Skip to main content
Log in

Active Contour Extension Basing on Haralick Texture Features, Multi-gene Genetic Programming, and Block Matching to Segment Thyroid in 3D Ultrasound Images

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The segmentation and estimation of thyroid volume in 3D ultrasound images have attracted the research community’s attention because of their great importance in clinical diagnosis. Usually, thyroid volume estimation is based on the segmentation of 3D ultrasound images, which is difficult due to various disorders, including non-homogeneous texture distribution within the thyroid region, artifacts, speckles, and the nature of the thyroid shape. This paper presents an approach to segmenting all individual slices and then reconstructing them into a 3D object to overcome these difficulties. The process involves four techniques. The VOI initialization encompasses the probable thyroid gland; it greatly affects the segmentation results. Multi-gene genetic programming determines the appropriate textural features. The block-matching technique estimates the thyroid gland’s change in size and location from slice to slice. Finally, the ITKSNAP software reconstructs the 3D volume. The proposed method is compared with state-of-the-art methods to prove its effectiveness in medical image analysis. Sixteen 3D images from an ultrasound thyroid image dataset were used for the experiments. The analysis of the results based on performance evaluation metrics shows that the proposed method is more efficient than the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wunderling, T.; Golla, B.; Poudel, P., Arens, C.; Friebe, M.; Hansen, C.: Comparison of thyroid segmentation techniques for 3D ultrasound. In: Medical Imaging 2017: Image Processing, vol. 10133. SPIE (2017)

  2. Prabal, P.; Alfredo, I.; Elmer, A.J.G.; Nazila, E.; Sathish, B.; Michael, F.: Thyroid ultrasound texture classification using autoregressive features in conjunction with machine learning approaches. IEEE Access 7, 79354–79365 (2019)

    Article  Google Scholar 

  3. Zhao, J.; Zheng, W.; Zhang, L.; Tian, H.: Segmentation of ultrasound images of thyroid nodule for assisting fine needle aspiration cytology. Health Inf. Sci. Syst. 1(1), 1–12 (2013)

    Article  Google Scholar 

  4. Ma, J.; Wu, F.; Jiang, T.; Zhu, J.; Kong, D.: Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images. Med. Phys. 44(5), 1678–1691 (2017)

    Article  Google Scholar 

  5. Noble, J.A.; Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8), 987–1010 (2006)

    Article  Google Scholar 

  6. Mariani, G.; Tonacchera, M.; Grosso, M.; Fiore, E.; Falcetta, P.; Montanelli, L.; Strauss, H.W.: The role of nuclear medicine in the clinical management of benign thyroid disorders, part 2: nodular goiter, hypothyroidism, and subacute thyroiditis. J. Nucl. Med. 62(7), 886–895 (2021)

    Article  Google Scholar 

  7. China, D.; Illanes, A.; Poudel, P.; Friebe, M.; Mitra, P.; Sheet, D.: Anatomical structure segmentation in ultrasound volumes using cross frame belief propagating iterative random walks. IEEE J. Biomed. Health Inform. 23(3), 1110–1118 (2018)

    Article  Google Scholar 

  8. Kollorz, E.K.; Hahn, D.A.; Linke, R.; Goecke, T.W.; Hornegger, J.; Kuwert, T.: Quantification of thyroid volume using 3-D ultrasound imaging. IEEE Trans. Med. Imaging 27(4), 457–466 (2008)

    Article  Google Scholar 

  9. Ma, J.; Wu, F.; Jiang, T.; Zhao, Q.; Kong, D.: Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 12(11), 1895–1910 (2017)

    Article  Google Scholar 

  10. Zhao, J.; Zhou, X.; Shi, G.; Xiao, N.; Song, K.; Zhao, J.; Hao, R.; Li, K.: Semantic consistency generative adversarial network for cross-modality domain adaptation in ultrasound thyroid nodule classification. Appl. Intell. 52, 10369–10383 (2022)

    Article  Google Scholar 

  11. Ying, X.; Yu, Z.; Yu, R.: Li, X.; Yu, M.; Zhao, M.; Liu, K.: Thyroid nodule segmentation in ultrasound images based on cascaded convolutional neural network. In: International Conference on Neural Information Processing. Springer, Cham (2018)

  12. Kumar, V.; Webb, J.; Gregory, A.; Meixner, D.D.; Knudsen, J.M.; Callstrom, M.; Fatemi, M.; Alizad, A.: Automated segmentation of thyroid nodule, gland, and cystic components from ultrasound images using deep learning. IEEE Access 8, 63482–63496 (2020)

    Article  Google Scholar 

  13. Nguyen, D.T.; Kang, J.K.; Pham, T.D.; Batchuluun, G.; Park, K.R.: Ultrasound image-based diagnosis of malignant thyroid nodule using artificial intelligence. Sensors 20(7), 1822 (2020)

    Article  Google Scholar 

  14. Nugroho, A.; Hidayat, R.; Nugroho, H.A.: Thyroid ultrasound image segmentation: a review. In: 5th International Conference on Science and Technology (ICST), vol. 1, pp. 1–6 (2019)

  15. Poudel, P.; Illanes, A.; Sadeghi, M.; Friebe, M.: Patch based texture classification of thyroid ultrasound images using convolutional neural network. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2019)

  16. Osman, A.: Automated Evaluation of Three Dimensional Ultrasonic Datasets. Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany) (2013)

  17. Chang, C.-Y.; Lei, Y.-F.; Tseng, C.-H.; Shih, S.-R.: Thyroid segmentation and volume estimation in ultrasound images. IEEE Trans. Biomed. Eng. 57(6), 1348–1357 (2010)

    Article  Google Scholar 

  18. Sumanth, N.; Debarghya, C.; Pabitra, M.; Debdoot, S.: Sumnet: fully convolutional model for fast segmentation of anatomical structures in ultrasound volumes. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE (2019)

  19. Zielke, J.; Eilers, C.; Busam, B.; Weber, W.; Navab, N.; Wendler, T.: RSV: robotic sonography for thyroid volumetry. IEEE Robot. Autom. Lett. 7(2), 3342–3348 (2022)

    Article  Google Scholar 

  20. Alfredo, I.; Nazila, E.; Prabal, P.; Sathish, B.; Michael, F.: Parametrical modelling for texture characterization—a novel approach applied to ultrasound thyroid segmentation. PLoS ONE 14, 1–17 (2019)

    Google Scholar 

  21. Poudel, P.; Illanes, A.; Sheet, D.; Friebe, M.; Poudel, P.: Evaluation of commonly used algorithms for thyroid ultrasound images segmentation and improvement using machine learning approaches. J. Healthc. Eng. 1, 2–3 (2018). https://doi.org/10.1155/2018/8087624

    Article  Google Scholar 

  22. Chan, T.F.; Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  23. Olivier, J.; Paulhac, L.: 3D ultrasound image segmentation: interactive texture-based approaches. Med. Imaging. InTech, pp. 44–65 (2011)

  24. Iakovidis, D.K.; Keramidas, E.G.; Maroulis, D.: Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns. Artif. Intell. Med. 50(1), 33–41 (2010)

    Article  Google Scholar 

  25. Acharya, U.R.; Chowriappa, P.; Fujita, H.; Bhat, S.; Dua, S.; Koh, J.E.W.; Eugene, L.W.J.; Kongmebhol, P.; Ng, K.H.: Thyroid lesion classification in 242 patient population using Gabor transform features from high resolution ultrasound images. Knowl. Based Syst. 107, 235–245 (2016)

    Article  Google Scholar 

  26. Shrikant, D.K.; Punwatkar, K.M.; Pusad, Y.: Texture analysis of thyroid ultrasound images for diagnosis of benign and malignant nodule using scaled conjugate gradient backpropagation training neural network. Int. J. Comput. Eng. Manag. (IJCEM) 16, 33–38 (2013)

    Google Scholar 

  27. Bruno, S.; Lester, C.; Thibaut, D.; Benoît, G.; Philippe, D.: Segmentation of skin tumors in high-frequency 3-D ultrasound images. Ultrasound Med. Biol. 43(1), 227–238 (2017)

    Article  Google Scholar 

  28. Dornheim, J.; Dornheim, L.; Preim, B.; Hertel, I.; Strauss, G.: Generation and initialization of stable 3D mass-spring models for the segmentation of the thyroid cartilage. In: Joint Pattern Recognition Symposium. Springer, Berlin, Heidelberg (2006)

  29. Poudel, P.; Illanes, A.; Hansen, C.; Arens, C.; Friebe, M.: Active contours extension and similarity indicators for improved 3D segmentation of thyroid ultrasound images. In: Medical Imaging 2017: Imaging Informatics for Healthcare, Research, and Applications, vol. 10138. SPIE (2017)

  30. ImFusion: (online). Available: https://www.imfusion.de

  31. Krönke, M.; Eilers, C.; Dimova, D.; Köhler, M.; Buschner, G.; Mirzojan, L.; Konstantinidou, L.; Makowski, M. R.; Nagarajah, J.; Navab, N.; Weber, W.; Wendler, T.: Tracked 3D Ultrasound and Deep Neural Network-based Thyroid Segmentation reduce Interobserver Variability in Thyroid Volumetry. arXiv preprint arXiv:2108.10118 (2021)

  32. Haralick, R.M.; Shanmugam, K.; Dinstei, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  33. Shaharuddin, N.A.; Hafizah, W.M.: Feature analysis of kidney ultrasound image in four different ultrasound using gray level co-occurrence matrix (GLCM) and intensity histogram (IH). Int. J. Integr. Eng. 10(3), 42–47 (2018)

    Article  Google Scholar 

  34. Dirami, A.; Hammouche, K.; Diaf, M.; Siarry, P.: Fast multilevel thresholding for image segmentation through a multiphase level set method. Signal Process. 93(1), 139–153 (2013)

    Article  Google Scholar 

  35. Yushkevich, P.A.; Gao, Y.; Gerig, G.: ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2016)

  36. Searson, D.P.: GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining. Handbook of Genetic Programming Applications, pp. 551–573. Springer, Cham (2015)

  37. Tourapis, A.M.; Cheong, H.Y.; Topiwala, P.N.: Device and method for fast block-matching motion estimation in video encoders. U.S. Patent No. 8913660. 16 Dec (2014)

  38. Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  39. Perumal, V.; Narayanan, V.; Sundar Rajasekar, S.J.: Detection of COVID-19 using CXR and CT images using transfer learning and Haralick features. Appl. Intell. 51(1), 341–358 (2021)

    Article  Google Scholar 

  40. Chakraborty, M.; Dhavale, S.V.; Ingole, J.: Corona-Nidaan: lightweight deep convolutional neural network for chest X-Ray based COVID-19 infection detection. Appl. Intell. 51(5), 3026–3043 (2021)

    Article  Google Scholar 

  41. Olivier, J.; Bone, R.; Rousselle, J.-J.; Cardot, H.: Guidage de contour actif par classificateur binaire supervisè pour la segmentation d’images texturèes. XXIIe colloque GRETSI (traitement du signal et des images), Dijon (FRA), 8–11 September 2009. GRETSI, Groupe d’Etudes du Traitement du Signal et des Images (2009)

  42. Mohanty, R.; Suman, S.; Das, S.K.: Prediction of vertical pile capacity of driven pile in cohesionless soil using artificial intelligence techniques. Int. J. Geotech. Eng. 12(2), 209–216 (2018)

    Article  Google Scholar 

  43. Gandomia, A.H.; Sajedi, S.; Kiani, B.; Huang, Q.: Genetic programming for experimental big data mining: a case study on concrete creep formulation. Autom. Constr. 70, 89–97 (2016)

    Article  Google Scholar 

  44. Vese, L.A.; Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  45. Poudel, P.; Hansen, C.; Sprung, J.; Friebe, M.: 3D segmentation of thyroid ultrasound images using active contours. Curr. Direct. Biomed. Eng. 2(1), 467–470 (2016)

    Article  Google Scholar 

  46. Manikandan, L.C.; Selvakumar, R.K.: A new survey on block matching algorithms in video coding. Int. J. Eng. Res. 3(2), 121–125 (2014)

    Article  Google Scholar 

  47. Bhattacharjee, K.; Kumar, S.; Pandey, H.M.; Pant, M.; Windridge, D.; Chaudhary, A.: An improved block matching algorithm for motion estimation in video sequences and application in robotics. Comput. Electr. Eng. 68, 92–106 (2018)

    Article  Google Scholar 

  48. Koshta, J.; Khare, K.; Gupta, M.K.: Efficient absolute difference circuit for SAD computation On FPGA. Int. J. VLSI Des. Commun. Syst. (VLSICS) (2019). https://doi.org/10.5121/vlsic.2019.10201

  49. Taha, A.; Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15(1), 1–28 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Zohra Benabdallah.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benabdallah, F.Z., Djerou, L. Active Contour Extension Basing on Haralick Texture Features, Multi-gene Genetic Programming, and Block Matching to Segment Thyroid in 3D Ultrasound Images. Arab J Sci Eng 48, 2429–2440 (2023). https://doi.org/10.1007/s13369-022-07286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07286-3

Keywords

Navigation