fig. 7. Best algorithm at generation SO 

Ix. CONCLUSIONS AND FUTURE WORK 

This paper bas introduced a new representation for con- 
straint satisfaction algorithms that can model both complete 
and local search methods. It has further shown how the 
application of genetic programming to the new representation 
can evolve effective constraint solving algorithms, while at 
the same time addressing some of the limitations of existing 
methods (such as leaming new algorithms and exploiting 
synergies) 

Future work will concentrate on a much larger experimental 
study; the inclusion of compound heuristics in the genome; and 
a determination of the most appropriate method of handling 
multiple instances of a single heuristic. Even with a fixed 
set of functions and terminals, albeit one large enough to 
be combined in many novel ways, a random initial and 
poor-performing population of algorithms was significantly 
improved by the application of genetic programming operating 
within the presented representation. 
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