skip to main content
10.1145/3512290.3528783acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article
Open Access

Genetic programming for structural similarity design at multiple spatial scales

Published:08 July 2022Publication History

ABSTRACT

The growing production of digital content and its dissemination across the worldwide web require eficient and precise management. In this context, image quality assessment measures (IQAMs) play a pivotal role in guiding the development of numerous image processing systems for compression, enhancement, and restoration. The structural similarity index (SSIM) is one of the most common IQAMs for estimating the similarity between a pristine reference image and its corrupted variant. The multi-scale SSIM is one of its most popular variants that allows assessing image quality at multiple spatial scales. This paper proposes a two-stage genetic programming (GP) approach to evolve novel multi-scale IQAMs, that are simultaneously more effective and efficient. We use GP to perform feature selection in the first stage, while the second stage generates the final solutions. The experimental results show that the proposed approach outperforms the existing MS-SSIM. A comprehensive analysis of the feature selection indicates that, for extracting multi-scale similarities, spatially-varying convolutions are more effective than dilated convolutions. Moreover, we provide evidence that the IQAMs learned for one database can be successfully transferred to previously unseen databases. We conclude the paper by presenting a set of evolved multi-scale IQAMs and providing their interpretation.

References

  1. 2022. 24 Noteworthy Video Consumption Statistics [2021 Edition]. https://techjury.net/blog/video-consumption-statistics/#gref. Accessed: 19.01.2022.Google ScholarGoogle Scholar
  2. 2022. 31 Mind-Boggling Instagram Stats & Facts for 2022. https://www.wordstream.com/blog/ws/2017/04/20/instagram-statistics. Accessed: 19.01.2022.Google ScholarGoogle Scholar
  3. 2022. Global social media statistics research summary 2022. https://www.smartinsights.com/social-media-marketing/social-media-strategy/new-global-social-media-research/. Accessed: 19.01.2022.Google ScholarGoogle Scholar
  4. 2022. The State Of Online Video For 2020. https://www.forbes.com/sites/tjmccue/2020/02/05/looking-deep-into-the-state-of-online-video-for-2020/?sh=73ed21902eac. Accessed: 19.01.2022.Google ScholarGoogle Scholar
  5. Yuval Bahat and Tomer Michaeli. 2021. What's in the Image? Explorable Decoding of Compressed Images. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021), 2907--2916.Google ScholarGoogle Scholar
  6. Illya Bakurov, Marco Buzzelli, Mauro Castelli, Leonardo Vanneschi, and Raimondo Schettini. 2020. Parameters optimization of the Structural Similarity Index. London Imaging Meeting 2020: Future Colour Imaging 2020, 19--23. Google ScholarGoogle ScholarCross RefCross Ref
  7. Illya Bakurov, Marco Buzzelli, Mauro Castelli, Leonardo Vanneschi, and Raimondo Schettini. 2021. General Purpose Optimization Library (GPOL): A Flexible and Efficient Multi-Purpose Optimization Library in Python. Applied Sciences 11, 11 (2021). Google ScholarGoogle ScholarCross RefCross Ref
  8. Illya Bakurov, Marco Buzzelli, Raimondo Schettini, Mauro Castelli, and Leonardo Vanneschi. 2022. Structural similarity index (SSIM) revisited: A data-driven approach. Expert Systems with Applications 189 (2022), 116087. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Illya Bakurov, Leonardo Vanneschi, Mauro Castelli, and Francesco Fontanella. 2018. EDDA-V2--An Improvement of the Evolutionary Demes Despeciation Algorithm. In International Conference on Parallel Problem Solving from Nature. Springer, 185--196.Google ScholarGoogle ScholarCross RefCross Ref
  10. Simone Bianco, Luigi Celona, and Paolo Napoletano. 2021. Disentangling Image distortions in deep feature space. Pattern Recognition Letters 148 (2021), 128--135. Google ScholarGoogle ScholarCross RefCross Ref
  11. Simone Bianco, Claudio Cusano, Flavio Piccoli, and Raimondo Schettini. 2020. Personalized Image Enhancement Using Neural Spline Color Transforms. IEEE Transactions on Image Processing 29 (2020), 6223--6236. Google ScholarGoogle ScholarCross RefCross Ref
  12. S. Bosse, D. Maniry, K. Müller, T. Wiegand, and W. Samek. 2018. Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment. IEEE Transactions on Image Processing 27, 1 (2018), 206--219.Google ScholarGoogle ScholarCross RefCross Ref
  13. Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin P. Murphy, and Alan Loddon Yuille. 2018. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (2018), 834--848.Google ScholarGoogle ScholarCross RefCross Ref
  14. Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. 2017. Rethinking Atrous Convolution for Semantic Image Segmentation. ArXiv abs/1706.05587 (2017).Google ScholarGoogle Scholar
  15. Ionut Cosmin Duta, Li Liu, Fan Zhu, and Ling Shao. 2020. Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition. ArXiv.Google ScholarGoogle Scholar
  16. Max Ehrlich, Ser-Nam Lim, Larry S. Davis, and Abhinav Shrivastava. 2020. Quantization Guided JPEG Artifact Correction. In ECCV.Google ScholarGoogle Scholar
  17. Fei Gao, Yi Wang, Panpeng Li, Min Tan, Jun Yu, and Yani Zhu. 2017. DeepSim: Deep similarity for image quality assessment. Neurocomputing 257 (2017), 104--114.Google ScholarGoogle ScholarCross RefCross Ref
  18. K. Gu, M. Liu, G. Zhai, X. Yang, and W. Zhang. 2015. Quality Assessment Considering Viewing Distance and Image Resolution. IEEE Transactions on Broadcasting 61, 3 (2015), 520--531.Google ScholarGoogle ScholarCross RefCross Ref
  19. Justin Johnson, Alexandre Alahi, and Fei Fei Li. 2016. Perceptual Losses for Real-Time Style Transfer and Super-Resolution, Vol. 9906. 694--711. Google ScholarGoogle ScholarCross RefCross Ref
  20. Ke Gu, Guangtao Zhai, Xiaokang Yang, Wenjun Zhang, and Min Liu. 2013. Structural similarity weighting for image quality assessment. In 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). 1--6.Google ScholarGoogle Scholar
  21. J.R. Koza. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. [n. d.]. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems. 2012.Google ScholarGoogle Scholar
  23. Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. 2016. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks. In Proceedings of the 30th International Conference on Neural Information Processing Systems (Barcelona, Spain) (NIPS'16). Curran Associates Inc., Red Hook, NY, USA, 4905--4913.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Davide Mazzini. 2018. Guided Upsampling Network for Real-Time Semantic Segmentation. ArXiv abs/1807.07466 (2018).Google ScholarGoogle Scholar
  25. Anush Krishna Moorthy and Alan Conrad Bovik. 2010. A Two-Step Framework for Constructing Blind Image Quality Indices. IEEE Signal Processing Letters 17, 5 (2010), 513--516. Google ScholarGoogle ScholarCross RefCross Ref
  26. Nikolay Ponomarenko, Lina Jin, O. Ieremeiev, Vladimir Lukin, Karen Egiazarian, J. Astola, Benoit Vozel, Kacem Chehdi, Marco Carli, Federica Battisti, and C.-C. Jay Kuo. 2015. Image database TID2013: Peculiarities, results and perspectives. Signal Processing: Image Communication 30 (01 2015), 57--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. H.R. Sheikh, A.C. Bovik, and G. de Veciana. 2005. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing 14, 12 (2005), 2117--2128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7--9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1409.1556Google ScholarGoogle Scholar
  29. Robert Streijl, Stefan Winkler, and David Hands. 2016. Mean opinion score (MOS) revisited: methods and applications, limitations and alternatives. Multimedia Systems 22 (03 2016), 213--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Leonardo Trujillo, Luis Muñoz, Edgar Galván-López, and Sara Silva. 2016. neat Genetic Programming: Controlling bloat naturally. Information Sciences 333 (2016), 21--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Leonardo Vanneschi, Illya Bakurov, and Mauro Castelli. 2017. An initialization technique for geometric semantic GP based on demes evolution and despeciation. In Evolutionary Computation (CEC), 2017 IEEE Congress on. IEEE, 113--120.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Leonardo Vanneschi, Mauro Castelli, and Sara Silva. 2010. Measuring Bloat, Overfitting and Functional Complexity in Genetic Programming. In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (Portland, Oregon, USA) (GECCO '10). Association for Computing Machinery, New York, NY, USA, 877--884. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Abhinau K. Venkataramanan, Chengyang Wu, Alan Conrad Bovik, Ioannis Katsavounidis, and Zafar Shahid. 2021. A Hitchhiker's Guide to Structural Similarity. IEEE Access 9 (2021), 28872--28896.Google ScholarGoogle ScholarCross RefCross Ref
  34. Cong Wang, Wanshu Fan, Yutong Wu, and Zhixun Su. 2020. Weakly supervised single image dehazing. Journal of Visual Communication and Image Representation 72 (2020), 102897. Google ScholarGoogle ScholarCross RefCross Ref
  35. Zhou Wang and A. C. Bovik. 2002. A universal image quality index. IEEE Signal Processing Letters 9 (2002), 81--84.Google ScholarGoogle ScholarCross RefCross Ref
  36. Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE TRANSACTIONS ON IMAGE PROCESSING 13, 4 (2004), 600--612.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zhou Wang and Qiang Li. 2010. Li, Q.: Information content weighting for perceptual image quality assessment. IEEE Image Proc. 20(5), 1185--1198. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society 20 (11 2010), 1185--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zhou Wang, Eero P. Simoncelli, and Alan C. Bovik. 2003. Multi-Scale Structural Similarity for Image Quality Assessment.Google ScholarGoogle Scholar
  39. Fisher Yu and Vladlen Koltun. 2016. Multi-Scale Context Aggregation by Dilated Convolutions. In 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2--4, 2016, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1511.07122Google ScholarGoogle Scholar
  40. Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. 2017. Dilated Residual Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  41. Hu Zhang, Keke Zu1, Jian Lu, Yuru Zou, and Deyu Meng. 2021. EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network. ArXiv.Google ScholarGoogle Scholar
  42. L. Zhang, L. Zhang, X. Mou, and D. Zhang. 2011. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Transactions on Image Processing 20, 8 (2011), 2378--2386.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Xiaoshuai Zhang, Wenhan Yang, Yueyu Hu, and Jiaying Liu. 2018. Dmcnn: Dual-Domain Multi-Scale Convolutional Neural Network for Compression Artifacts Removal. In 2018 25th IEEE International Conference on Image Processing (ICIP). 390--394. Google ScholarGoogle ScholarCross RefCross Ref
  44. Jing Zhao, Ruiqin Xiong, Jizheng Xu, and Tiejun Huang. 2019. Learning a Deep Convolutional Network for Subband Image Denoising. 1420--1425. Google ScholarGoogle ScholarCross RefCross Ref
  45. Simone Zini, Simone Bianco, and Raimondo Schettini. 2020. Deep residual autoencoder for blind universal jpeg restoration. IEEE Access 8 (2020), 63283--63294.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Genetic programming for structural similarity design at multiple spatial scales

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader