
Building a Parallel Computer System for $18,000 that
Performs a Half Peta-Flop per Day

Forrest H Bennett III
Genetic Programming Inc.

Box 1669
Los Altos, California 94023
forrest@evolute.com

http://www.genetic-programming.com

John R. Koza
Section on Medical Informatics

Department of Medicine
Stanford University

Stanford, California 94305
koza@stanford.edu

http://www.smi.stanford.edu/people/koza

James Shipman
IBM Corporation

San Jose, California
JimS@ibm.net

Oscar Stiffelman
Computer Science Department

Stanford University
Stanford, California 94305

ozzie@cs.stanford.edu

ABSTRACT
Techniques of evolutionary computation

generally require significant computational
resources to solve non-trivial problems of interest.
Increases in computing power can be realized either
by using a faster computer or by parallelizing the
application. Techniques of evolutionary
computation are especially amenable to
parallelization. This paper describes how to build a
10-node Beowulf-style parallel computer system
for $18,000 that delivers about a half peta-flop (1015

floating-point operations) per day on runs of
genetic programming. Each of the 10 nodes of the
system contains a 533 MHz Alpha processor and
runs with the Linux operating system. This amount
of computational power is sufficient to yield
solutions (within a couple of days per problem) to
14 published problems where genetic programming
has produced results that are competitive with
human-produced results.

1. Introduction
Techniques of evolutionary computation generally require
significant computational resources to solve non-trivial
problems of interest. Increases in computing power can be
realized either by using a faster computer or by parallelizing
the application. Computer speeds are expected to continue to
double approximately every 18 months in accordance with
Moore’s law (Moore 1996). Teraflop computers capable of
executing 1012 floating-point operations per second exist
today. Petaflop computers (Sterling, Messina, and Smith
1995; Sterling and Foster 1996a, 1996b; Sterling 1998b;
Messina, Sterling, and Smith 1999) capable of executing 1015

floating-point operations per second are expected to appear
between 2004 and 2007 and to come into general
commercial use between 2007 and 2010 (Messina, Sterling,
and Smith 1999).

Parallelization provides an opportunity for immediately
increasing computing power for applications that can be
parallelized efficiently (such as genetic algorithms, genetic
programming, and other techniques of evolutionary
computation). Amenability to parallelization is a recognized
feature of genetic algorithms, genetic programming, and
other evolutionary algorithms (Holland 1975; Robertson
1987; Tanese 1989; Goldberg 1989; Stender 1993; Koza and
Andre 1995; Andre and Koza 1996a, 1996b).

Section 2 describes one commonly used approach to
parallelization of evolutionary algorithms, namely the
asynchronous island approach involving semi-isolated
subpopulations. Section 3 points out that a half peta-flop of
computational power is sufficient to yield a solution (within
a couple of days) to over a dozen previously published
problems where an evolutionary algorithm has produced
results that are competitive with human-produced results.
Section 4 describes how to build a 10-node Beowulf-style
parallel computer system for $18,000 that delivers about a
half peta-flop of computational power per day for runs of
genetic programming.

2 Asynchronous Island Approach to
Parallelization

In computer runs of evolutionary algorithms, relatively little
computer time is expended on tasks such as the creation of
the initial population at the beginning of the run and the
execution of the genetic operations during the run (e.g.,
reproduction, crossover, and mutation). The task of
measuring the fitness of each individual in each generation
of the evolving population is usually the dominant
component of the computational burden (with respect to
computer time) in solving non-trivial problems of interest
using evolutionary algorithms.

These observations give rise to the most commonly used
approach to parallelization of evolutionary algorithms,
namely the asynchronous island model for parallelization. In

this approach, the population for a given run is divided into
semi-isolated subpopulations (Tanese 1989) called demes.
Each subpopulation is assigned to a separate processor of the
parallel computing system. There are numerous alternative
ways to implement this approach. In the usual scenario the
run begins with the random creation of the initial population
and each individual in a subpopulation is randomly created
locally on its local processor. Similarly, the genetic
operations are performed locally at each processor. In
particular, the selection of individuals to participate in
crossover is localized to the processor. The time-consuming
task of measuring the fitness of each individual is performed
locally at each processor. Upon completion of a generation
(or other interval), a relatively small percentage of the
individuals in each subpopulation are probabilistically
selected (based on fitness) for emigration from each
processor to other nearby processors. The processors operate
asynchronously in the sense that generations start and end
independently at each processor and in the sense that the
time of migration is not synchronized. The immigrants to a
particular destination typically wait in a buffer at their
destination until the destination is ready to assimilate them.
The immigrants are then inserted into the subpopulation at
the destination processor in lieu of the just-departed
emigrants. The overall iterative process then proceeds to the
next generation. The guiding principle in implementing this
parallel approach is always to fully utilize the computing
power of each processor. Thus, for example, if a full
complement of immigrants has not yet been received when a
processor is ready to assimilate immigrants, the deficiency
in immigrants may be made up from randomly chosen
copies of the just-departed emigrants. Similarly, if a
processor receives two groups of immigrants from a
particular other processor before it finishes its current
generation, the later immigrants may overwrite the previous
immigrants. The inter-processor communication
requirements of migration are low because only a modest
number of individuals migrate during each generation and
because each migration is separated by a comparatively
longer periods of time for fitness evaluation. A generation
may require from 15 minutes to an hour or more of
computer time for many problems involving time-
consuming simulations.

Because the time-consuming task of measuring fitness is
performed independently for each individual at each
processing node, the asynchronous island model for
parallelization delivers an overall increase in the total
amount of work performed that is nearly linear with the
number of independent processing nodes. That is, Nearly
100% efficiency is routinely realized when an evolutionary
algorithm is run on a parallel computer system using the
asynchronous island model for parallelization. This near-
100% efficiency is in marked contrast to the efficiency
achieved in parallelizing the vast majority of computer
calculations.

In addition, many researchers have noted that, for many
problems, the use of semi-isolated subpopulations with
occasional migration often delivers a super linear speed-up
in terms of the computational effort required to yield a

solution (Andre and Koza 1996b). That is, the performance
of an evolutionary algorithm is actually enhanced because of
the use the island model of parallelization (independent of
whether the run is made on a serial or parallel computer).

3 Peta-Cycle Results
There are 14 instances in Genetic Programming: Darwinian
Invention and Problem Solving (Koza, Bennett, Andre, and
Keane 1999; Koza, Bennett, Andre, Keane, and Brave 1999)
where genetic programming produced results that are
competitive with human-produced results.

When we say that an automatically created result is
competitive with one produced by human engineers,
designers, mathematicians, or programmers, we mean that it
satisfies one or more of the following eight criteria:

(A) The result was patented as an invention in the past,
is an improvement over a patented invention, or
would qualify today as a patentable new invention.

(B) The result is equal to or better than a result that was
accepted and published as a new scientific result at
the time when it was published in a peer-reviewed
journal.

(C) The result is equal to or better than a result that was
placed into a database or archive of results
maintained by an internationally recognized panel
of scientific experts.

(D) The result is publishable in its own right as a new
scientific result (independent of the fact that the
result was mechanically created).

(E) The result is equal to or better than the most recent
human-created solution to a long-standing
problem for which there has been a succession of
increasingly better human-created solutions.

(F) The result is equal to or better than a result that was
considered an achievement in its field at the time
it was first discovered.

(G) The result solves a problem of indisputable
difficulty in its field.

(H) The result holds it own or wins a regulated and
judged competition involving human contestants
(in the form of either live human players or
human-written computer programs).

Table 1 tallies the computer time that was consumed by
the runs that yielded these 14 instances. For each problem,
the table shows the number of minutes needed to create the
best-of-run individual for the run and the number of peta-
cycles (1015 computer cycles) consumed in the run. All
problems in table 1 (except for the problem in the last row)
were run on a 1995-vintage 64-node Parsytec parallel
computer with a 80 MHz PowerPC 601 microprocessor at
each processing node. The 64-node Parsytec parallel
computer operates at an aggregate rate of 5.12 GHz or 307.2
giga-cycles per minute. The SPECfp95 rating of a PowerPC
601 80-MHz processor is 2.97, so the 64-node Parsytec
system delivers about 190 SPECfp95 in the aggregate.

Table 1 Computer time consumed by runs of genetic
programming that produced 14 results that are
competitive with human-produced results.

Claimed instance Minutes Peta-
cycles

1 Transmembrane segment
identification problem
with architecture-altering
operations for subroutines

312 0.096

1 Transmembrane segment
identification problem
with iteration creation

163 0.050

2 Minimal sorting network
(GPPS 1.0)

145 0.045

2 Minimal sorting network
(GPPS 2.0)

30 0.009

3 Recognizable Campbell
ladder topology for
lowpass filters

138 0.042

4 Rediscovery of Zobel’s
“M-derived half section”
and “constant K” filter

481 0.148

5 Recognizable Cauer
(elliptic) topology for
filters

899 0.276

6 Crossover filter 2,673 0.821
6 Crossover filter 5,436 1.670
7 Recognizable voltage

gain stage and a
Darlington emitter-
follower section

1,056 0.324

8 60 dB amplifier 3,139 0.964
8 96 dB amplifier 4,786 1.470
9 Squaring computational

circuit
2,504 0.769

9 Cubing computational
circuit

2,545 0.782

9 Square root
computational circuit

2,817 0.865

9 Cube root computational
circuit

2,179 0.669

9 Logarithmic
computational circuit

4,309 1.324

9 Gaussian computational
circuit (MOSFET)

1,190 0.366

10 Real-time robot
controller

22,103 6.790

11 Temperature-sensing
circuit

14,204 4.363

12 Voltage reference circuit 37,147 11.412
13 Cellular automata rule for

the majority classification
problem

4,231 1.300

14 Motifs for the D–E–A-D
box family of proteins

3,297 1.013

For reference, the SPECfp95 rating of microprocessors is
produced by the Standard Performance Evaluation
Corporation (SPEC), a non-profit group of computer
vendors, system integrators, universities, and research
organizations (www.specbench.org). It is designed to
provide measures of performance for comparing
computationally intensive floating-point workloads on
different computer systems. The SPECfp95 rating measures
the performance of a computer’s processor, memory
architecture, and compiler using a suite of existing
application and benchmark source code running across
multiple platforms. (The last problem in the table was run on
a 1994-vintage parallel computer whose speed is about 1/22
of the speed the 64-node Parsytec system).

The 64-node Parsytec machine has a PC Pentium type
computer (running Windows 3.11) acting as the host. The
host supports the file server, video display, and keyboard for
the overall system. Each processing node has an 80-MHz
PowerPC 601 microprocessor, 32 megabytes of RAM
memory, and an INMOS T805 transputer. There is no disk
storage at the processing nodes. The 64 processing nodes do
not directly access input-output devices or the host’s file
system. The 64 nodes run a specialized transputer micro-
kernel operating system developed by Parsytec. At each
node, the Power PC microprocessor is used for
computational purposes, while the transputer is used solely
for communication purposes between the processors. The
PowerPC microprocessor is based on a RISC architecture
that is particularly well-suited for genetic programming
work. The 64 processing nodes are arranged in a toroidal
network with each processing node communicating with
four neighbors. The communication between processing
nodes is by means of the one-way, point-to-point channels of
the transputer on each processing node. The communication
channels are laid out along the physical links between the
nodes. The Parsytec virtual router creates a toroidal mesh
among the 64 processing nodes. Communication is based on
specialized functions contained in the INMOS toolkit.

The 23 runs in table 1 executed an average of 32,797,983
fitness evaluations. These runs averaged 5,034 minutes
(about 3.5 days) and consumed about 1.5 petacycles each.
This average was heavily influenced by three problems (the
temperature-sensing circuit, the voltage reference circuit,
and the real-time robot controller).

There are, of course, numerous additional instances where
genetic programming and other evolutionary algorithms
have been successfully used to evolve programs that are
competitive (in the stringent sense used above) with human-
produced results. Several such instances have consumed
amounts of computer time that are in the neighborhood of a
peta-flop For example, Juille’s discovery (1995), using
evolutionary computation, of a sorting network for 13 items
that was smaller than the best network in Knuth (1973)
consumed approximately 0.8 × 1014 operations (Juille 1997).
Other results (Luke and Spector 1998) consumed substantial
(and roughly similar) amounts of computer time. (Of course,
there are examples of other instances, such as Juille and
Pollack 1998, that consumed lesser amounts of computer
time). Our point here is simply that the clustering of over a

dozen such human-competitive results, achieved by different
researchers, in the general neighborhood of 1014 operations
suggests that it is reasonable to expect that other such
human-competitive results can be attained in the future with
this amount of computation. Thus, the ability to build a
parallel computer system with capacity of a half peta-flop
per day for $18,000 creates an opportunity to produce
similar human-competitive results.

4 Building a 10-Node System
This section describes a 10-node parallel computer system
with a 533-MHz Alpha microprocessor at each processing
node. The 10-node Alpha system operates at about 4.26 GHz
in the aggregate (i.e., almost the same as the previously
described 1995-vintage 64-node Parsytec parallel computer
with a 80 MHz PowerPC 601 microprocessor at each
processing node). The SPECfp95 rating of a 533-MHz
21164 Alpha microprocessor is 18.8 (about 6.33 times that
of the PowerPC 601 80-MHz microprocessor), so the 10-
node Alpha system delivers about 188 SPECft95 (almost
identical to the 190 SPECfp95 delivered by 64-node
Parsytec system). The Alpha processor has a total of four
instruction units. Two of these are integer units and two are
floating-point units. The instruction units are pipelined and
able to produce a result on every clock cycle if the pipelines
are kept full. With the clock running at 533 MHz, the peak
performance of the Alpha is 2 × 533 × 106 = 1.066 × 109

integer instructions and 1.066 × 109 floating-point
instructions per second (i.e., a gigaflop). Peak performance
is, of course, usually not realized on a sustained basis in
practice on actual code.

Figure 1 shows the various physical elements of a 10-node
parallel computer system. The 10-node system is arranged as
a computing cluster or Beowulf style system (Sterling 1996,
1998a; Sterling, Salmon, Becker, and Savarese. 1999). The
system has a host computer with a 533-MHz Alpha
microprocessor with 64 megabytes of RAM (running the
Linux operating system). The host contains a 4 GB hard
disk, video display, and keyboard. Each of the 10 processing
nodes of the system contains a 533-MHz Alpha
microprocessor with 64 megabytes of RAM. There is no
disk storage at the processing nodes. The processing nodes
do not directly access input-output devices or the host’s file
system. The 10 nodes run the Linux operating system. The
10 processing nodes are arranged in a 2 × 5 toroidal network
with each processing node communicating with four
neighbors. The communication between processing nodes is
by means of 100 megabit-per-second Ethernet.

Table 2 shows the bill of materials for the 10-node system.
Prices that were current as of March 1999 and were
provided by Stephen Gaudet of DCG Computers of
Londonderry, New Hampshire
(www.dcgomc.com/1999/index.html). As can be
seen from the table, the total price for the entire 10-node
system is $18,134 ($1,813 per processing node). The
favorable overall cost of the system is based on the fact that
all of the items in the bill of materials shown in table 2 are
“Commodity Off The Shelf” (COTS) products.

Alpha

Alpha

Alpha

Alpha

Alpha

Alpha

Alpha

Alpha

Hub

Host

Alpha Alpha

Figure 1 Ten-node parallel computer system.
At the time this was written, the 533 MHz Alpha 164LX

processor delivers very favorable floating-point performance
in relation to its price. Other Alpha motherboards (such as
the RX) will shortly become available which will include an
on-board 100 BT Ethernet (thereby eliminating the expense
and both of a separate NIC card). There are currently
marginally faster Alpha microprocessors in the 21164 series
as well as considerably faster Alpha microprocessors in the
21264 series. However, all of these faster chips are (at the
time of this writing) priced at a substantial premium (and
hence do not deliver the best price-to-performance ratio on a
SPECfp95 basis). Favorable pricing is achieved in part by
carefully selecting each particular part based on the most
recent pricing.

The current advantageousness of the fast Alpha
microprocessor is magnified by the role of the fixed-cost
items required to support each processing node. These
include the case, power supply, network interface card), and
the node’s share of the cost of the hub.

Approximately half of 64 MB of RAM is available for the
storage of the population (with the remainder housing the
Linux operating system, the application software, and
buffers for exporting and importing individuals, and other
items of overhead). Memory is rarely a constraining
consideration for the genetic algorithm operating on fixed-
length binary character strings; however, it is a consideration
for genetic programming. For genetic programming, a

population of 32,000 individuals, each occupying 1,000
bytes of RAM can be accommodated with 32 MB of RAM.
Using the one-byte-per-point method of storing individual
program trees in genetic programming (Andre and Koza
1996a), each individual in the population can possess 1,000
points (functions or terminals). A 10-node system with 64
MB of RAM at each processing node can therefore
accommodate a population of 320,000 1,000-point
individuals. Depending on the intended size of individuals in
the population for the user’s particular application, it may be
desirable to install more than 64 MB of RAM on each
processing node. The cost of the RAM (as shown in table 2)
is only about 6% of the total cost of the system and may thus
be doubled or quadrupled with relatively little impact on the
total cost of the system. The user must carefully consider the
likely length of the fitness evaluations that will be performed
by the system for his or her particular application in
evaluating whether there is any advantage to increasing the
amount of RAM per processing node The addition of RAM
to house a larger population does not, of course, accelerate
the computation at each processing node. If, for example, a
fitness evaluation consumes 0.10 seconds (as it may for a
simulation), then evaluating the fitness of 32,000 individuals
(32,000 1,000-point individuals occupying about 32 MB of
RAM) will consume 3,200 seconds. This means that a
generation will require 0.89 hours and, consequently, only
27 generations can be executed per day (so that running a
mere 100 generations will require four days).

The 100 megabit-per-second Ethernet is more than
sufficient to handle the migration of individuals in most
practical runs of genetic programming using the island
model. Migration usually occurs at a rate of perhaps 1% or
2% in each of four directions on each generation for each
processing node. If the population size is 32,000 at each
processing node and 2% of the population migrates in each
of four directions, then communication of 2,560 individuals
(2.56 MB of data if each individual consists of 1,000 bytes)
is required for every generation for each processing node. If
one generation is processed every 15 minutes (900 seconds),
this amounts to transmission of 2,844 bytes (about 23
kilobits) per second for each processing node. This amounts
of transmission of 28,440 bytes (about 227 kilobits) per
second for 10 nodes. This inter-node communication does
not tax a 100 megabit-per-second Ethernet. The Ethernet
also easily handles the end-of-generation messages (usually
involving less than 10,000 bytes each and occurring only
once per generation) from each of the 10 processing nodes to
the host processor (as well as other less frequent messages).

The Alpha 164LX processor is available on a motherboard
with the ATX form factor. A standard midtower-style case
for an Alpha motherboard with the ATX form factor is
available as an off-the-shelf commodity product. Such a case
solves the electromagnetic emission problems associated
with a 533 MHz microprocessor as well as the heat
dissipation requirements associated with the Alpha chip. The
use of standard cases does not minimize the space occupied
by the system; however, it provides a highly cost-effective
solution to the emission and heat problems. The standard
230 watt power supplies (produced and priced as a

commodity product) are similarly cost-effective. Each
processing node has three fans (one for the Alpha
microprocessor chip, one for the power supply, and one for
the case). The fan on the microprocessor contains a sensor
that shuts down the node if it fails.

An Ethernet (“dumb”) hub is sufficient for a 10-node
system. The price of the one 12-port hub for our 10-node
system is $330. In a larger system (such as our 70-node
system built in May 1998), Ethernet (“smart”) switches are
required. We used a Bay Networks BayStack 350T 16-port
10/100 BT Ethernet switch for every 15 processing nodes on
our 70-node system. The price of the one 16-port switch for
our 70-node system is $2300.

We use an uninterruptable power supply (UPS) providing
15 minutes of support for the system.

Table 2 Bill of materials for 10-node system.
Quantity Item Unit

price
Total

10 533 MHz Alpha
164LX processor and
motherboard

$1,200 $12,000

10 64 MB of SDRAM $115 $1,150
10 Linux operating

systems for nodes
$0 $0

10 100/10 BT DE500-
BA Ethernet network
interface card (NIC)

$100 $1,000

10 Axxion midtower case
with 230 W power
supply and fans.

$104 $1,040

1 SMC EZ Hub 12-port
Ethernet hub

$330 $330

1 APC Back-UPS Pro
1400 1,400 VA
uninterruptable power
supply (UPS)

$470 $470

11 Ethernet cables $4 $44
1 Shelving for 8 nodes $100 $100
1 Host computer with

64 MB of RAM, 100
BT Ethernet card, 4
GB disk, video
display screen,
keyboard

$2,000 $2,000

1 Linux operating
system for host

$0 $0

TOTAL $18,134
Linux is, by far, the most common operating system used

on individual nodes of Beowulf-style parallel computer
systems (whether the nodes are Alpha processors, Pentium
processors, or other processors). The Linux operating system
is free. In addition, our experience is that the Linux
operating system is remarkably robust. Between May 1998
and March 1999, we have operated a 70-node system
(designed in the manner described in this paper and
composed of 533 MHz Alpha chips) for 11 months on a 24-
hour/7-day-per-week basis without a crash (whether due to
operating system or electronic equipment). The relatively

small size of the Linux operating system obviates the need
for disk storage at each processing node. Since the main
requirement for memory in genetic programming work is
storage of the population and the relatively small genetic
programming application, we chose not to have hard disks at
each processing node. Diskless booting of the processing
nodes is handled by using the BOOTP protocol and
configuring the host computer as a BOOTP server.

The host computer receives the end-of-generation reports
from each processing node. It creates an output file
containing statistics about the run and all pace-setting
individuals. This file is stored on the hard disk of the host
computer. The host computer described in table 2 is capable
of supporting our 70-node system. Since communication
between the host processor and the processing nodes is by
means of Ethernet, the host computer need not be an Alpha
processor and need not employ the Linux operating system.

A 10-node system generates a noticeable amount of heat;
however, air conditioning is not usually required for system
of this size. The cost of electricity also plays a role in the
overall cost of operating the system over its expected useful
life.

Additional information about Beowulf-style parallel
computer systems can be found in Sterling 1996, Sterling
1998a, and, in particular, in How to Build a Beowulf: A
Guide to Implementation and Application of PC Cluster
(Sterling, Salmon, Becker, and Savarese. 1999). Additional
information is also available on the WWW at
http://cesdis.gsfc.nasa.gov/beowulf/cons
ortium.html and
http://www.cacr.caltech.edu/beowulf/tuto
rial/building.html. Electronic mailing lists on
Beowulf-style computing include beowulf-
request@cesdis.gsfc.nasa.gov, beowulf-
announce-request@cesdis.gsfc.nasa.gov, and
beowulf-wishlist-
request@cesdis.gsfc.nasa.gov.

5 Conclusion
This paper described how to build a 10-node Beowulf-style
parallel computer system for $18,000 that delivers about a
half peta-flop (1015 floating-point operations) of
computational power per day for runs of genetic
programming or other evolutionary algorithms.

Acknowledgments
Stephen Gaudet of DCG Computers of Londonderry, New
Hampshire (www.dcgomc.com/1999/index.html)
provided extensive helpful information for building the
parallel computer system based on Alpha processors. Andy
Singleton provided helpful information about the 18-node
Beowulf-style parallel system for genetic programming that
he built for his own use in New Hampshire in about 1995.

References
Andre, David and Koza, John R. 1995. Parallel genetic

programming on a network of transputers. In Rosca,
Justinian (editor). Proceedings of the Workshop on Genetic

Programming: From Theory to Real-World Applications.
University of Rochester. National Resource Laboratory for
the Study of Brain and Behavior. Technical Report 95-2.
June 1995. Pages 111–120.

Andre, David and Koza, John R. 1996. Parallel genetic
programming: A scalable implementation using the
transputer architecture. In Angeline, P. J. and Kinnear, K.
E. Jr. (editors). 1996. Advances in Genetic Programming
2. Cambridge: MIT Press.

Andre, David and Koza, John R. 1996b. A parallel
implementation of genetic programming that achieves
super-linear performance. In Arabnia, Hamid R. (editor).
Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications.
Athens, GA: CSREA. Volume III. Pages 1163-1174.

Goldberg, David E. 1989. Sizing populations for serial and
parallel genetic algorithms. In Schaffer, J. D. (editor).
Proceedings of the Third International Conference on
Genetic Algorithms. San Mateo, CA: Morgan Kaufmann
Publishers Inc. Pages 70-79.

Holland, John H. 1975. Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: University of Michigan Press.

Juille, Hugues. 1995. Evolution of non-deterministic
incremental algorithms as a new approach for search in
state spaces. In Eshelman, L. J. (editor). Proceedings of
the Sixth International Conference on Genetic Algorithms.
San Francisco: Morgan Kaufmann. 351–358.

Juille, Hugues. 1997. Personal communication.
Juille, Hugues and Pollack, Jordan B. 1998. Coevolving the

“ideal” trainer: Application to the discovery of cellular
automata rules. In Koza, John R., Banzhaf, Wolfgang,
Chellapilla, Kumar, Deb, Kalyanmoy, Dorigo, Marco,
Fogel, David B., Garzon, Max H., Goldberg, David E.,
Iba, Hitoshi, and Riolo, Rick L. (editors). Genetic
Programming 1998: Proceedings of the Third Annual
Conference, July 22-25, 1998, University of Wisconsin,
Madison, Wisconsin. San Francisco, CA: Morgan
Kaufmann. Pages 519 – 527.

Knuth, Donald E. 1973. The Art of Computer Programming.
Vol. 3. Reading, MA: Addison-Wesley.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA: MIT
Press.

Koza, John R. 1994b. Genetic Programming II Videotape:
The Next Generation. Cambridge, MA: MIT Press.

Koza, John R. 1995. Evolving the architecture of a multi-
part program in genetic programming using architecture-
altering operations. In McDonnell, John R., Reynolds,
Robert G., and Fogel, David B. (editors). Evolutionary
Programming IV: Proceedings of the Fourth Annual
Conference on Evolutionary Programming. Cambridge,
MA: The MIT Press. Pages 695–717.

Koza, John R. and Andre, David. 1995. Parallel Genetic
Programming on a Network of Transputers. Stanford

University Computer Science Department technical report
STAN-CS-TR-95-1542. January 30, 1995.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1999a. Genetic Programming III:
Darwinian Invention and Problem Solving. San Francisco,
CA: Morgan Kaufmann. Forthcoming.

Koza, John R., Bennett III, Forrest H, Andre, David, Keane,
Martin A., and Brave, Scott. 1999b. Genetic Programming
III Videotape. San Francisco, CA: Morgan Kaufmann.
Forthcoming.

Koza, John R., Bennett III, Forrest H, Andre, David, Keane,
Martin A, and Dunlap, Frank. 1997. Automated synthesis
of analog electrical circuits by means of genetic
programming. IEEE Transactions on Evolutionary
Computation. 1(2). Pages 109 – 128.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT Press.

Luke, Sean and Spector, Lee. 1998. Genetic programming
produced competitive soccer softbot teams for
RoboCup97. In Koza, John R., Banzhaf, Wolfgang,
Chellapilla, Kumar, Deb, Kalyanmoy, Dorigo, Marco,
Fogel, David B., Garzon, Max H., Goldberg, David E.,
Iba, Hitoshi, and Riolo, Rick. (editors). Genetic
Programming 1998: Proceedings of the Third Annual
Conference, July 22-25, 1998, University of Wisconsin,
Madison, Wisconsin. San Francisco, CA: Morgan
Kaufmann. Pages 214 – 222.

Messina, Paul, Sterling, Thomas, and Smith, Paul H.
(editors). 1999. Petaflops II: Second Conference on
Enabling Technologies for Peta(fl)ops Computing,
February 15 - 19, 1999, Santa Barbara.

Moore, Gordon E. 1996. Can Moore’s law continue
indefinitely? Computerworld Leadership Series. 2(6) 2–7.
July 15, 1996.

Robertson, George. l987. Parallel implementation of genetic
algorithms in a classifier system. In Davis, Lawrence.
(editor). Genetic Algorithms and Simulated Annealing
London: Pittman.

Stender, Joachim (editor). 1993. Parallel Genetic
Algorithms. Amsterdam: IOS Publishing.

Sterling, Thomas. 1996. The scientific workstation of the
future may be a pile of PCs. Communications of the ACM.
39(9). September 1996. Pages 11 – 12.

Sterling, Thomas. 1998a. Beowulf-class clustered
computing: Harnessing the power of parallelism in a pile
of PCs. In Koza, John R., Banzhaf, Wolfgang, Chellapilla,
Kumar, Deb, Kalyanmoy, Dorigo, Marco, Fogel, David
B., Garzon, Max H., Goldberg, David E., Iba, Hitoshi, and
Riolo, Rick L. (editors). Genetic Programming 1998:
Proceedings of the Third Annual Conference, July 22-25,
1998, University of Wisconsin, Madison, Wisconsin. San
Francisco, CA: Morgan Kaufmann. Pages 883 – 887.

Sterling, Thomas 1998b. Proceedings of Petaflops-Systems
Operations Working Review, Bodega Bay, California, June
1 -5, 1998.

Sterling, Thomas L. and Foster, Ian. 1996a. Proceedings of
Petaflops Architecture Workshop (PAWS ‘96), April 22 -
25, 1996.

Sterling, Thomas L. and Foster, Ian. 1996b. .Proceedings of
Petaflops System Software Summer Study (Peta Soft ‘96),
June 17 - 21, 1996.

Sterling, Thomas L., Salmon, John, and Becker, Donald J.,
and Savarese, Daniel F. 1999. How to Build a Beowulf: A
Guide to Implementation and Application of PC Clusters.
Cambridge, MA: MIT Press.

Tanese, Reiko. Distributed Genetic Algorithm for Function
Optimization. PhD. dissertation. Department of Electrical
Engineering and Computer Science. University of
Michigan. 1989.

