
Evolution of a 60 Decibel Op Amp Using
Genetic Programming

Forrest H Bennett III1 John R.Koza2

David Andre3 Martin A. Keane4

1) Visiting Scholar, Computer Science Department,
Stanford University, Stanford, California 94305 USA

fhb3@slip.net

2) Computer Science Department, Stanford University

3) Computer Science Department, University of California, Berkeley, California

4) Econometrics Inc., 5733 West Grover
Chicago, IL 60630 USA

Abstract: Genetic programming was used to evolve both the topology and sizing
(numerical values) for each component of a low-distortion, low-bias 60 decibel
(1000-to-1) amplifier with good frequency generalization.

1. Introduction
In nature, complex structures are designed by means of evolution and natural
selection. This suggests the possibility of applying the techniques of evolutionary
computation in order to automate the design of complex structures.

The problem of circuit synthesis involves designing an electrical circuit that
satisfies user-specified design goals. A complete design of an electrical circuit
includes both its topology and the sizing of all its components. The topology of a
circuit consists of the number of components in the circuit, the type of each
component, and a list of all the connections between the components. The sizing of
a circuit consists of the component value(s) of each component.

Evolvable hardware is one approach to automated circuit synthesis. Early
pioneering work in this field includes that of Higuchi, Niwa, Tanaka, Iba, de Garis,
and Furuya (1993a, 1993b); Hemmi, Mizoguchi, and Shimohara (1994); Mizoguchi,
Hemmi, and Shimohara (1994); and the work presented at the 1995 workshop on
evolvable hardware in Lausanne (Sanchez and Tomassini 1996).

The design of analog circuits and mixed analog-digital circuits has not proved to
be amenable to automation (Rutenbar 1993). CMOS operational amplifier (op amp)
circuits have been designed using a modified version of the genetic algorithm
(Kruiskamp 1996; Kruiskamp and Leenaerts 1995); however, the topology of each
op amp was one of 24 topologies based on the conventional human-designed stages
of an op amp. Thompson (1996) used a genetic algorithm to evolve a frequency
discriminator on a Xilinx 6216 reconfigurable processor in analog mode.

2. Genetic Programming
Genetic programming is an extension of the genetic algorithm described in John
Holland's pioneering Adaptation in Natural and Artificial Systems (1975).

The book Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Koza 1992) provides evidence that genetic programming can
solve, or approximately solve, a variety of problems. See also Koza and Rice 1992.
Genetic programming (GP) starts with a primordial ooze of randomly generated
computer programs composed of the available programmatic ingredients and then
applies the principles of animal husbandry to breed a new (and often improved)
population of programs. The breeding is done in a domain-independent way using
the Darwinian principle of survival of the fittest, an analog of the naturally-occurring
genetic operation of crossover (sexual recombination), and occasional mutation.
The crossover operation is designed to create syntactically valid offspring programs
(given closure amongst the set of ingredients). Genetic programming combines the
expressive high-level symbolic representations of computer programs with the near-
optimal efficiency of learning of Holland's genetic algorithm. A computer program
that solves (or approximately solves) a given problem often emerges from this
process.

The book Genetic Programming II: Automatic Discovery of Reusable Programs
(Koza 1994a, 1994b) describes a way to evolve multi-part programs consisting of a
main program and one or more reusable, parameterized, hierarchically-called
subprograms.

Recent work in the field of genetic programming is described in Kinnear 1994,
Angeline and Kinnear 1996, Koza, Goldberg, Fogel, and Riolo 1996.

Gruau's cellular encoding (1996) is an innovative technique in which genetic
programming is used to concurrently evolve the architecture, weights, thresholds,
and biases of neurons in a neural network.

3. Evolution of Circuits
Genetic programming can be applied to circuits if a mapping is established between
the kind of rooted, point-labeled trees with ordered branches used in genetic
programming and the line-labeled cyclic graphs encountered in the world of circuits.

Developmental biology provides the motivation for this mapping. The starting
point of the growth process used herein is a very simple embryonic electrical circuit.
The embryonic circuit contains certain fixed parts appropriate to the problem at hand
and certain wires that are capable of subsequent modification. An electrical circuit is
progressively developed by applying the functions in a circuit-constructing program
tree to the modifiable wires of the embryonic circuit (and, later, to both the
modifiable wires and other components of the successor circuits).

The functions are divided into four categories:
(1) connection-modifying functions that modify the topology of circuit (starting
with the embryonic circuit), and
(2) component-creating functions that insert components into the topology of the
circuit,

(3) arithmetic-performing functions that appear in arithmetic-performing subtrees
as argument(s) to the component-creating functions and specify the numerical
value of the component, and
(4) automatically defined functions in function-defining branches.
Each branch of the program tree is created in accordance with a constrained

syntactic structure. Branches are composed from construction-continuing subtree(s)
that continue the developmental process and arithmetic-performing subtree(s) that
determine the numerical value of the component. Connection-modifying functions
have one or more construction-continuing subtrees, but no arithmetic-performing
subtrees. Component-creating functions have one construction-continuing subtree
and typically have one arithmetic-performing subtree. This constrained syntactic
structure is preserved by using structure-preserving crossover with point typing
(Koza 1994a).

3.1. The Embryonic Circuit
The developmental process for converting a program tree into an electrical circuit
begins with an embryonic circuit.

Figure 1 shows a one-input, one-output embryonic circuit that serves as a test
harness for the evolving circuits. VSOURCE is the incoming signal. VOUT is the
output signal. There is a fixed 1,000 Ohm load resistor RLOAD and a fixed 1,000
Ohm source resistor RSOURCE. Because we are evolving an amplifier, there is
also a fixed 1,000,000 Ohm feedback resistor RFEEDBACK, a fixed 1,000 Ohm
balancing source resistor RBALANCE_SOURCE, and a fixed 1,000,000 Ohm
balancing feedback resistor RBALANCE_FEEDBACK. This arrangement limits
the possible amplification of the evolving circuit to the 1000-to-1 ratio (which
corresponds to 60 dB) of the feedback resistor to the source resistor.

Figure 1 Embryonic circuit.

There are three modifiable wires Z0, Z1, and Z2 arranged in a triangle so as to
provide connectivity between the input, the output, and the balancing resistors. All
of the above elements (except Z0, Z1, and Z2) are fixed and are not modified during
the developmental process. At the beginning of the developmental process, there is
a writing head pointing to (highlighting) each of the three modifiable wires. All
development occurs at wires or components to which a writing head points.

The top part of this figure shows a portion of an illustrative circuit-constructing
program tree. It contains a resistor-creating R function (labeled 2 and described
later), a capacitor-creating C function (labeled 3), and a polarity-reversing FLIP
function (labeled 4) and a connective LIST function (labeled 1). The R and C
functions cause modifiable wires Z0 and Z1 to become a resistor and capacitor,
respectively; the FLIP function reverses the polarity of modifiable wire Z2.

3.2. Component-Creating Functions
Each circuit-constructing program tree in the population contains component-
creating functions and connection-modifying functions.

Each component-creating function inserts a component into the developing
circuit and assigns component value(s) to the component. Each component-creating
function has a writing head that points to an associated highlighted component in the
developing circuit and modifies the highlighted component in some way. The
construction-continuing subtree of each component-creating function points to a
successor function or terminal in the circuit-constructing program tree.

Space does not permit a detailed description of each function that we use herein.
See Koza, Andre, Bennett, and Keane (1996), and Koza, Bennett, Andre, and Keane
(1996a, 1996b, 1996c, 1996d, 1996e) for details.

The two-argument resistor-creating R function causes the highlighted component
to be changed into a resistor. The value of the resistor in kilo-Ohms is specified by
its arithmetic-performing subtree.

The arithmetic-performing subtree of a component-creating function consists of a
composition of arithmetic functions (addition and subtraction) and random constants
(in the range –1.000 to +1.000). The arithmetic-performing subtree specifies the
numerical value of a component by returning a floating-point value that is, in turn,
interpreted, in a logarithmic way, as the value for the component in a range of 10
orders of magnitude (using a unit of measure that is appropriate for the particular
type of component involved). The floating-point value is interpreted as the value of
the component as described in Koza, Andre, Bennett, and Keane (1996, 1997).

Figure 2 shows a modifiable wire Z0 connecting nodes 1 and 2 of a partial
circuit containing four capacitors.

Figure 2 Modifiable wire Z0.

Figure 3 shows the result of applying the R function to the modifiable wire Z0 of
figure 2.

Figure 3 Result of applying the R function.

Similarly, the two-argument capacitor-creating C function causes the highlighted
component to be changed into a capacitor. The value of the capacitor in nano-Farads
is specified by its arithmetic-performing subtree.

The one-argument Q_D_PNP diode-creating function causes a diode to be
inserted in lieu of the highlighted component, where the diode is implemented using
a PNP transistor whose collector and base are connected to each other. The
Q_D_NPN function inserts a diode using an NPN transistor in a similar manner.

There are also six one-argument transistor-creating functions (called
Q_POS_COLL_NPN, Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN,
Q_GND_EMIT_PNP, Q_POS_EMIT_PNP, Q_NEG_COLL_PNP) that insert a
transistor in lieu of the highlighted component. For example, the
Q_POS_COLL_NPN function inserts a NPN transistor whose collector is connected
to the positive voltage source.

The three-argument transistor-creating Q_3_NPN function causes an NPN
transistor (model Q2N3904) to be inserted in place of the highlighted component
and one of the nodes to which the highlighted component is connected. The
Q_3_NPN function creates five new nodes and three new modifiable wires. There is
no writing head on the new transistor. Similarly, the three-argument transistor-
creating Q_3_PNP function causes a PNP transistor (model Q2N3906) to be
inserted.

Figure 4 shows the result of applying the Q_3_NPN0 function, thereby creating
transistor Q6 in lieu of modifiable wire Z0 of figure 2.

Figure 4 Result of applying the Q_3_NPN0 function.

3.3. Connection-Modifying Functions
Each connection-modifying function in a program tree points to an associated
highlighted component and modifies the topology of the developing circuit.

The one-argument polarity-reversing FLIP function attaches the positive end of
the highlighted component to the node to which its negative end is currently attached
and vice versa. After execution of the FLIP function, there is one writing head
pointing to the component.

The three-argument SERIES division function creates a series composition
consisting of the highlighted component, a copy of it, one new modifiable wire, and
two new nodes (each with a writing head).

Figure 5 illustrates the result of applying the SERIES division function to
resistor R1 from figure 3.

Figure 5 Result after applying the SERIES function.

The four-argument PSS and PSL parallel division functions create a parallel
composition consisting of the original highlighted component, a copy of it, two new
wires, and two new nodes. Figure 6 shows the result of applying PSS to the resistor
R1 from figure 3.

There are six three-argument functions (called T_GND_0, T_GND_1, T_POS_0,
T_POS_1, T_NEG_0, T_NEG_1) that insert two new nodes and two new
modifiable wires and make a connection to ground, positive voltage source, or
negative voltage source, respectively. Figure 7 shows the results of applying the
T_GND_0 function to the circuit of figure 3.

Figure 6 Result of the PSS parallel division function.

The three-argument PAIR_CONNECT_0 and PAIR_CONNECT_1 functions
enable distant parts of a circuit to be connected together. The first PAIR_CONNECT
to occur in the development of a circuit creates two new wires, two new nodes, and
one temporary port. The next PAIR_CONNECT to occur (whether
PAIR_CONNECT_0 or PAIR_CONNECT_1) creates two new wires and one new
node, connects the temporary port to the end of one of these new wires, and then
removes the temporary port.

The one-argument NOP function has no effect on the highlighted component;
however, it delays activity on the developmental path on which it appears in relation
to other developmental paths in the overall program tree.

The zero-argument END function causes the highlighted component to lose its
writing head. The END function causes its writing head to be lost – thereby ending
that particular developmental path.

The zero-argument SAFE_CUT function causes the highlighted component to be
removed from the circuit provided that the degree of the nodes at both ends of the
highlighted component is three (i.e., no dangling components or wires are created).

Figure 7 Result of applying the T_GND_0 function.

4. Preparatory Steps
Our goal in this paper is to evolve a design for a 60 decibel amplifier with low
distortion and low bias. Before applying genetic programming to circuit synthesis,
the user must perform seven major preparatory steps, namely

(1) identifying the embryonic circuit that is suitable for the problem,
(2) determining the architecture of the overall circuit-constructing program trees,
(3) identifying the terminals of the to-be-evolved programs,
(4) identifying the primitive functions contained in the to-be-evolved programs,
(5) creating the fitness measure,
(6) choosing certain control parameters (notably population size and the
maximum number of generations to be run), and
(7) determining the termination criterion and method of result designation.
The feedback embryo of figure 1 is suitable for this problem.
Since the embryonic circuit has three writing heads – one associated with each of

the result-producing branches – there are three result-producing branches (called
RPB0, RPB1, and RPB2) in each program tree. We decided to include two one-
argument automatically defined functions (called ADF0 and ADF1) in each program
tree and that there would be no hierarchical references among the automatically
defined functions. Thus, there are two function-defining branches in each program
tree. Consequently, the architecture of each overall program tree in the population
consists of a total of five branches (two function-defining branches and three result-
producing branches) joined by a LIST function.

The function sets are identical for all three result-producing branches of the
program trees. The terminal sets are identical for all three result-producing
branches.

For the three result-producing branches, the function set, Fccs-rpb, for each
construction-continuing subtree is
Fccs-rpb = {ADF0, ADF1, R, C, SERIES, PSS, PSL, FLIP, NOP, T_GND_0,

T_GND_1, T_POS_0, T_POS_1, T_NEG_0, T_NEG_1,
PAIR_CONNECT_0, PAIR_CONNECT_1, Q_D_NPN, Q_D_PNP,
Q_3_NPN0, ..., Q_3_NPN11, Q_3_PNP0, ..., Q_3_PNP11,
Q_POS_COLL_NPN, Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN,
Q_GND_EMIT_PNP, Q_POS_EMIT_PNP, Q_NEG_COLL_PNP}.

For the three result-producing branches, the terminal set, Tccs-rpb, for each
construction-continuing subtree consists of
Tccs-rpb = {END, SAFE_CUT}.

For the three result-producing branches, the function set, Faps-rpb, for each
arithmetic-performing subtree is,
Faps-rpb = {+, -}.

For the three result-producing branches, the terminal set, Taps-rpb, for each
arithmetic-performing subtree consists of
Taps-rpb = {←},
where ← represents floating-point random constants from –1.0 to +1.0.

The terminal sets are identical for both function-defining branches (automatically
defined functions) of the program trees. The function sets are identical for both
function-defining branches.

For the two function-defining branches, the function set, Fccs-adf, for each
construction-continuing subtree is
Fccs-adf = Fccs-rpb – {ADF0, ADF1}.

For the two function-defining branches, the terminal set, Tccs-adf, for each
construction-continuing subtree is
Tccs-adf = Tccs-rpb.

For the two function-defining branches, the function set, Faps-adf, for each
arithmetic-performing subtree is,
Faps-adf = Faps-rpb = {+, -}.

For the two function-defining branches, the terminal set, Taps-adf, for each
arithmetic-performing subtree consists of
Taps-adf = {←} ≈ {ARG0},
where ARG0 is the dummy variable (formal parameter) of the automatically defined
function.

The evaluation of fitness for each individual circuit-constructing program tree in
the population begins with its execution. This execution applies the functions in the
program tree to the embryonic circuit, thereby developing the embryonic circuit into
a fully developed circuit. A netlist describing the fully developed circuit is then
created. The netlist identifies each component of the circuit, the nodes to which that
component is connected, and the value of that component. Each circuit is then
simulated to determine its behavior. The 217,000-line SPICE (Simulation Program
with Integrated Circuit Emphasis) simulation program (Quarles et al. 1994) was
modified to run as a submodule within the genetic programming system.

An amplifier can be viewed in terms of its response to a DC input. An ideal
inverting amplifier circuit would receive a DC input, invert it, and multiply it by the
amplification factor. A circuit is flawed to the extent that it does not achieve the
desired amplification; to the extent that the output signal is not centered on 0 volts (i.
e., it has a bias); and to the extent that the DC response of the circuit is not linear.

Thus, for this problem, we used a fitness measure based on SPICE's DC sweep.
The DC sweep analysis measures the DC response of the circuit at several different
DC input voltages. The circuits were analyzed with a 5 point DC sweep ranging
from –10 millvolts to +10 MV, with input points at –10 MV, –5 MV, 0 MV, +5 MV,

and +10 MV. SPICE then simulated the circuit's behavior for each of these five DC
voltages.

Fitness is then calculated from four penalties derived from these five DC output
values. Fitness is the sum of the amplification penalty, the bias penalty, and the two
non-linearity penalties.

First, the amplification factor of the circuit is measured by the slope of the
straight line between the output for –10 MV and the output for +10 MV (i.e.,
between the outputs for the endpoints of the DC sweep). If the amplification factor is
less than the target (which is 60 dB for this problem), there is a penalty equal to the
shortfall in amplification.

Second, the bias is computed using the DC output associated with a DC input of
0 volts. There is a penalty equal to the bias times a weight. For this problem, a
weight of 0.1 is used.

Finally, the linearity is measured by the deviation between the slope of each of
two shorter lines and the overall amplification factor of the circuit. The first shorter
line segment connects the output value associated with an input of –10 MV and the
output value for –5 MV. The second shorter line segment connects the output value
for +5 MV and the output for +10 MV. There is a penalty for each of these shorter
line segments equal to the absolute value of the difference in slope between the
respective shorter line segment and the overall amplification factor of the circuit.

 Many of the circuits that are randomly created in the initial random population
and many that are created by the crossover and mutation operations are so bizarre
that they cannot be simulated by SPICE. Such circuits are assigned a high penalty
value of fitness (108).

The population size, M, was 640,000. The crossover percentage was 89%; the
reproduction percentage was 10%; and the mutation percentage was 1%. A
maximum size of 300 points was established for each of the branches in each overall
program. The other minor parameters were the default values in Koza 1994a
(appendix D).

This problem was run on a medium-grained parallel Parsytec computer system
consisting of 64 80 MHz Power PC 601 processors arranged in a toroidal mesh with
a host PC Pentium type computer. The distributed genetic algorithm was used with
a population size of Q = 10,000 at each of the D = 64 demes. On each generation,
four boatloads of emigrants, each consisting of B = 2% (the migration rate) of the
node's subpopulation (selected on the basis of fitness) were dispatched to each of the
four toroidally adjacent processing nodes. See Andre and Koza 1996 for details.

5. Results
The best circuit (figure 11) from generation 0 achieves a fitness of 986.1 and has
nine transistors, three capacitors, and two resistors (in addition to the five resistors of
the feedback embryo).

About 45% of the circuits of generation 0 cannot be simulated by SPICE.
However, the percentage of unsimulatable programs drops to 8% by generation 1.
Moreover, this percentage does not exceed 2% after generation 16 and does not
exceed 1% after generation 58.

The best circuit (figure 12) from generation 49 achieves a fitness of 404.0 and
has 16 transistors, no capacitors, and four resistors (in addition to the five resistors of
the feedback embryo).

The best circuit (figure 13) from generation 109 has 22 transistors, no capacitors,
and 11 resistors (in addition to the five resistors of the feedback embryo). It
achieves a fitness of 0.178. Its circuit-constructing program tree has 40, 98, and 27
points, respectively, in its first, second, and third result-producing branches and 33
and 144 points, respectively, in its first and second automatically defined functions.

Figure 8 DC sweep of best circuit from generation 109.

Figure 9 Time domain behavior of best of generation 109.

Figure 10 AC sweep for best circuit from generation109.

Figure 11 Best circuit from generation 0.

Figure 12 Best circuit from generation 49.

Figure 13 Best circuit from generation 109.

The amplification of an op amp can be measured from the DC sweep (figure 8).
The amplification in decibels is 20 times the common logarithm of the ratio of the
change in the output divided by the change of the input (i.e., 20 millivolts here) . The
amplification is 60 dB here (i.e., 1,000-to-1 ratio). There is a bias of 0.2 volts.
Notice the linearity of the DC sweep in this figure.

Figure 9 shows the time domain behavior of the best circuit from generation 109.
The vertical axis shows voltage and ranges from –10 volts to +10 volts. The input is
the 10 millivolt sinusoidal signal; however, this sinusoidal input signal appears as a
nearly straight line because of the scale. At 1,000 Hz, the amplification is 59.7 dB;
the bias is 0.18 volts; and the distortion is very low (0.17%).

 The amplification of an op amp
can also be measured from an AC
sweep. Figure 10 shows that the
amplification for the best circuit of
generation 109. The amplification

at 1,000 Hz is 59.7 dB.The flatband gain is 60 dB
and the 3 dB bandwidth is 79, 333 Hz.

We then tested whether the genetically evolved 22-transistor best circuit from
generation 109 provided more than 60 dB amplification when embedded in a test
harness that is appropriate for testing amplification of up to 80 dB. The
amplification is 80.15 dB when SPICE's DC sweep is applied. The amplification is
77.79 dB at 1,000 Hz in the time domain. When the AC sweep is applied, the circuit
delivers over 80 dB of amplification from 1 Hz to 36 Hz; the circuit delivers over
77.86 dB from 36 Hz to 55,000 Hz.
6. Other Examples of Evolutionary Circuit Design Using

Genetic Programming
The above techniques have recently been successfully applied to a variety of other
problems of evolutionary circuit design.

6.1. Lowpass "Brick Wall" Filter
Genetic programming successfully evolved a design for a lowpass filter with
passband below 1,000 Hz and a stopband above 2,000 Hz with requirements
equivalent to that of a fifth order elliptic filter (Koza, Bennett, Andre, and Keane
1996a, 1996c). In some runs of this problem, the genetically evolved lowpass filter
has a topology that is similar to that employed by human engineers. For example, in
one run, a 100% compliant evolved circuit (figure 14) had the recognizable ladder
topology of a Butterworth or Chebychev filter (i.e., a composition of series inductors
horizontally with capacitors as vertical shunts). In another run, a 100%-compliant
recognizable "bridged T" filter was evolved.

Figure 14 Genetically evolved ladder filter circuit.

6.2. Asymmetric Bandpass Filter
A difficult-to-design asymmetric bandpass filter with requirement equivalent to a
tenth-order elliptic filter (Koza, Bennett, Andre, and Keane 1996d) was evolved.
Figure 15 shows a 100% compliant evolved asymmetric bandpass filter.

Figure 15 Genetically evolved asymmetric bandpass filter.

6.3. A Crossover (Woofer and Tweeter) Filter

The design for a crossover (woofer
and tweeter) filter with a crossover
frequency of 2,512 Hz (Koza,
Bennett, Andre, and Keane 1996b)
was evolved. This problem
requires a one-input, two-output
embryonic circuit and requires that
the fitness be measured at two
probe points. The lowpass part of
the genetically evolved best-of-run
circuit (figure 16) has the
Butterworth topology. Except for
additional capacitor C36, the
highpass part of this circuit also
has the Butterworth topology.
This circuit is slightly better than
the combination of lowpass and
highpass Butterworth filters of
order 7.

Figure 16 Genetically evolved crossover filter.

7. Conclusion

Genetic programming successfully
evolved a 22-transistor amplifier
that delivers a DC gain of 60 dB
amplification and that has almost
no bias or distortion. It generalizes
in the frequency domain with a 3
dB bandwidth of 79,433 Hz.
Moreover, this genetically evolved
60 dB amplifier generalizes in such
a way as to deliver 80 dB of
amplification (as measured by the
DC sweep) when it is embedded in
a test harness that allows 80 dB of amplification.

7.1. Related Paper in this Volume

See also Koza, Bennett, Andre, and Keane
(1996e) in this volume.

Acknowledgments
Jason Lohn and Simon Handley made helpful comments on drafts of this paper.

References
Andre, David and Koza, John R. 1996. Parallel genetic programming: A scalable

implementation using the transputer architecture. In Angeline, P. J. and Kinnear,
K. E. Jr. (editors). 1996. Advances in Genetic Programming 2. Cambridge: MIT
Press.

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1996. Advances in Genetic
Programming 2. Cambridge, MA: The MIT Press.

Gruau, Frederic. 1996. Artificial cellular development in optimization and
compilation. In Sanchez, Eduardo and Tomassini, Marco (editors). 1996.
Towards Evolvable Hardware. Lecture Notes in Computer Science, Volume
1062. Berlin: Springer-Verlag. Pages 48 – 75.

Hemmi, Hitoshi, Mizoguchi, Jun'ichi, and Shimohara, Katsunori. 1994.
Development and evolution of hardware behaviors. In Brooks, R. and Maes, P.
(editors). Artificial Life IV: Cambridge, MA: MIT Press. Pages 371–376.

Higuchi, Tetsuya, Niwa, Tatsuya, Tanaka, Toshio, Iba, Hitoshi, de Garis, Hugo, and
Furuya, Tatsumi. 1993a. In Meyer, Jean-Arcady, Roitblat, Herbert L. and
Wilson, Stewart W. (editors). From Animals to Animats 2: Proceedings of the
Second International Conference on Simulation of Adaptive Behavior.
Cambridge, MA: The MIT Press. 1993. Pages 417 – 424.

Higuchi, Tetsuya, Niwa, Tatsuya, Tanaka, Toshio, Iba, Hitoshi, de Garis, Hugo, and
Furuya, Tatsumi. 1993b. Evolvable Hardware – Genetic-Based Generation of
Electric Circuitry at Gate and Hardware Description Language (HDL) Levels.
Electrotechnical Laboratory technical report 93-4. Tsukuba, Japan:
Electrotechnical Laboratory.

Holland, John H. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: University of Michigan Press.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic Programming.
Cambridge, MA: The MIT Press.

Koza, John R. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II Videotape: The Next Generation.
Cambridge, MA: MIT Press.

Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin A. 1996.
Use of automatically defined functions and architecture-altering operations in
automated circuit synthesis using genetic programming. In Koza, John R.,
Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 1996. Genetic
Programming 1996: Proceedings of the First Annual Conference, July 28-31,
1996, Stanford University. Cambridge, MA: The MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1996a.
Toward evolution of electronic animals using genetic programming. Artificial

Life V: Proceedings of the Fifth International Workshop on the Synthesis and
Simulation of Living Systems. Cambridge, MA: The MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1996b.
Four problems for which a computer program evolved by genetic programming is
competitive with human performance. Proceedings of the 1996 IEEE
International Conference on Evolutionary Computation. IEEE Press. Pages 1–
10.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1996c.
Automated design of both the topology and sizing of analog electrical circuits
using genetic programming. In Gero, John S. and Sudweeks, Fay (editors).
Artificial Intelligence in Design '96. Dordrecht: Kluwer. Pages 151-170.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1996d.
Automated WYWIWYG design of both the topology and component values of
analog electrical circuits using genetic programming. In Koza, John R.,
Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 1996. Genetic
Programming 1996: Proceedings of the First Annual Conference, July 28-31,
1996, Stanford University. Cambridge, MA: The MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1996e.
Reuse, parameterized reuse, and hierarchical reuse of substructures in evolving
electrical circuits using genetic programming. In this volume.

Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors).
1996. Genetic Programming 1996: Proceedings of the First Annual Conference,
July 28-31, 1996, Stanford University. Cambridge, MA: The MIT Press.

Koza, John R., and Rice, James P. 1992. Genetic Programming: The Movie.
Cambridge, MA: MIT Press.

Kruiskamp, Marinum Wilhelmus. 1996. Analog Design Automation using Genetic
Algorithms and Polytopes. Eindhoven, The Netherlands: Data Library
Technische Universiteit Eindhoven.

Kruiskamp Marinum Wilhelmus and Leenaerts, Domine. 1995. DARWIN: CMOS
opamp synthesis by means of a genetic algorithm. Proceedings of the 32nd
Design Automation Conference. New York, NY: Association for Computing
Machinery. Pages 433–438.

Mizoguchi, Junichi, Hemmi, Hitoshi, and Shimohara, Katsunori. 1994. Production
genetic algorithms for automated hardware design through an evolutionary
process. Proceedings of the First IEEE Conference on Evolutionary
Computation. IEEE Press. Vol. I. 661-664.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and Sangiovanni-Vincentelli, A.
1994. SPICE 3 Version 3F5 User's Manual. Department of Electrical
Engineering and Computer Science, University of California, Berkeley, CA.
March 1994.

Rutenbar, R. A. 1993. Analog design automation: Where are we? Where are we
going? Proceedings of the l5th IEEE CICC. New York: IEEE. 13.1.1-13.1.8.

Sanchez, Eduardo and Tomassini, Marco (editors). 1996.Towards Evolvable
Hardware. Lecture Notes in Computer Science, Vol 1062. Berlin: Springer-
Verlag.

Thompson, Adrian. 1996. Silicon evolution. In Koza, John R., Goldberg, David E.,
Fogel, David B., and Riolo, Rick L. (editors). 1996. Genetic Programming

1996: Proceedings of the First Annual Conference, July 28-31, 1996, Stanford
University. Cambridge, MA: MIT Press.

Version 2 – Camera-Ready –
Submitted October 28, 1996 for the
proceedings of the first
International Conference on
Evolvable Systems (ICES-96) held
in Tsukuba on October 7 – 8, 1996.

Evolution of a 60 Decibel Op Amp Using

Genetic Programming

Forrest H Bennett III1 John R.Koza2
David Andre3 Martin A. Keane4

