Skip to main content

Assembling Strategies in Extrinsic Evolvable Hardware with Bidirectional Incremental Evolution

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2610))

Included in the following conference series:

Abstract

Bidirectional incremental evolution (BIE) has been proposed as a technique to overcome the ”stalling” effiect in evolvable hardware applications. However preliminary results show perceptible dependence of performance of BIE and quality of evaluated circuit on assembling strategy applied during reverse stage of incremental evolution. The purpose of this paper is to develop assembling strategy that will assist BIE to produce relatively optimal solution with minimal computational effort (e.g. the minimal number of generations).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coello C. A., Christiansen A. D., and Hernández A. A. Towards automated evolutionary design of combinational circuits. Computers and Electrical Engineering, 2000.

    Google Scholar 

  2. Higuchi T., Murakawa M., Iwata M., Kajitani I., Liu W., and Salami M. Evolvable hardware at function level. In Proc. of IEEE 4th Int. Conference on Evolutionary Computation, CEC’97. IEEE Press, NJ, 1997.

    Google Scholar 

  3. Thompson A. Hardware Evolution: Automatic Design of Electronic Circuits in Reconfigurable Hardware by Artificial Evolution. PhD thesis, University of Sussex, School of Cognitive and Computing Sciences., 1996.

    Google Scholar 

  4. Birge J. R. Stochastic programming, computation and applications. INFORMS, Journal on Computing, pages 111–133, 1997.

    Google Scholar 

  5. Zenious S. A. Vladiviriou H. Parallel algorithms for large-scale stochastic programming in parallel computing and optimisation. pages 413–469, 1997.

    Google Scholar 

  6. Poli R. Evolution of graph-like programs with parallel distributed genetic programming. In Bäck T., editor, Genetic Algorithms: Proc. of the Seventh International Conference., pages 346–353. Morgan Kaufmann, San Francisco, CA, 1997.

    Google Scholar 

  7. Iwata M., Kajitani I., Yamada H., Iba H., and Higuchi T. A pattern recognition system using evolvable hardware. In Proc. of the Fifth International Conference on Parallel Problem Solving from Nature (PPSNIV), volume LNCS 1141 of Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 1996.

    Google Scholar 

  8. Murakawa M., Yoshizawa S., Kajitani I., Furuya T., Iwata M., and Higuchi T. Hardware evolution at function level. In Proc. of the Fifth International Conference on Parallel Problem Solving from Nature (PPSNIV), Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 1996.

    Google Scholar 

  9. Kalganova T. An extrinsic function-level evolvable hardware approach. In Poli R., Banzhaf W., Langdon W. B., Miller J., Nordin P., and Fogarty T. C., editors, Proc. of the Third European Conference on Genetic Programming, EuroGP2000, volume 1802 of Lecture Notes in Computer Science, pages 60–75, Edinburgh, UK, 2000. Springer-Verlag.

    Google Scholar 

  10. Koza J. R. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, 1994.

    Google Scholar 

  11. Torresen J. A divide-and-conquer approach to evolvable hardware. In Sipper M., Mange D., and Perez-Uribe A., editors, Proc. Of the 2nd Int. Conf. on Evolvable Systems: From Biology to Hardware (ICES’98), volume 1478 of Lecture Notes in Computer Science, pages 57–65, Lausanne, Switzerland, 1998. Springer-Verlag, Heidelberg.

    Google Scholar 

  12. Torresen J. Increased complexity evolution applied to evovable hardware. In Smart Engineering System Design, ANNIE’99. St. Louis, USA, 1999.

    Google Scholar 

  13. Torresen J. Two-step incremental evolution of a prosthetic hand controller based on digital logic gates. In Proc. of the 4th Int. Conference on Evolvable Systems, ICES., Lecture Notes in Computer Science. Springer-Verlag, 2001.

    Google Scholar 

  14. Torresen J. A scalable approach to evolvable hardware. Genetic Programming and evolvable machines, 3(3), 2002.

    Google Scholar 

  15. Gomez F. and Miikkulainen R. Incremental evolution of complex general behaviour. Adaptive Behaviour., 5:317–342, 1997.

    Article  Google Scholar 

  16. Gomez F. and Miikkulainen R. Solving non-markovian control tasks with neurevolution. In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI’99), Stockholm, Sweden, 1999. Denver: Morgan Kaufmann.

    Google Scholar 

  17. Filliat D., Kodjabachian J., and Meyer J. A. Incremental evolution of neural controllers for navigation in a 6-legged robot. In Sugisaka and Tanaka, editors, Proc. of the Fourth International Symposium on Artificial Life and Robotics. Oita Univ. Press, 1999.

    Google Scholar 

  18. Harvey I. Artificial evolution for real problems. In Gomi T., editor, Proc. of the 5th Intl. Symposium on Evolutionary Robotics, Evolutionary Robotics: From Intelligent Robots to Artificial Life (ER’97), Tokyo, Japan, 1997. AAI Books.

    Google Scholar 

  19. Kalganova T. Bidirectional incremental evolution in ehw. In Proc. of the Second NASA/DoD Workshop on Evolvable Hardware. IEEE Computer Society, July 2000.

    Google Scholar 

  20. Kalganova T. and Miller J. Evolving more efficient digital circuits by allowing circuit layout evolution and multi-objective fitness. In Stoica A., Keymeulen D., and Lohn J., editors, Proc. of the First NASA/DoD Workshop on Evolvable Hardware, pages 54–63. IEEE Computer Society, July 1999.

    Google Scholar 

  21. Kalganova T. and Miller J. Circuit layout evolution: An evolvable hardware approach. In Coloquium on Evolutionary hardware systems. IEE Colloquium Digest., London, UK, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baradavka, I., Kalganova, T. (2003). Assembling Strategies in Extrinsic Evolvable Hardware with Bidirectional Incremental Evolution. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds) Genetic Programming. EuroGP 2003. Lecture Notes in Computer Science, vol 2610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36599-0_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-36599-0_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00971-9

  • Online ISBN: 978-3-540-36599-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics