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Abstract— Autonomous navigation controllers were developed
for fixed wing unmanned aerial vehicle (UAV) applications using
incremental evolution with multi-objective genetic programming
(GP). We designed four fitness functions derived from flight
simulations and used multi-objective GP to evolve controllers
able to locate a radar source, navigate the UAV to the source
efficiently using on-board sensor measurements, and circle
closely around the emitter. We selected realistic flight parameters
and sensor inputs to aid in the transference of evolved controllers
to physical UAVs. We used both direct and environmental incre-
mental evolution to evolve controllers for four types of radars:
1) continuously emitting, stationary radars, 2) continuously
emitting, mobile radars, 3) intermittently emitting, stationary
radars, and 4) intermittently emitting, mobile radars. The use of
incremental evolution drastically increased evolution’s chances
of evolving a successful controller compared to direct evolution.
This technique can also be used to develop a single controller
capable of handling all four radar types. In the next stage of
research, the best evolved controllers will be tested by using
them to fly real UAVs.

I. INTRODUCTION

Incremental evolution [1] is the process of evolving a
population on a simple problem and then using the resulting
evolved population as a seed to evolve a solution to a related
problem of greater complexity. Solutions to a variety of
complicated problems have been evolved using incremental
evolution. There are two types of incremental evolution. Func-
tional incremental evolution [2]–[4] changes the difficulty of
the fitness function in order to increase the difficulty of the
problem. Environmental incremental evolution [5] changes
the environment to increase difficulty without changing the
fitness function.

Evolutionary robotics (ER) [6] uses a population-based
evolutionary algorithm to evolve autonomous robot con-
trollers for a target task. Most of the controllers evolved
in ER research to date have been developed for simple
problems requiring a small number of behaviors; very little
of the ER work to date has been intended for use in real-
life applications. A majority of the research in ER has
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focused on wheeled mobile robot platforms [3], [5], [6].
An application of ER that has received very little attention
is the unmanned aerial vehicle (UAV). UAVs are becoming
increasingly popular for many applications, particularly where
high risk or accessibility are issues.

Genetic programming (GP) has been increasingly success-
ful in the evolution of robot controllers capable of complex
tasks. While artificial neural networks have traditionally been
the most popular controller structure used in ER [1], [5],
GP has also been shown to produce functional behaviors for
autonomous robot control [3].

One of the main difficulties of ER is the formulation of
fitness functions [7]. For many problems explored to date
in ER, fitness functions that combined multiple objectives
were synthesized using extensive human knowledge of the
domain or trial and error. For problems without a single,
easily quantifiable objective, an alternative is multi-objective
optimization, which allows the evolutionary algorithm to op-
timize on multiple fitness metrics [8]. Rather than combining
multiple objectives into a single function [3], multi-objective
GP optimizes over multiple functions [9]. A non-dominated
sort is used to determine the relative rank of individuals in the
population [10], since this technique produces multiple fitness
values for each individual. Very rarely does multi-objective
optimization produce a single best solution. Instead, a Pareto
front of solutions is produced, where all solutions on that
front are non-dominated [8].

In this paper, we present our approach to incrementally
evolving autonomous behavioral navigation controllers for
fixed wing UAVs using multi-objective GP. Both types of
incremental evolution, functional and environmental, were
used to evolve controllers. The goal is to produce a controller
that can locate a radar, navigate the UAV to the source
stably and efficiently using on-board sensor measurements,
and then circle around the emitter. Controllers were evolved
for a variety of radar types. While there has been success in
evolving controllers directly on real robots [6], simulation is
the only feasible way to evolve controllers for UAVs. A UAV
cannot be operated continuously for long enough to evolve a



sufficiently competent controller, the use of an unfit controller
could result in damage to the aircraft, and flight tests are
very expensive. For these reasons, the simulation must be
capable of evolving controllers which transfer well to real
UAVs. A method that has proved successful in this process
is the addition of noise to the simulation [11].

II. UNMANNED AERIAL VEHICLE SIMULATION

The focus of this research was the development of a navi-
gation controller for a fixed wing UAV. The UAV’s mission is
to autonomously locate, track, and circle around a radar site.
There are several main goals for an evolved controller. First, it
should move to the vicinity of the radar as quickly as possible.
The sooner the UAV arrives in the vicinity of the radar, the
sooner it can begin its primary mission. Second, once in the
vicinity of the source, the UAV should circle as closely as
possible around the radar. This goal is especially important
for radar jamming, where the distance from the source has a
major effect on the necessary jamming power. Third, the flight
path should be efficient and stable. The roll angle of UAVs
should change as infrequently as possible, and any change in
roll angle should be small. Making frequent changes to the
roll angle of the UAV could create dangerous flight dynamics
and could reduce the flying time and range of the UAV.

Only the navigation portion of the flight controller is
evolved; the low level flight control is done by an autopilot.
The navigation controller receives radar signals as input,
and based on this sensory data and past information, the
navigation controller changes the desired roll angle of the
UAV control surface. The autopilot then uses this desired roll
angle to change the heading of the UAV. This autonomous
navigation technique results in a general controller model
that can be applied to a wide variety of UAV platforms; the
evolved controllers are not designed for any specific UAV
airframe or autopilot.

The controller is evolved in simulation. The simulation
environment is a square 100 nautical miles (nmi) on each
side. The simulator gives the UAV a random initial position in
the middle half of the southern edge of the environment with
an initial heading of due north and the radar site a random
position within the environment every time a simulation is
run. In our current research, the UAV has a constant altitude
and a constant speed of 80 knots. This is realistic because
the speed and altitude are controlled by the autopilot, not the
evolved navigation controller.

Our simulation can model a wide variety of radars. Sta-
tionary radars were modeled as early warning radars, mobile
radars as target acquisition radars [12]. Only the sidelobes of
the radar emissions are modeled. The sidelobes are the parts
of the emitted signal that are not part of the main beam, so
they have a much lower power than the effective portion of the
radar signal. If a controller can track a radar based only on the
sidelobes, the radar can be tracked no matter the direction in
which it is pointed, increasing the robustness of the system.
Additionally, Gaussian noise is added to the amplitude of
the radar signal. The receiving sensor can perceive only

two pieces of information: the amplitude and the angle of
arrival (AoA) of incoming radar signals. The AoA measures
the angle between the heading of the UAV and the source
of incoming electromagnetic energy. Real AoA sensors do
not have perfect accuracy in detecting radar signals, so the
simulation models an inaccurate sensor. The accuracy of the
AoA sensor can be set in the simulation. In the experiments
described in this research, the AoA is accurate to within ±10◦

at each time step, a realistic value for this type of sensor. Each
experimental run simulates four hours of flight time, where
the UAV is allowed to update its desired roll angle once a
second. The interval between these requests to the autopilot
can also be adjusted in the simulation.

While a human could design a controller that could home
in on a radar under perfectly ideal conditions, the real-world
application for these controllers is far from ideal. While
sensors to detect the amplitude and angle of arriving elec-
tromagnetic signals can be very accurate, the more accurate
the sensor, the larger and more expensive it tends to be.
One of the great advantages of UAVs is their low cost, and
the feasibility of using UAVs for many applications may
also depend on keeping the cost of sensors low. By using
evolution to design controllers, cheaper sensors with much
lower accuracy can be used without a significant drop in
performance. As the accuracy of the sensors decreases and the
complexity of the radar signals increases – as the radars emit
periodically or move – the problem becomes far more difficult
for human designers. Flying a physical UAV using an evolved
controller is a future goal of this research, so transference
from simulation to a real UAV was taken into account from
the beginning. Navigation control was abstracted from UAV
flight, simulation parameters were tuned for equivalence to
real aircraft, and noise was added to the simulation.

III. MULTI-OBJECTIVE GENETIC PROGRAMMING

UAV controllers were designed using multi-objective ge-
netic programming which employs non-dominated sorting,
crowding distance assignment to each solution, and elitism.
The multi-objective genetic programming algorithm used in
this research is very similar to the NSGA-II [10] multi-
objective genetic algorithm. The function and terminal sets
used in this research were

F = { Prog2, Prog3, IfThen, IfThenElse, And, Or,
Not, <, ≤, >, ≥, < 0, > 0, =, +, -, *, ÷, X < 0,
Y < 0, X > max, Y > max, Amplitude > 0,
AmplitudeSlope > 0, AmplitudeSlope < 0,
AoA > 0, AoA < 0 }

T = { HardLeft, HardRight, ShallowLeft, Shal-
lowRight, WingsLevel, NoChange, rand, 0, 1 }

The UAV has a GPS on-board, and the position of the UAV
is given by the x and y distances from the origin, located
in the southwest corner of the simulation area. This position
information is available using the functions that include X
and Y, with max equal to 100 nmi, the length of one side
of the simulation area. The radar is always placed within the
simulation area, but the UAV is free to move outside of it. The



TABLE I
GENETIC PROGRAMMING PARAMETERS

Population Size 500 Maximum Initial Depth 5
Crossover Rate 0.9 Maximum Depth 21
Mutation Rate 0.05 Generations 600

Tournament Size 2 Trials per Evaluation 30

two available sensor measurements are the amplitude and the
AoA of the incoming radar signal. The slope of the amplitude
with respect to time is also available. When turning, there are
six available actions. Turns may be hard or shallow, with hard
turns making a 10◦ change in the roll angle and shallow turns
a 2◦ change. The WingsLevel terminal sets the roll angle to 0◦,
and the NoChange terminal maintains the current roll angle.
Multiple turning actions may be executed during one time
step, since the roll angle is changed as a side effect of each
terminal. The final roll angle after the navigation controller is
finished executing is passed to the autopilot. The maximum
roll angle is 45◦. Each of the six terminals returns the current
roll angle.

Genetic programming was generational, with crossover and
mutation similar to those outlined by Koza in [13]. The
parameters used by GP are shown in Table I. Tournament se-
lection was used. Initial trees were randomly generated using
ramped half and half initialization. No parsimony pressure
methods were used in this work, as code bloat was not a
major problem. All computations were done on a Beowulf
cluster parallel computer with ninety-two 2.4 GHz Pentium
4 processors. The data communication between master and
slave processors was possible using the Message Passing
Interface (MPI) standard [14] under the Linux operating
system.

A. Fitness Functions

Four fitness functions determine the success of individual
UAV navigation controllers. The fitness of a controller was
measured over 30 simulation trials, where the UAV and radar
positions were random for every run. We designed the four
fitness measures to satisfy the goals of the evolved controller:
moving toward the emitter, circling the emitter closely, and
flying in an efficient and stable manner.

1) Normalized distance: The primary goal of the UAV is
to fly from its initial position to the radar site as quickly
as possible. We measure how well controllers accomplish
this task by averaging the squared distance between the UAV
and the goal over all time steps. We normalize this distance
using the initial distance between the radar and the UAV in
order to mitigate the effect of varying distances from the
random placement of radar sites. The normalized distance
fitness measure is given as

fitness1 =
1

T

T
∑

i=1

[

distancei

distance0

]2

where T is the total number of time steps, distance0 is the
initial distance, and distancei is the distance at time i. We

are trying to minimize fitness1.
2) Circling distance: Once the UAV has flown in range of

the radar, the goal shifts from moving toward the source to
circling around it. An arbitrary distance much larger than the
desired circling radius is defined as the in-range distance. For
this research, the in-range distance was set to be 10 nmi. The
circling distance fitness metric measures the average distance
between the UAV and the radar over the time the UAV is
in-range. While the circling distance is also measured by
fitness1, that metric is dominated by distances far away
from the goal and applies very little evolutionary pressure
to circling behavior. The circling distance fitness measure is
given as

fitness2 =
1

N

T
∑

i=1

in range ∗ (distancei)
2

where N is the amount of time the UAV spent within the
in-range boundary of the radar and in range is 1 when the
UAV is in-range and 0 otherwise. We are trying to minimize
fitness2.

3) Level time: In addition to the primary goals of moving
toward a radar site and circling it closely, it is also desirable
for the UAV to fly efficiently in order to minimize flight time
to get close to the goal and to prevent potentially dangerous
flight dynamics, like frequent and drastic changes in the roll
angle. The first fitness metric that measures the efficiency of
the flight path is the amount of time the UAV spends with
a roll angle of 0◦, which is the most stable flight position
for a UAV. This fitness metric only applies when the UAV is
outside the in-range distance, since once the UAV is within
the in-range boundary, we want it to circle around the radar.
The level time is given as

fitness3 =
T
∑

i=1

(1 − in range) ∗ level

where level is 1 when the UAV has been level for two
consecutive time steps and 0 otherwise. We are trying to
maximize fitness3.

4) Turn cost: The second fitness measure intended to
produce an efficient flight path is a measure of turn cost.
While UAVs are capable of very quick, sharp turns, it is
preferable to avoid them. The turn cost fitness measure is
intended to penalize controllers that navigate using a large
number of sharp, sudden turns because this may cause very
unstable flight, even stalling. The UAV can achieve a small
turning radius without penalty by changing the roll angle
gradually; this fitness metric only accounts for cases where
the roll angle has changed by more than 10◦ since the last
time step. The turn cost is given as

fitness4 =
1

T

T
∑

i=1

h turn ∗ |roll anglei − roll anglei−1|

where roll angle is the roll angle of the UAV and h turn is
1 if the roll angle has changed by more than 10◦ since the



last time step and 0 otherwise. We are trying to minimize
fitness4.

B. Incremental Evolution

Functional incremental evolution incrementally changes the
fitness function to increase the difficulty of the problem.
Controllers evolved from random initial populations used a
form of functional incremental evolution. Controllers evolved
for 600 generations, but for the first 200 generations, we used
only one of the four fitness functions. Flying to the goal was
the most basic behavior for a navigation controller. To place
more importance on this behavior, the first 200 generations
used only the normalized distance fitness function. The last
400 generations used all four of the fitness functions.

Environmental incremental evolution incrementally in-
creases the difficulty of the environment or task faced by
evolution, while leaving the fitness function unchanged. In
this research, random populations are initialized and then
evolved for 600 generations on continuously emitting, station-
ary radars to create seed populations. Controllers for more
difficult radars are then evolved for 400 generations with
all four fitness functions using these seed populations. The
controllers in the seed population are not immediately able to
solve this new problem well, but since many aspects of the
problem are similar, the seed population provides an excellent
basis for evolving fit controllers for the new task. The more
complex radar types may be evolved over multiple stages of
evolution, using progressively more difficult radar types.

Maintaining sufficient diversity in the population is often an
issue when using incremental evolution [15]. If the diversity
of a population decreases too much during an early stage
of evolution, the final evolution might still have a very
difficult time producing a good solution. While this was a
concern in this research, one of the features of the multi-
objective optimization algorithm had potential to counter loss
of diversity. Like NSGA-II [10], the algorithm used for this
research attempts to spread solutions across the Pareto front
by incorporating a crowding distance into fitness evaluation,
encouraging diversity in the population.

IV. RESULTS

Multi-objective GP produced controllers that satisfied the
goals of this problem. In order to statistically measure the
performance of GP, we did 50 evolutionary runs for each
experiment. Each evolutionary run lasted for 600 generations
and produced 500 solutions. Since multi-objective optimiza-
tion produces a Pareto front of solutions, rather than a single
best solution, we needed a method to gauge the performance
of evolution. To do this, we selected values we considered
minimally successful for the four fitness metrics. We defined a
minimally successful UAV controller as able to move quickly
to the target radar site, circle at an average distance under 2
nmi, fly with a roll angle of 0◦ for at least 1,000 seconds,
and turn sharply less than 0.5% of the total flight time. If a
controller had a normalized distance fitness value (fitness1)
of less than 0.15, a circling distance (fitness2) of less than

4 (the circling distance fitness metric squares the distance), a
level time (fitness3) of greater than 1,000, and a turn cost
(fitness4) of less than 0.05, the evolution was considered
successful. These baseline values were used only for our
analysis, not for the evolutionary process.

Experiments were done for four radar types using di-
rect evolution: 1) continuously emitting, stationary radars,
2) continuously emitting, mobile radars, 3) intermittently
emitting, stationary radars, and 4) intermittently emitting,
mobile radars. The intermittently emitting radars had periods
of 10 minutes and emitting durations of 5 minutes. The mobile
radars were modeled as finite state machines with setup,
deployed, tear down, and move states. A radar only emits
in the deployed state. When a radars moves, the new location
can be anywhere in the simulation area. For each of these
experiments, a population of 500 individuals was randomly
initialized and then evolved for 600 generations. Results from
the four experiments are shown in Table II. Multi-objective
GP was able to successfully evolve controllers for all four
of these radar types. For both mobile and intermittently
emitting radars, the UAV receives sensor information from
the radar less than 100% of the time, which increases the
difficulty of the problem for evolution. The results show that
the continuously emitting, stationary radar proved the easiest
for evolution and the intermittently emitting, mobile radar the
most difficult. For more detailed results on the direct evolution
experiments, refer to [16], [17].

Another set of experiments was performed using envi-
ronmental incremental evolution to improve the chances of
evolving controllers for the more complex radar types. The
same four radar types were used, but instead of evolving
controllers in four separate experiments, evolved controllers
from simpler radar types were used to seed evolutions for the
more complex radar types. Figure 1 shows the evolutionary
process. In the first stage of evolution, randomly initialized
populations were evolved on continuously emitting, stationary
radars for 600 generations in the same manner as the direct
evolution experiments. In the second stage, these evolved
populations were used as seed populations and evolved for
400 generations on continuously emitting, mobile radars. In
the third stage, the evolved populations were evolved on
intermittently emitting, stationary radars. Finally, in the fourth
stage of evolution, evolution took place on intermittently
emitting, mobile radars. Results from each stage of evolution
are shown in Table III. For continuously emitting, stationary
radars, the results verify those from the direct evolution
experiments. Figure 2 compares the number of successful
evolutionary runs for direct and incremental evolution. Figure
3 compares the total number of successful controllers for
direct and incremental evolution. For the three more complex
radar types, the use of environmental incremental evolution
dramatically increased both the total number of successful
controllers and the number of evolutionary runs that pro-
duced successful controllers. As mentioned in Section III-B,
diversity is often an issue when using incremental evolution.
In these experiments, populations tended to remain diverse,
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TABLE II
DIRECT EVOLUTION EXPERIMENTAL RESULTS

Runs Successful controllers
Radar type Total Successful Percentage Total Average Maximum

Continuous, Stationary 50 45 90% 3,149 63 170
Continuous, Mobile 50 36 72% 2,266 45.3 206

Intermittent, Stationary 50 25 50% 1,891 37.8 156
Intermittent, Mobile 50 16 32% 569 11.38 93

TABLE III
INCREMENTAL EVOLUTION EXPERIMENTAL RESULTS

Runs Successful controllers
Radar type Total Successful Percentage Total Average Maximum

Continuous, Stationary 50 45 90% 2,815 56.30 166
Continuous, Mobile 50 45 90% 2,774 55.48 179

Intermittent, Stationary 50 42 84% 2,083 41.66 143
Intermittent, Mobile 50 37 74% 1,602 32.04 143

possibly because of the use of crowding distance in the multi-
objective GP algorithm.

When autonomous navigation controllers are used to fly
real UAVs, it is essential to have a single controller that
can handle multiple radar types. Based on the information
available to the UAV, it is difficult to know what kind of
radar the UAV is approaching, and it is far easier to have
one robust controller that is used all the time rather than
switching between several simpler controllers. The final popu-
lation for intermittently emitting, mobile radars evolved using
incremental evolution produced 1,602 successful controllers.
The controllers were evaluated separately on all four radar
types, and every controller was successful for each type.

V. CONCLUSIONS

Using genetic programming with multi-objective optimiza-
tion, we were able to evolve navigation controllers for UAVs
capable of flying to a target radar, circling the radar site, and
maintaining an efficient flight path, all while using inaccurate
sensors in a noisy environment. We used methods to aid in
the future transference of evolved controllers to real UAVs.
Controllers were evolved for four radar types using both
direct evolution and incremental evolution. Using incremental
evolution dramatically increased the chances of producing
successful controllers. Incremental evolution also produced
controllers able to handle all four radar types. In the future, we
will test the controllers evolved in this research on physical
UAVs. Our research will also focus on evolving distributed,
multi-agent UAV navigation controllers for responding to
multiple radar sites with multiple UAVs.
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