Chapter 1

THE CHALLENGE OF COMPLEXITY

Wolfgang Banzhaf
Department of Computer Science
University of Dortmund, Germany

banzhaf@cs.uni-dortmund.de

Julian Miller
School of Computer Science
The University of Birmingham, UK

j.miller@cs.bham.ac.uk

Abstract In this chapter we discuss the challenge provided by the problem of
evolving large amounts of computer code via Genetic Programming.
We argue that the problem is analogous to what Nature had to face
when moving to multi-cellular life. We propose to look at developmen-
tal processes and there mechanisms to come up with solutions for this
”challenge of complexity” in Genetic Programming.

Keywords: Genetic Programming, Evolutionary Algorithm, Complexity, Scaling
Problem, Development, Heterochrony

Introduction

The purpose of this chapter is to pose a challenge to the sub-area of
Evolutionary Computation (EC) dealing with algorithm evolution, Ge-
netic Programming [20]. Genetic Programming (GP) has a fundamental
mechanism which distinguishes it from other branches of EC, namely a
means to adapt the complexity of its solutions [3]. Such a mechanism
needs to be in place in GP since the resulting solutions are programs and
algorithms, or, in other words, active entities which usually require input
from somewhere that is subsequently transformed into output through
the target program or algorithm.

DRAFT December 13, 2002, 2:23pm DRAFT



It has been shown in recent years, that there are lower bounds on
the complexity of solutions to algorithmic problems in GP [22]. Below
a certain threshold, no algorithm would be able to perform a predefined
task. Above that threshold, however, numerous programs would be able
to perform the task. Evolution in GP is thus expected to lead the pro-
grams it breeds past this threshold, to be able (only after passing) to
home in on one or the other of the many solutions that exist there. One
might expect that GP would be well equipped to handle tasks of varying
complexity because of its basic ability to adapt complexity.

As it turns out, however, GP is not able to handle complexity grace-
fully, it has a scaling problem. As is well known from other search
algorithms, more complexity means larger search spaces. Larger search
spaces in turn mean a combinatorial explosion in the number of possi-
ble solutions which need to be visited. Even a path-oriented algorithm
like an evolutionary algorithm suffers from the problem of scaling under
such circumstances. Although GP is regularly able to evolve programs of
length 50 to 100 lines of code, this is a far cry from what would be needed
to provide a useful method for day-to-day assistance for programmers.

Various remedies have been looked at over the years. Modularization
of programs is one important method to improve scalability. The prob-
lem at hand is divided into sub-problems which are supposed to be less
difficult (and thus would require less complex solutions). These sub-
problems could be solved in a divide-and-conquer method, whereby the
overall solution is put together from the various sub-solutions evolved
independently. Koza [21] has done an entire series of well thought-out
experiments in order to show that GP is indeed able to proceed along
those lines, provided it is equipped with appropriate means (ADFs in his
approach). ADFs are good at structuring a global solution into parts,
and by repeated use through calls from the main program with different
arguments they provide reusability features for code in multiple sub-
tasks. There have been other approaches toward modularization in the
last decade [1, 4, 28], all trying to develop methods for better scalability.

However, all of these methods have failed to deliver on the fundamen-
tal challenge to GP which can be summarized in the following task:

Using G'P, evolve a program whose purpose is so complex that it re-
quires 100,000 or a million lines of hand-written code or 10,000 modules
of average size 100 lines of code.

Application examples coming to mind are the following tasks

m Direction and control of the processes in a production plant

m  Safe operation of an aircraft under a variety of weather conditions

DRAFT December 13, 2002, 2:23pm DRAFT



The challenge of complexity 3

m Design of a convenient multi-functional desktop computer tool,
such as an editor or a mailer

»  Maintaining a large network of computers as a self-repairing system
s Translation of one human language into another
m  Recognition of pieces of art and music from visual or audio clues

m  Evolution of a program playing Go with human-competitive per-
formance

m A computer operating system based on self-regulation
m etc.

In other words, the challenge is to radically dispose of the complex-
ity limits for the evolution of computer code, and aim at complexities
heretofore only achieved by large teams of human programmers.

This chapter is therefore devoted to offering a possible solution to this
challenge. This solution, however, can only be framed in very abstract,
sometimes speculative words. Taken literally, it will not suffice to ar-
rive at a workable mechanism. But the goal here is to set the mind of
the reader into such a framework that she or he might come up with
appropriate ideas to approach this challenge.

The rest of the chapter is organized as follows. Sec 1 summarizes
very shortly the fundamental idea behind GP, Sec 2 looks at an osten-
sibly similar scaling problem situation in the area of Biology. Sec. 3
discusses Nature’s way to deal with this problem, the introduction of a
developmental process between the information storage in the genotype
and the active entity, the phenotypic organism that results from its ex-
pression. Sec. 4 then tries to formulate a few principles of this solution
to the problem that might be transferable into Genetic Programming.
Sec. 5, finally goes one step further and proposes a possible scenario for
the introduction of development into GP. Sec. 6 briefly discusses earlier
experiences with the introduction of development, mostly treated under
the heading genotype-phenotype-mapping.

1. GP Basics and State of the Art

Genetic Programming is part of the area of Evolutionary Algorithms
which apply search principles analogous to those of natural evolution in
a variety of different problem domains, notably parameter optimization.
The major distinction between GP and these other areas of Evolutionary
Algorithms is that GP controls active components like symbolic expres-
sions or instructions as opposed to simple parameters, and that GP is

DRAFT December 13, 2002, 2:23pm DRAFT



Input

P - . PR . .

Variation Device Loop Selection Device
‘\_/

Output

Figure 1.1. The variation selection loop of GP and other artificial evolutionary sys-
tems.

able to develop its own representation of a problem by allowing variable
complexity of its individuals.

As other evolutionary algorithms GP follows Darwin’s principle of
differential natural selection. This principle states the following precon-
ditions for evolution to occur via (natural) selection:

m A population of entities called individuals is formed which can
reproduce or can be reproduced.

m There is heredity in reproduction, i.e. individuals produce similar
offspring.

m In the course of reproduction variation occurs that affects the like-
lihood of survival and therefore of reproducibility of individuals.

® Due to excessive reproduction individuals are caused to compete
for finite resources. Not all can survive the struggle for existence.
Differential natural selection exerts pressure towards improved in-
dividuals.

Thus a variation and selection loop is iterated which constantly tries to
improve solutions (see Figure 1.1).

The representation of programs, or generally structures, in GP has
a strong influence on the behavior and efficiency of the resulting algo-
rithm. As a consequence, many different approaches toward choosing
representations have been adopted in GP. The resulting principles have
been applied even to other problem domains such as design of electronic
circuits or art and musical composition.

The mechanism behind GP works with a population of programs
which are executed or interpreted in order to judge their behavior. Usu-
ally, a scoring operation called fitness measurement is applied to the
outcome of the behavior. For instance, the deviation between the quan-
titative output of a program and its target value (defined through an
error function) could be used to judge the behaviour of the program.
This is straight-forward if the function of the target program can be
clearly defined. Results may also be defined as side-effects of a program,
such as consequences of the physical behavior of a robot controlled by a

DRAFT December 13, 2002, 2:23pm DRAFT



The challenge of complexity 5

genetically developed program. Sometimes, an explicit fitness measure
is missing, for instance in a game situation, and the results of the game
(winning or loosing) are taken to be sufficient scoring for the program’s
strategy. The general approach is to test a variety of programs at the
same problem and to compare their performance relative to each other.

The outcome of fitness measurement are used to select programs.
There are a number of different methods for selection, both determin-
istic and stochastic. These selection schemes determines (i) which pro-
grams are allowed to survive (overproduction selection), and (ii) which
programs are allowed to reproduce (mating selection). Once a set of pro-
grams has been selected for further reproduction, the following operators
are applied:

m reproduction
= mutation
m crossover

Reproduction simply copies an individual, mutation varies the struc-
ture of an individual under control of a random number generator, and
crossover mixes the structure of two (or more) programs to generate one
or more new programs (see Figure 1.2). Additional variation operators
are applied in different applications. Most of these contain problem-
specific knowledge in the form of heuristic search recipes adapted to the
problem domain.

In this way, fitness advantages of individual programs are exploited
in a population to lead to better solutions. A key effort in Genetic
Programming is the definition of the fitness measure. Sometimes the
fitness measure has to be iteratively improved in order for the evolved
solutions to actually perform the function they were intended for. The
entire process can be seen in close analogy to breeding animals. The
breeder has to select those individuals from the population which carry
the targeted traits to a higher degree than others.

In the meantime, many different representations for GP were studied,
among them generic data structures such as sequences of instructions or
directed graphs, as well as more exotic data structures such as stacks
or neural networks. Today, many different approaches are considered as
GP, from the evolution of parse trees to the evolution of arbitrary struc-
tures. The overarching principle is to subject structures with variable
complexity to forces of evolution by applying mutation, crossover and
fitness-based selection. The results are not necessarily programs.

When analyzing search spaces of programs it was realized that their
size is many orders of magnitude larger than search spaces of combina-

DRAFT December 13, 2002, 2:23pm DRAFT



2178940928 . 2178840928
2953183257 Mutation 2953183257
2179465216 2179465216
2177359880 2177353880
16777216 16777216

2176543589 2176543589
2323488798 2323488798
2875642322 Crossover 5170465216
2387907764 2177359880

16777216

Figure 1.2. The primary operations of GP, mutation and crossover, as applied to
programs represented by sequences of instructions. The instructions are coded as
integer numbers.

torial optimization problems. A typical size for a program search space
might be 10190990 a5 opposed to a typical search space for a combinato-
rial optimization problem of the order of 101°°. Although this might be
interpreted as discouraging for search mechanisms, it was also realized
that the solution density in program spaces is, above a certain thresh-
old, constant with changing complexity [23]. In other words, there are
proportionally many more valid solutions in program spaces than in the
spaces of combinatorial optimization problems.

2. The Situation in Biology

The situation in biology is also complicated. Life needs many support-
ing structures. Even single-cell organisms are already very sophisticated.
Let’s take the bacterium E.Coli as an example [16].

A bacterium is an autonomous living system and organizes molecules
into a particular dynamic pattern that keeps it alive. Following Nei-
dthardt et al, [27] there are a total of 300 - 106 molecules (excluding
water with 40 - 10° molecules) in appr. 3250 different varieties (proteins,
m-,t-RNA, DNA, lipids, small metabolites and ions, peptidoglycan, etc.).
The genome of E.Coli is a single, circular molecule of 4.6-10° base pairs,
which is to say it contains 6 Mbits of information (again accounting
for reduncancy in the code) Notably, E. Coli has approximately 4300
protein coding genes (88 % of the genome) 0.8 % stable RNAs, 0.7 %
repeats. 11 % of the genome might contain regulatory information (for
a recent classification, see [31]). Mushegian and Koonin [26] identify a
subset of 256 shared genes between two very simple bacterial organisms
(H. influenzae and M. genitalium) which seem to provide the essential

DRAFT December 13, 2002, 2:23pm DRAFT



The challenge of complexity 7

functions of life for those creatures. So how can all this multitude be
organized by such a little genome?

Even more difficult is the situation in multicellular life. Take a human
genome with its 3-10? nucleotides. Each nucleotide carries 2 bits, hence
for a rough estimate we arrive at 4 Gbit maximum information content of
the genome (the number was reduced from a simple multiplication, since
due to code redundancy the information content is about 1/3 smaller).

On the other hand, take the number of cells of a human body as a
rough estimate of the phenotype’s information content: According to
various estimates, the body amounts to approximately 50 - 10'? cells.
The estimate is raw and difficult to quantify more accurately because
the number of cells changes dynamically. Cells are produced and die
during the life of an individual. Now assuming that each cell has an
information content of at least 1 Mbit, this results in the requirement
for 5-10'7 bits > 10® - 4 Gbit, or 10® times the human genome! Note
that the estimate of 1 Mbit per cell is unrealistically low, as we shall see
when we consider free-living single-cell creatures. According to Calow
(1976) [7], the cells of the human body have to be weighed in with a
much larger information content, resulting in a total of 5-102?® bits for
the body!

We can see easily, that these numbers are completely out of propor-
tion, which means that the information in the genome must be used in
a sophisticated way so as to produce a viable organism. We might call
this the information dilemma of the genotype-phenotype relation.

3. Nature’s way to deal with complexity

In his now famous book 'The way of the cell’ biologist Frank M.
Harold explains: ”Genes specify the cell’s building blocks; they supply
raw materials, help regulate their availability and grant the cell inde-
pendence of its environment. But the higher levels of order, form and
function are not spelled out in the genome. They arise by the collective
self-organization of genetically determined elements, effected by cellular
mechanisms that remain poorly understood.” [16], p.69.

Thus, there are other aspects of natural biochemical systems, so far
not fully understood, that structure interactions and determine the fate
of molecules. These aspects constrain the possible directions that genes
could affect their products. Self-organization and self-assembly are among
them as are physical (and other) laws. In addition, the natural abun-
dance of certain materials, energy, or even information plays an impor-
tant role. These aspects are providing the environment in which a living
system is supposed to survive.

DRAFT December 13, 2002, 2:23pm DRAFT



Cell Division

Diversification

Figure 1.3. Single cell and multi-cellular system. The environment of a genome is
primarily the cell in which it is residing. Control is exerted both by the cell and its
environment via substances (black dots) diffusing around in intra- and extracellular
space. The genome in turn tries to influence its environment by providing orders to
produce certain substances. If a multi-cellular being is constructed a division and
differentiation process is set into motion which leads to a number of cells with a
boundary to the outside environment. The organism is the primary environment of a
cell, with intra- and extra- organismal message transfer via molecules (black dots).

Nature’s self-organizing properties are beginning to be seen in all
scientific and technical disciplines [5]. But is self-assembly without a
genome sufficient to explain the intricate organization of a cell? For ex-
ample, if all the necessary substructures and molecules were present in
a medium, would they be able to form an E.Coli bacterium? Here we
follow again the argument of Harold [16] and Rosen [29]. The answer is
”No”, because self-assembly can never be a fully autonomous process. In
addition, some cell components cannot be formed by self-assembly since
they need to be formed by, e.g., cutting and splicing. Further, membrane
proteins catalyze directional reactions (uni-directional through the mem-
brane) [17]. The direction itself is, however, provided by the cell, not
by the amino acid sequence of the protein or its gene. More generally,
a great deal of localized behavior takes place within a cell. Localiza-
tion, however, cannot be provided by the genes, it is a feature of their
environment, i.e. of the cell (see Figure 1.3).

The conclusion is inevitable: Cells do not self-assemble. But how do
they succeed instead? They grow! Rudolf Virchow (1858) was the first

DRAFT December 13, 2002, 2:23pm DRAFT



The challenge of complexity 9

to formulate this realization! in a now famous biological law: Omnis
cellula e cellula (every cell originates from a cell). No cell has not come
from another cell.

In other words, there is a tight coupling between what the genome
instructs and what natural laws and resources in the environment allow
the cell to do. In a way the genome exploits all physical laws available
(together with all sorts of material, energy and information fluxes) in
order to organize a living being.

The real trick of Nature was to hit upon a system of organizing char-
acters (RNA, then DNA and protein) that allows open-ended evolution
to proceed. That is to say that the system does not close down upon
encountering enormous complexity, both in the environment and in han-
dling its inner mechanisms. Clearly, only a combinatorial system has
enough power to grow to each level of complexity demanded (and also
to shrink to a lower level if necessity dictates)

”Biological forms are not fragile or contrived, quite the contrary, they
are the ’generic forms’ most likely to be found by self-organizing dynamic
systems, and therefore both probable and robust. We may imagine sys-
tems ’exploring the space’ available to the particular dynamics of each
kind, and see evolution as the process by which their morphologies are
transformed one into the other.” [16], p. 198. It may be added that
natural evolution is an opportunistic process in the sense that whatever
works is exploited as much as possible. Thus, the notion of a very lim-
ited exploration of the design space, as put forward by Gould [12, 13]
can be brought into agreement with the above opinion.

Going back to the question of how development could organize the
massive amount of molecules into orchestrated multicellular organisms,
it seems to us that the exploitation of the natural (physical) tenden-
cies to self-organize, i.e. to form self-maintaining networks of structures
on which matter, energy and information flows, is the key recipe that
genomes use. In other words, genomes are specifying or, better, influenc-
ing the interactions that lead to these networks and take place in them.
What was built on top of single-cell life, then, were elaborate mechanisms
for cell communication and differentiation, based on the same principles
as single-celled life was. The enormous number of genes added to single
cell organisms can be put to use for the purpose of (a) adaptation of the
cells to multicellular environments and (b) coordination between cells, a
task that is obviously very complicated.

1One should be careful to include both (i) scaling up and (ii) diversification / specialization
in one’s notion of growth.

DRAFT December 13, 2002, 2:23pm DRAFT



10

Nucleotide Sequence
¢ Transcriptiol
mRNA copy

¢

Processed mRNA

¢ Translation
Amino acid sequence

/

2dim, 3dim Structure

¢

Activity in reactions

Figure 1.4. Transcription and translation as two important steps in the process of
mapping information from genotype to phenotype.

A proper definition of biological development is in order here. At
present, biological understanding might be summarized in the following
statement: Development is a differential transcription (and translation)
of genes in different cells and tissues at different times and rates, with
each step ultimately initiated by the transcription and translation of the
previous step.

The operations of transcription and translation probably warrant some
explanation. Figure 1.4 shows the typical sequence of events from DNA
to protein activity. After the mRNA copy is transcribed from DNA; it
is processed and transported out of the nucleus of the cell. It then is
translated at a ribosome into a sequence of amino acids which fold into
a native structure able to perform biochemical activity.

The control and timing of transcription and translation in cells is
called regulation and can be imagined as follows: The products of cer-
tain genes are not used in building the organism directly but rather are
used to interact with other genes’ products, with environmental cues, or
with the DNA of other genes (both expressed and non-expressed parts
thereof). By interaction they change the course of events in a cell, de-
pending on the presence of interaction partners and the strength of their
mutual effects. In this way, networks of interaction are formed among
genes, called regulatory networks. As already mentioned, however, genes
do not restrict their interactions to other genes, but may also inter-
act with environmental material. In this way, they can interfere with
another network of biochemical reactions that is formed within a cell,
the metabolic network. However: ”Genes seem to be distant from the
biochemical network, maintaining control only by carefully timed ”in-
jections” of their products into crucial ”branching points” where small

DRAFT December 13, 2002, 2:23pm DRAFT



The challenge of complezity 11

inputs have big effects.” [16]. Notably, most of the order of a cell is
created by the underlying network, with only occasional but decisive
intervention by genes

In summary: The biochemical network of interactions between sub-
stances is the underlying substrate of a system of control built upon
the effect of additional substances (signalling substances), that are itself
produced by genes. The system is highly combinatorial in that many of
the biochemical (maintenance) substances can interact with each other
and with the signal substances. It is through a control of the expression
of the where and when of the signals that genes exert their control on
the underlying networks.

One other key insight of developmental biology is the notion of hete-
rochrony [15, 11, 24] which seems to be able to explain a whole plethora
of phenomena found in the developmental process (and in evolution, for
that matter) [25]. Heterochrony describes the fact that during differ-
entiation, a large amount of control can be exerted on development by
controlling three variables only: (a) the onset, (b) the rate and (c) the
offset of the expression of certain genes. As such, the phenomenon is not
very much different from what must happen in single-celled organisms
where, in response to changing growth and environmental conditions,
certain genes alter their rate of expression.

Though we don’t have much space to delve into this very interesting
phenomenon, one angle on heterochrony is worth looking at more closely:
Its relation to the discovery of novelty in evolution. Citing McKinney
and McNamara, [24]: ”Heterochrony is the cause of most developmental
variation and heterochrony can cause major novelties. The main reason
for heterochrony to be able to cause major novelties, even new tissues
is the fact that it can alter the regulative development of cells already
early on in development which will give rise to major ”jumps” in mor-
phospace.” And later, the authors write: ”Heterochrony can be applied
at different levels (molecular, cellular, tissue, organism). It is interest-
ing to note that "small rate or timing changes at the lower levels will
often translate into complex result at the higher levels. The nonlinearity
of the system will amplify some changes (pos. feedback) and dampen
others (neg. feedback) as they cascade upwards.” [24], p.48.

May it suffice to add one more key insight of developmental biology
that is just starting to surface in detailed studies of early embryonic de-
velopment of multicellular organisms: Interesting recent results suggest
that the control of timing of developmental events, i.e. the actual mech-
anism by which heterochrony can be enacted, is due to an encoding of
time and strength of expression of genes into the strength of interaction
between (regulatory) genes [2, 9, 10].

DRAFT December 13, 2002, 2:23pm DRAFT



12

4. What we can learn from Nature?

In the previous discussion we have seen some similarity to the prob-
lems in Genetic Programming. So a natural question would be what we
could learn from Nature. Here we list a few of the aspects of the devel-
opmental process in Nature which might provide hints to our efforts in
artificial evolutionary systems.

1 Nature stands before what we have called the information dilemma:
How to instruct a body with so few genes? The size of a genome is
very small for to provide the required information for a phenotypic
organism. Nature’s recipes are:

m The channeling or canalizing of environmental complexity
(information, energy, matter, laws, interactions, dynamics,
boundaries) into the developing phenotype. The complexity
of the organism stems mainly from outside and has not to be
provided by the genotype. The genotype mainly directs the
assembly.

»  The stability of an organism (whether mature or developing)
is a steady state, not a static equilibrium. It is in a continual
state of growing and dying to maintain itself. Nature is deal-
ing with open systems (due to physical constraints) where
energy and entropy considerations are important. Respon-
siveness to environment is much better this way.

m  Development allows for open-ended evolution since it is a con-
structive process where layers of complexity are built onto
each other (with the possibility of ever larger complexity).

m There is a built-in tendency of development to be recursive
(see L-systems), which allows hierarchy-building in a very
natural way.

m Development happens by way of communication between cells,
i.e. it’s a social system of cells. More generally, there are
many combinatorial subsystems interacting with each other,
erecting networks of communication flow.

s Fitness tests for phenotypic organisms are always punctual,
i.e. individuals are never tested completely and therefore con-
sidered ready. Instead, multi-functionality is important and
punctual fitness tests which would test for, e.g., metabolism
efficiency today and for, e.g., adaptive capabilities tomorrow,
allow for it to develop.

DRAFT December 13, 2002, 2:23pm DRAFT



The challenge of complexity 13

2 Time is the most important aspect of development. It results in
the formation of a 4D space in biological development.

Time and dynamics is a key to survival in real-time environ-
ments. No wonder it plays the major role in development
also.

Different time-scales (usually required by the environment)
are easy to achieve, since development is intrinsically hierar-
chical.

The time dimension is a way to "mold” results of develop-
ment, as can be seen by the notion of heterochrony.

There is labor division (and gradually more so) in the course
of development.

Incremental fitness is an important concept, too, i.e. there
is a requirement of primitive functionality from the very be-
ginning which is gradually refined until the organism is ”"ma-
ture”.

In terms of fitness landscapes: The fitness landscape gradu-
ally sharpens (becomes more rugged) in the course of devel-
opment.

The develomental process has an enormous degree of fault
tolerance. Repair mechanisms are abound, as well as adapt-
ability, and the ability of regeneration.

There is a chain of being - from the first living thing to the last
cell in a multi- cellular individual. This would be interrupted
without development.

Sexuality requires a 1-cell stage for each living being (for the
uniqueness of information exchange in recombination). Thus
Nature needs a mechanism for an organized transition from
the one-cell stage to the multi-cell individual.

3 The mechanisms of development are constructive

Starting from a single cell, whole bodies are constructed, con-
sisting of millions and billions of cells.

Development erects networks (metabolic, signaling, regula-
tory) of increasing complexity, within and between cells.

Development makes use of neutrality, i.e. there are some
phases in development where nothing happens if looked at
from the behaviour of the phenotype.

DRAFT December 13, 2002, 2:23pm DRAFT



14

m Development allows the exploitation of side-effects, perhaps
in a very efficient way. Side-effects are an important source of
innovation for evolution, since they are unintentional effects
which turn out to be useful for other purposes. Producing
side-effects is what development can do, discerning their use-
fulness is left to evolution.

5. A possible scenario: Transfer into Genetic
Programming

A linear genetic program is a sequence of instructions that is followed
one by one. This might be a good way to organize a genome, as the
subsequent execution of steps is a rather natural way of following this
information. However, it is not a very natural way to look at program
behavior, i.e. the phenotypes. We propose that, instead, complex pro-
grams of the type of interest here should be considered as networks of
interacting objects which are to behave in complicated ways depending
on the flow of input and required output. Thus, if one were to set up
a system of interacting objects, designating input and output objects
and their communication means, one would have a natural analogue to
a biochemical network. Note that this does not necessarily imply that
we ought to consider non-sequential programs here. Rather, it is the

more general case.

Figure 1.5 shows a dataflow graph of a program phenotype. This is
the graphical translation of the following program (line with ”!” are not
contributing to fitness):

void gp(r)
double r[4];
{
r[3] = r[1] - 3;
r[1] = r[2] * r[1];
' r[3] = r[1] / r[0];
r[0] = r[1] - 1;
r[1] = r[2] * r[0];
r[1] = r[0] * r[1];
' r[o] = r[2] + r[2];
r[2] = pow(r[1], r[0]);
' r[2] = r[0] + r[3];
' r[0] = r[3] - 1;
v r[1] = r[2] - r[0];
' r[3] = pow(r[0], 2);
v r[2] = r[2] + r[1];
r[0] = r[1] + 9;
r[0] = r[1] / r[3];

DRAFT December 13, 2002, 2:23pm DRAFT



The challenge of complexity 15

Constant Sinks

o] 81 ( /

Variable Sinks

Figure 1.5. The network of data flow on registers as one example of program phe-
notype. The corresponding program is listed in the text as a linear sequence of
instructions. Adopted from [6]

' r[0] = r[2] * r[2];
' r[2] = r[1] * r[3];
v r[o] = r[0] + r[2];
}

In the language of object-oriented programming, objects possess at-
tributes for receiving messages and methods for sending messages and
performing other functions. Input driving the program system would
be considered an information flow to be taken advantage of for a given
purpose (output), and the right combination of interactions would be
searched for by a genetic search method on the level of genes. Taking
advantage would mean that those networks are differentially selected
that perform, after development, the prescribed task better than others.

As for the ”reconfiguration” of the object network, this would not
happen through a direct modification of objects but rather through ad-
ditional layers of message producing objects, and through their corre-
sponding messages. The messages would act like signaling substances
and interfere with the object network in a constructive way, e.g. by
inhibition or by excitation, and the objects producing these messages
would be genes located in sequence on a genome. Thus each gene would
specify an object, where such an object would be even allowed to interact
with other objects’ specification of products. The most difficult part is
presumably the latter, since it requires the ability for self-modification.

DRAFT December 13, 2002, 2:23pm DRAFT



16

Perhaps one could even go down to the level of instructions (as equiv-
alent to objects in the above sense). Instructions have an operation
(through the op-code) and operands (input and output) to digest mes-
sages. The problem with instructions is that the desired behavior of a
program needs to come about by side-effects of instructions only. Since
there are flags to be set by instructions, in principle there could be a
way. It would have to be decided, what the side effects are (1. one could
select for the flags, or 2. one could select for values in registers and
define a network of interactions between flags of instructions, although
that might be more difficult).

How could heterochrony come into play? The idea would be to influ-
ence the underlying information flow in the network of objects by means
of variation in ”timing” of expression. That would be a very smooth way
of variation, even expressible directly as a simple parameter evolution.
On the other hand, Nature’s example teaches us how to translate timing
signals into pattern matching. So there would be another way to control
time-dependent development.

Finally, the network of interacting objects could be built up by a
developmental process, perhaps starting from one object. In this case
the object would act like a cell with its genome directing the expansion
into a larger network of interacting objects, possibly using pre-defined
objects that have been specified already and only need to be coopted
into the network.

Perhaps we have ventured too far now. However, we know that a
simple division and diversification process of objects can reach any size
of a network in logarithmic time. As such it is perfectly imaginable that
the process envisioned here will quickly reach the desired complexity
for any prescribed task. Nevertheless we have to leave it to the reader
and further considerations how such a scenario could be realized in a
computer.

6. Conclusion

Some ideas related to the present contribution have been published in
the past. Notable is Gruau’s [14] system of cellular encoding which uses a
grammar tree to produce programs in a simple developmental process for
GP. This work has later been applied by Koza [21] and others to produce
electric circuit designs. Cangelosi [8] was the first to try to make use of
heterochrony in the context of GAs. A number of people are working
on regulation and evolutionary algorithms using regulation, like in the
work of Kennedy et al. [19]. The genotype-phenotype mapping has
been studied in different papers, see for example [30] and just recently

DRAFT December 13, 2002, 2:23pm DRAFT



REFERENCES 17

has been the subject of a special journal issue [18] under the heading
”gene expression computing”.

In the present contribution we have tried to provide a challenge to
Genetic Programming which would be worth to meet in the long run.
We have argued that Nature had to solve an analogous problem which
it did by inventing the developmental process. We have discussed a
number of aspects of development that seemed to us relevant in the
context of artificial evolutionary processes, and sketched one way to
achieve a similar mechanism in GP. It remains to be seen whether GP
can meet that challenge in the future.

Acknowledgments

W.B. acknowledges the hospitality of the the Institute of Genomics
and Bioinformatics at UC Irvine under its director Pierre Baldi, where
part of this work has been written.

References

[1] Angeline, P., Pollack, J. (1994) Coevolving high-level representations,
in: Proc. Artificial Life 111, C. Langton (Ed.), Addison Wesley, Read-
ing, MA 55 - 71

[2] Arnone, M. (2002) Bringing Order to Organogenesis, Nature Genet-
ics, 30, 348 - 350

[3] Banzhaf, W., Nordin, P., Keller, R., Francone, F. (1998) Genetic
Programming - An Introduction, Morgan Kaufmann, San Francisco,
CA

[4] Banzhaf, W., Banscherus, D., Dittrich, P., (1999) Hierarchical Ge-

netic Programming using local modules, Tech. Report Nr. CI-56/99
of SFB 531, University of Dortmund

[5] Banzhaf, W. (2002) Self-Organizing Systems, Encyclopedia of Physi-
cal Science and Technology, Academic Press, New York, Vol. 14, 589
- 598

[6] Brameier, M., Linear Genetic Programming, PhD thesis, Department
of Computer Science, University of Dortmund, 2003, to appear

[7] Calow, P. (1976) Biological Machines: A cybernetic approach to life,
E.Arnold, London

[8] Cangelosi, A., Heterochrony and adaptation in developing neural net-
works In W. Banzhaf et al. (Eds), Proceedings of GECCO99 Genetic
and Evolutionary Computation Conference. San Francisco, CA: Mor-
gan Kaufmann, 1241-1248.

DRAFT December 13, 2002, 2:23pm DRAFT



18

[9] Davidson, E.H. (2001) Genomic Regulatory Systems, Academic
Press, San Diego

[10] Gaudet, J., Mango, S.E. (2002) Regulation of Organogenesis by the
Caenorhabditis elegans FoxA Protein PHA-/, Science, 295, 821 - 825

[11] Gould, S.J. (1977) Ontogeny and Phylogeny, Belknap Press of Har-
vard University Press, Cambridge, MA

[12] Gould, S.J. (1980) The Fvolutionary Biology of Constraint,
Daedalus 109, 39 - 52

[13] Gould, S.J. (2002) The Structure of Fvolutionary Theory, Belknap
Press of Harvard University Press, Cambridge, MA

[14] Gruau, F., Genetic Synthesis of Modular Neural Networks, in: S.
Forrest (ed.), Proceedings of the 5th International Conference on
Genetic Algorithms, ICGA-93, 1993, Morgan Kaufmann, San Fran-
cisco, 318-325

[15] Haeckel, E. (1866) Generelle Morphologie der Organismen, Reimer,
Berlin

[16] Harold, F. (2001) The Way of the Cell, Oxford University Press,
Oxford

[17] Harold, F. (2001) Gleanings of a chemiosmotic eye, Bioessays 21,
848-855

[18] Kargupta, H., Editorial: Computation in Gene Fzpression, Genetic
Programming and Evolvable Machines, 3 (2002), 111 - 112

[19] Kennedy P.J., Osborn, T.R., A Model of Gene Expression and Requ-
lation in an Artificial Cellular Organism, Complex Systems 13, 2001

[20] Koza, J. (1992) Genetic Programming, MIT Press, Cambridge, MA

[21] Koza, J. (1994) Genetic Programming 11, MIT Press, Cambridge,
MA

[22] Langdon, W. (1999) Scaling of Program Tree Fitness Spaces,
Evol.Comp. 7, 399 - 428

[23] Langdon W 1999 Boolean function fitness spaces. In: Poli R,
Nordin P Langdon, W and Fogarty T (eds.) Proceedings FuroGP’99.
Springer, Berlin

[24] McKinney, M., McNamara, K. (1991) Heterochrony: The Evolution
of Ontogeny, Plenum Press, New York

[25] McKinney, M. (1999) Heterochrony: Beyond words, Paleobiology 25,
149 - 153

[26] Mushegian, A., Koonin, E. (1996) A minimal gene set for cellular
life derived by comparison of complete bacterial genomes, Proc. Natl.

Acad. Sci. (USA), 93, 10268 - 73

DRAFT December 13, 2002, 2:23pm DRAFT



REFERENCES 19

[27] Neidhardt, F.C. (1996) Escherichia Coli and SOlmonella ty-
phimurium, ASM Press, Washington, DC

[28] Rosca, J., Ballard, D. (1994) Hierarchical selforganization in genetic
programming, in: Proc. of the 11th Int. Conf. on Machine Learning,
Morgan Kaufmann, San Mateo, CA, 252 - 258

[29] Rosen, R. (1994) Life Itself, Columbia University Press, New York

[30] Smith, T., Husbands, P., O’Shea, M., Neutral Networks and Evolv-
ability with Complex Genotype-Phenotype mapping, in E. Kemelen
and S. Socik (Eds.), Proc. 6th ECAL-01, Prague, 2001, Springer,
Berlin, 2001, 272 - 281

[31] Thomas, G.H. (1999) Completing the E. coli proteome: a database of

gene products characterised since completion of the genome sequence.
Bioinformatics 7, 860 - 861

DRAFT December 13, 2002, 2:23pm DRAFT



