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Abstract

In this paper� we present a framework where a learning rule can be op�

timized within a parametric learning rule space� We de�ne what we call

parametric learning rules and present a theoretical study of their generaliza�

tion properties when estimated from a set of learning tasks and tested over

another set of tasks� We corroborate the results of this study with practical

experiments�

� Introduction

Learning mechanisms in neural networks are usually associated with changes in

synaptic e�ciency� In such models� synaptic learning rules control the variations of
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the parameters �synaptic weights� of the network� Researchers in neural networks

have proposed learning rules based on mathematical principles �such as backpropa�

gation� or biological analogy �such as Hebbian rules�� but better learning rules may

be needed to achieve human�like performance in many learning problems�

Chalmers proposed in ��� a method to 	nd new learning rules using evolution

mechanisms such as genetic algorithms� His method considers the learning rule as

a parametric function with local inputs which is the same for all neurons in the

network� He used genetic algorithms to 	nd a learning rule for networks without

hidden layers and found that among the class of rules he investigated� the delta rule

was most often selected and performed best for linearly separable boolean problems�

Independently of Chalmers� we proposed a similar approach in �
� that general�

izes this idea to networks with hidden layers �able to solve non�linearly separable

problems� and with the possibility to use any standard optimization methods �such

as genetic algorithms� but also gradient descent and simulated annealing�� In this

paper� we give theoretical principles for the design of such parametric learning rules�

In section 
 we introduce the idea of parametric learning rules� Section � explains

how the concept of generalization can be applied to learning rules� Finally section

� shows how practical experiments corroborate theoretical results�

� Parametric Learning Rules

We describe in this section the basic idea of optimizing learning rules� The principle

is straightforward we consider the learning rule as a parametric function and we

optimize its parameters using an optimization algorithm� In doing so� we make the

following hypothesis

� In a large neural network� there is only a limited number of di�erent learning

rules� therefore a given rule is used in a large number of neurons�

� There is a �possibly stochastic� dependency between the synaptic modi	cation

and information available locally �in the physical neighborhood of the synapse��

� This dependency can be approximated by a parametric function f�x�� x�� ���xn� ��

where xi are the arguments of the function and � is a set of parameters�






Since the space of possible learning algorithms is very large� we propose to con�

strain it by considering only a subset of possible parametric functions for the rule�

The form of the rule may be inspired by certain known synaptic mechanisms� Thus�

the only input arguments considered �the xi above� are local to the synapse� such

as the pre�synaptic and post�synaptic activities� the synaptic weight� the activity of

facilitatory �or modulatory� neurons� or the concentration of a chemical agent �see

	gure ���

Postsynaptic Neuron

Facilitatory Neuron

Neuromodulatory Synapse
Synapse

Chemical Modulator

Presynaptic Neuron

Figure � Elements found in the vicinity of a synapse� which can in�uence its e�cacy�

This way of constraining the search space to be biologically plausible �if not

biologically realistic� should not be perceived as an arti	cial constraint but rather

as a way of limiting the search to a subspace in which solutions share some features

with neurobiological learning mechanisms� We suppose that this will facilitate the

search for new learning rules� Admittedly� our neuron models are very simpli	ed

with respect to what is currently known about the working of the brain� furthermore�

many aspects of brain function are still unknown� particularly in what concerns

learning and synaptic plasticity�

Let us denote by w�i� j� the weight �e�cacy� of a given synapse or set of synapses

from neuron i to neuron j� Weight changes proceed according to the following

equation

�w�i� j� � f�local variables at synapse i� j� �� ���
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The synaptic modi	cation �w�i� j� of the e�cacy of the connection from neuron

i to neuron j is obtained with the function f���� using the values of local variables

at the synapse� and those of a set of parameters� �� These parameters which are

real numbers� are tuned in order to improve �optimize� the learning rule�

The idea is to try to 	nd a set of parameters � corresponding to a rule allowing a

network to learn to solve di�erent kinds of problems� For this� we can use standard

optimization methods �such as gradient descent� genetic algorithms� or simulated

annealing�� The question addressed in the next section is whether or not we can

	nd a rule that will be able to learn tasks not used to optimize the parameters ��

� Capacity of a Parametric Learning Rule

In order for a learning rule obtained through optimization to be useful� it must

be successfully applicable in training networks for new tasks �i�e�� tasks other than

those used during optimization of the learning rule�� This property of a learning

rule is a form of generalization� We will see that this kind of generalization can be

described using the same formalism used to derive the generalization property of

learning systems� based on the notion of capacity�

��� Standard Notion of Capacity

The capacity of a learning system can be intuitively seen as a measure of the car�

dinality of the set of functions the system can learn� A quantity known as the

Vapnik�Chervonenkis Dimension �VCdim� ��� is an example of such a measure� Let

F ���  X � Y represent a family of functions �parameterized by ��� X represents

the space of examples and Y an error measure�

The capacity h of the learning system F ��� is related to generalization error

� and number of training examples N in the following way� For a 	xed number

of examples N � starting from h � � and increasing it� one 	nds generalization

to improve �� decreases� until a critical value of the capacity is reached� After

this point� increasing h makes generalization deteriorate �� increases�� For a 	xed

capacity� increasing the number of training examples N improves generalization ��
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asymptotes to a value that depends on h�� The speci	c results of ��� are obtained

in the worst case� for any distribution of X�

��� Extension to Parametric Learning Rule

We de	ne the generalization error of a parametric learning rule as expected learning

error for a new task� that is� a task that has not been used for the optimization of

the rule�s parameters� The capacity of a parametric learning rule is a measure of

the rule�s complexity�

A task description z is a set of couples �i� o� such that the task requires to

associate each i to a corresponding o� For instance� the boolean function AND is

de	ned by the following description f���� ��� ��� ���� ��� ��� ���� ��� ��� ���� ��� ��g�

Let g�z� f������ be a parametric function with an associated function f��� using

parameters �� which returns� for a given task description z� a real number repre�

senting the expected value of the error obtained after training a particular learning

system with a learning rule de	ned by f��� and � for the task de	ned by z�

For example� f��� could be de	ned by equation �
� and � could be a speci	c

vector of rule parameters� If z represents the AND task� then g�z� f������ is the

error of a neural network trained on then AND task� with a learning rule described

by equation �
� instantiated with the particular set of parameters ��

Finally� we can de	ne G�f���� as the set of all the functions g�z� f������ obtained

by allowing � to vary within a set ��

In that case� we may apply the de	nition of capacity given by Vapnik ��� and

determine the capacity h of a parametric learning rule G�f���� as the maximum

number of tasks z that may be solved by picking a � within �� i�e� a g�z� f������

withinG�f���� �with an error smaller than a predetermined value chosen to maximize

h��

We can draw several conclusions from this extension� For example� it becomes

clear that the expected error of a learning rule over new tasks ��� should decrease

when increasing the number of tasks �N� used for learning the parameter set ��

However� it could increase with the number of parameters and the capacity of the

learning rule class if an insu�cient number or variety of training tasks are used in
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the optimization� This justi	es the use of a�priori knowledge in order to limit the

capacity of the learning rule� It also appears more clearly that the learning rule

will be more likely to generalize over tasks which are similar to those used for the

optimization of the rule�s parameters� In consequence� it is advantageous to use�

for the optimization of the learning rule� tasks which are representative of those on

which the learning rule will be ultimately applied�

� Experiments

We performed experiments to verify if it was possible to 	nd new learning rules that

were able to solve di�cult problems� We also wanted to verify the theory of capacity

and generalization applied to parametric learning rules� In particular� we wanted

to study the relation between the number of training tasks N � the learning rule�s

capacity h� the complexity of the tasks� and the learning rule�s generalization error

����

��� Optimization Methods

We tried three optimization methods� namely genetic algorithms ���� simulated an�

nealing ���� and genetic programming ���� � For the 	rst two� we had to specify the

exact form of the learning rule and optimization was done over a parameter space�

while for the genetic programming experiments� we just had to select the appropri�

ate local variables which could in�uence the synaptic change and the basic operators

that could be used� This latter approach enables the search to operate on a larger

space when one speci	es the exact form of the learning rule� one could neglect a

good solution just because its form has not been expected� On the other hand� the

capacity of such systems may be higher �and in fact more di�cult to estimate��

which is why we used a bound on the size of the rules�

For the 	rst two optimization methods� we tried three di�erent parametric learn�

�Gradient descent was also tested but there seems to be too many local minima in the space

of learning rules which explains why we were not able to get any good solution with this local

method�
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ing rules� The 	rst rule was de	ned using biological a�priori knowledge to constrain

the number of parameters to �� We can 	nd for instance in the following rule a

Hebbian mechanism

�w�i� j� � �� � �� y�i� � �� x�j� � �� y�mod�j�� �

�� y�i� y�mod�j�� � �� y�i� x�j� � �� y�i� w�i� j� �
�

where w�i� j� is the synaptic e�cacy between neurons i and j� x�j� is the activa�

tion potential of neuron j �post�synaptic potential�� y�i� is the output of neuron i

�pre�synaptic activity�� and y�mod�j�� is the output of a modulatory neuron in�u�

encing neuron j�

The second rule had �� parameters and was de	ned as follows

�w�i� j� �
X

s���V �

�
�s
Y
v�s

v

�
���

where V � fx�j�� y�i�� y�mod�j��� w�i� j�g and ��V � is the set of all subsets of

V �

The third rule is the same as the 	rst one with an additional parameter ��	�

which modulates a local version of backpropagation �i�e� if all the other parameters

are set to � and �	 is set to �� the rule is the same as backpropagation for the

special kind of networks described below and in 	gure 
�� This parametric rule

has been added in order to see if one could 	nd the backpropagation algorithm by

optimization starting from a randomly chosen parametric learning rule� The rule is

as follows

�w�i� j� � �� � �� y�i� � �� x�j� � �� y�mod�j�� � �� y�i� y�mod�j�� �

�� y�i� x�j� � �� y�i� w�i� j� � �	 y�i� y�mod�j�� f ��x�j�� ���

where f ��x�j�� is the derivative of the neuron activation function�
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��� Tasks

The tasks to solve were two�dimensional classi	cation problems� There were 
�

di�erent tasks� Some were linearly separable ���� while others where non�linearly

separable �����

Each task was created with a training set of size ��� and a test set of size 
���

A task was said to be successfully learned when there were no classi	cation error

over the test set�

We used a fully connected neural network� with two input units� one hidden

unit and one output unit� Furthermore� we added a backward path of modulator

neurons� which could provide a measure of the error to each unit �see 	gure 
��

Output ErrorOutput

InputsInputs

Figure 
 Simple neural network architecture with backward path�

��� Methodology

A typical experiment was conducted as follows

� First we chose an optimization method �genetic algorithms� simulated anneal�

ing� or genetic programming� and a set of training tasks �from � to � di�erent

tasks� linearly as well as non�linearly separable��

� Then we optimized the rule for a 	xed number of iterations�

� Finally� we tested the new rule over tasks di�erent from the training tasks�

�Where input units also connect to output units�
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To learn a task� the weights of the neural network are 	rst initialized to random

values and then they are updated after the presentation of each training example�

according to the current learning rule� The generalization error for the current task

is then estimated with the 
�� test examples�

��� Results

Figure � shows for each type of learning rule the evolution of the best generalization

error ��� found using all optimization methods� with respect to the number of tasks

�N�� As it can be seen� � decreases as N increase� as theory predicts� We can also

see that the learning rule which has more capacity has an � higher when N is too

small� which is again what theory predicts�
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Figure � Evolution of generalization error � with respect to the number of tasks
N used during optimization� E�x� represents the error made using the rule x � is
the rule using � parameters� � is the rule using � parameters� �� is the rule using
�� parameters� gp is the rule found by genetic programming� and bp is simply the
backpropagation rule�

In table �� we give for each type of learning rule the mean generalization error

we found �over all optimization methods and all experiments for the same rule�� as

well as its standard deviation� We also give for each rule the best set of parameters

found� For the sake of comparison� we also give the generalization error of the

backpropagation learning rule� applied to the same set of tasks� In table 
� we give
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Rule Error �� � �� Best Rule

� parameters eq� �
� ��
�� ���
 � � f������� ������������� ���
�������

�
������ ������g

�� parameters eq� ��� ����� ���� � � f������� �������������� �������������
���

�������������
���������
������� ����������������������
��������������� ������g

� parameters eq� ��� ��
�� ���� � � f������� ����
���������������������
������ ������ ����g

genetic programming ����� ���
 �w�i� j� � y�i� � y�mod�j�� � f ��x�j���

backpropagation ���� � ��� �w�i� j� � y�i� � y�mod�j�� � f ��x�j��

Table � Comparison of the learning rules found� � is the mean error� � is the error
standard deviation�

Method Error ��� ��

simulated annealing ���� � ����
genetic algorithm ��
� � ����

genetic programming ���� � ���


Table 
 Comparison of the optimization methods� � is the mean error� � is the
error standard deviation�

for each optimization method the mean generalization error �over all rule forms and

all experiments for the same optimization method�� as well as its standard deviation�

We can see in the last two tables that genetic programming is the best method

and it 	nds a rule that performs better than backpropagation for this set of tasks�

The only di�erence with backpropagation is the exponent of the activation function

derivative� As the overall sign of this term is conserved� and since the derivative is

a real number between � and �� the e�ect of the derivative over the weight change

is thus stronger than in backpropagation� but in a 
�layer net� the resulting weight

change is guaranteed to be downhill in the error surface�

� Conclusion

In this article we have established a conceptual framework to study the generaliza�

tion properties of a learning rule whose parameters are trained on a certain number

of tasks� To do so� we have introduced the notion of capacity of parametric learning

rules�
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Experiments show that it is possible to discover through optimization learning

rules capable of solving a variety of simple problems� Using gradient descent� ge�

netic algorithms and simulated annealing� we had already found learning rules for

classical conditioning problems� classi	cation problems� and boolean problems �see

����� Moreover� the experimental results described in section � qualitatively agree

with learning theory applied to parametric learning rules� Of course it has to be

shown yet that the procedure is applicable to more complex tasks� which will prob�

ably require more complex learning rules and yield a more di�cult optimization

problem� Moreover� we need to take into account the computational time needed to

	nd seach learning rules� For example� in 	gure �� each experiment required on the

order of one hour of CPU time on a Sparc Station 
�
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