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ABSTRACT
This paper demonstrates the ability of genetic

programming to evolve analog circuits that perform
digital functions and mixed analog-digital circuits.
The evolved circuits include two purely digital
circuits (a 100 nano-second NAND circuit and a
two-instruction arithmetic logic unit circuit) and
one mixed-signal circuit, namely a three-input
digital-to-analog converter.

1. Introduction
It has been recently demonstrated genetic programming is
capable of synthesizing the design of certain analog
electrical circuits (Koza, Bennett, Andre, Keane, and Dunlap
1997; Koza, Bennett, Andre, and Keane 1999a, 1999b). In
fact, nine of the analog circuits presented in Genetic
Programming: Darwinian Invention and Problem Solving
(Koza, Bennett, Andre, and Keane 1999a) were considered
to be creative and inventive at the time they were first
discovered and were patented by their inventors.
Specifically, the previously patented, genetically evolved
circuits include the Darlington emitter-follower transistor
circuit (patented by Sidney Darlington of American
Telephone and Telegraph in 1952), the circuit that is now
known as the "constant K" ladder filter (patented by George
Campbell in 1917), the “M-derived half section” for a filter
(patented by Otto Zobel in 1925), the elliptic filter topology
(patented by Wilhelm Cauer between 1934 and 1936), and
the crossover filter (patented by Otto Zobel in 1925). Other

genetically evolved circuits that were covered by one or
more patents issued in the past 30 years include an electronic
thermometer, a voltage reference circuit, several different
high-gain, low-distortion, low-bias, broad-bandwidth
amplifiers, and several different computational circuits.

Previous work on circuit synthesis using genetic
programming neglected important categories of analog
circuits, including analog circuits that perform digital
functions and mixed analog-digital circuits.  One reason is
that the evaluation of the behavior of digital circuits requires
time-consuming simulations in the time domain for a
number of fitness cases (typically c2k, where k is the number
of input bits and c is some constant).

Section 2 provides general background on genetic
programming.  Sections 3 presents the preparatory steps for
evolving a two-input NAND circuit and section 4 presents
the results.  Sections 5 and 6 describe the evolution of a
three-input digital-to-analog converted (DAC) circuit.
Sections 7 and 8 describe the evolution of a two-instruction
arithmetic logic unit ALU) circuit.

2 Background on Genetic
Programming

Genetic programming is an extension of the genetic
algorithm (Holland 1975).  Genetic programming
automatically creates computer programs to solve problems.
Genetic programming is described in Koza 1992; Koza and
Rice 1992; Koza 1994a, 1994b; Banzhaf, Nordin, Keller,
and Francone 1998; Langdon 1998; Kinnear 1994; Angeline



and Kinnear 1996; Spector, Langdon, O’Reilly, and
Angeline 1999; Koza, Goldberg, Fogel, and Riolo 1996;
Koza, Deb, Dorigo, Fogel, Garzon, Iba, and Riolo 1997;
Koza, Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon,
Goldberg, Iba, and Riolo 1998; and Banzhaf, Poli,
Schoenauer, and Fogarty 1998.

3 Preparatory Steps for NAND
NAND circuits are multiple transistor circuits that perform
the elementary two-input Boolean NAND function.

Before applying genetic programming to a problem of
circuit synthesis, seven major preparatory steps are required:
(1) identify the initial circuit (test fixture and embryo) of the
developmental process, (2) determine the architecture of the
circuit-constructing program trees, (3) identify the primitive
functions of the program trees, (4) identify the terminals of
the program trees, (5) create the fitness measure, (6) choose
control parameters for the run, and (7) determine the
termination criterion and method of result designation.

3.1 Initial Circuit for NAND
An electrical circuit can be created by genetic programming
by means of a developmental process.  This developmental
process entails the execution of a circuit-constructing
program tree that contains various component-creating,
topology-modifying, and development-controlling functions.
An initial circuit consisting of an embryo and a test fixture is
the starting point of the developmental process for
transforming a program tree in the population into a fully
developed electrical circuit. The embryo contains at least
one modifiable wire. The test fixture is a fixed (hard-wired)
substructure composed of nonmodifiable wires and
nonmodifiable electrical components. The test fixture
provides access to the circuit’s external input(s) and permits
probing of the circuit’s output. A test fixture has one or more
ports that enable an embryo to be embedded into it. An
embryo has one or more ports that enable it to communicate
with the test fixture in which it is embedded. All
development originates from the modifiable wires.

Figure 1 Two-input, one-output initial circuit.

Figure 1 shows a two-input, one-output initial circuit
consisting of an embryo embedded in a test fixture. The
embryo consists of three modifiable wires Z1, Z2, and Z3.
The test fixture receives two incoming signals VSOURCE1
and VSOURCE2, each with two 1Ω source resistors
(RSOURCE1 and RSOURCE2), a nonmodifiable wire
ZOUT1 between nodes 3 and 5, a probe point VOUT1
(output of the overall circuit) at node 5, and a load resistor
RLOAD1 (whose value is 1,000 Ω) between nodes 5 and 0.

3.2 Program Architecture for NAND
Since there is a result-producing branch in the program tree
for each modifiable wire in the embryo, the architecture of
each program tree has three result-producing branches.

3.3 Function Set for NAND
The function set, Fccs, for each construction-continuing
subtree is
Fccs = {R, SERIES, PARALLEL0, PARALLEL1, FLIP,

NOP, RETAINING_THREE_GROUND_0,
RETAINING_THREE_GROUND_1,
RETAINING_THREE_POS5V_0,
RETAINING_THREE_POS5V_1,
PAIR_CONNECT_0, PAIR_CONNECT_1,
Q_DIODE_NPN, Q_DIODE_PNP,
Q_THREE_NPN0, ..., Q_THREE_NPN11,
Q_THREE_PNP0, ..., Q_THREE_PNP11,
Q_POS5V_COLL_NPN, Q_POS5V_EMIT_PNP,
Q_GND_EMIT_NPN, Q_GND_EMIT_PNP}

Space does not permit a detailed explanation of all the
above functions; however, all the functions in this section
are described in detail in Koza, Bennett, Andre, and Keane
1999a.  Briefly, the R function is a component-creating
function that inserts a resistor into a developing circuit and
that establishes the numerical value of the inserted
component. The SERIES and the two PARALLEL functions
modify the topology of the developing circuit by performing
a series or parallel division, respectively. The FLIP function
reverses the polarity of a component. The NOP (No
operation) function is a development-controlling function.

3.4 Terminal Set for NAND
The initial terminal set, Tccs, for each construction-
continuing subtree is
Tccs = {END, SAFE_CUT}.

Briefly, the development-controlling END function makes
the modifiable wire or modifiable component with which it
is associated non-modifiable (thereby ending a particular
developmental path). The SAFE_CUT function causes the
highlighted component to be removed from the circuit in a
way that preserves the validity of the circuit.

The initial terminal set, Taps, for each arithmetic-
performing subtree consists of
Taps = {ℜ}.

ℜ represents floating-point constants from –1.0 to +1.0.
The function set, Faps, for each arithmetic-performing

subtree is,
Faps = {+, -}.



3.5 Fitness Measure for NAND
The evaluation of each individual circuit-constructing
program tree in the population begins with its execution. The
execution progressively applies the functions in the program
tree to the embryo of the circuit, thereby creating a fully
developed circuit. A netlist is created that identifies each
component of the developed circuit, the nodes to which each
component is connected, and the value of each component.
The netlist becomes the input to our modified version of the
217,000-line SPICE (Simulation Program with Integrated
Circuit Emphasis) simulation program (Quarles, Newton,
Pederson, and Sangiovanni-Vincentelli 1994). SPICE then
determines the behavior of the circuit.

The output voltage VOUT is measured in the time domain.
SPICE is instructed to perform a transient (time domain)
analysis.

Both of the inputs to the initial circuit are presented with
18 100-ns digital signals.  Each signal is sampled every 20
ns (i.e., five sample points per 100 ns).  Thus, there are 91
fitness cases (figure 2). Both inputs are zero during the first
100 ns.  The next 17 input pairs represent the 16 possible
transitions between each of the four possible combinations
of the two input signals.

Figure 2  Ninety-one fitness cases in the time domain for
the NAND circuit.

The fitness of a circuit is the sum, over the 91 fitness
cases, of the weighted absolute value of the difference
between the actual output voltage at the probe point VOUT
and the desired output voltage.

The fitness measure is designed to not penalize ideal
voltage values, to slightly penalize every acceptable voltage,
and to heavily penalize every unacceptable voltage.

If the desired digital signal is 1 and the actual voltage is
5.0 volts or the desired digital signal is 0 and the actual
voltage is 0, the deviation is 0.  If the desired digital signal is
1 and the actual voltage is within 0.3 volts of 5.0 volts or the
desired digital signal is 0 and the actual voltage is within 0.4
volts of 0.0 volts, the absolute value of the deviation from
the desired output voltage (5 volts or 0 volts, respectively) is
weighted by a factor of 1.0.  If the actual voltage is outside
this range, the absolute value of the deviation is weighted by
a factor of 10.0.  The smaller the overall value of fitness, the
better.

The number of “hits” is defined as the number of fitness
cases for which the voltage is acceptable.

Many of the random initial circuits and many that are
created by crossover and mutation in subsequent generations
are so pathological that the SPICE simulator cannot simulate
them. These circuits receive a high penalty value of fitness

(108) and become the worst-of-generation programs for each
generation.

3.6 Control Parameters for NAND
The population size, M, is 132,000.  A maximum size of 300
points (functions and terminals) was established for each
branch of each circuit-constructing program tree.  Other
control parameters were the ones that are used previously for
the robot controller problem in chapter 48 and appendix D of
Koza, Bennett, Andre, and Keane 1999a.

3.7 Termination Criterion for NAND
Since the goal is to generate a variety of 100%-compliant
circuits for examination, the run was not automatically
terminated upon evolution of the first 100%-compliant
individual. Instead, the maximum number of generations, G,
is set to an arbitrary large number (e.g., 501); numerous
100%-compliant circuits were harvested; and the run was
manually monitored and manually terminated.

3.8 Implementation on Parallel
Computer
This problem was run on a home-built Beowulf-style
(Sterling, Salmon, Becker, and Savarese 1999) parallel
cluster computer system consisting of 66 processing nodes
(each containing a 533-MHz DEC Alpha microprocessor
and 64 megabytes of RAM) arranged in a two-dimensional 6
× 11 toroidal mesh. This computer was approximately eight
time faster than the 64-node parallel computer with 80 MHz
PowerPC microprocessors at each note (used for most of the
work in Koza, Bennett, Andre, and Keane 1999a). The new
66-node system has a DEC Alpha type computer as host.
The processing nodes are connected with a 100 megabit-per-
second Ethernet. The processing nodes and the host use the
Linux operating system. The distributed genetic algorithm
was used with a population size of Q = 2,000 at each of the
D = 66 demes (semi-isolated subpopulations).  Generations
are asynchronous on the nodes(Andre and Koza 1996).  On
each generation, four boatloads of emigrants, each
consisting of B = 2% (the migration rate) of the node's
subpopulation (selected probabilistically on the basis of
fitness) were dispatched to each of the four toroidally
adjacent processing nodes. Additional details about both
computers are found in Koza, Bennett, Andre, and Keane
1999s and in another GECCO-99 paper (Bennett, Koza,
Shipman, and Stiffelman 1999).

4 Results for NAND
The best-of-generation circuit (figure 3) from generation 17
has five transistors, five resistors.  This 100% compliant
circuit scores 91 (out of 91) hits and has a fitness of 7.85.



Figure 3  Evolved NAND circuit.

Figure 4 shows the behavior of this best-of-generation
circuit from generation 17 in the time domain for the 91
fitness cases.

Figure 4  Behavior of evolved NAND circuit.

Figure 5 shows a textbook TTL NAND circuit (from
Wakerly 1990) consisting of five transistors, four resistors,
and three diodes.

Figure 5  Textbook TTL NAND circuit.

5 Preparatory Steps for DAC Circuit
In this section and section 6, we evolve a digital-to-analog
converter (DAC).  The basic function of a DAC is the
conversion of binary numbers into analog voltages.

The preparatory steps for the DAC are the same as for the
NAND circuit, except as mentioned below.

5.1 Initial Circuit for DAC
Figure 6 shows a three-input, one-output initial circuit. The
embryo consists of three modifiable wires Z0, Z1, and Z2.
The test fixture receives three incoming signals, each with a
1 Ω source resistor.  The circuit also has a voltage probe
point VOUT and a load resistor RLOAD (whose value is
1,000 Ω).

Figure 6  Initial circuit for three-input DAC.

5.2 Fitness for DAC
SPICE is instructed to perform two separate transient (time
domain) analyses.

All three of the inputs to the initial circuit are presented
with nine 100-µs digital signals. All three inputs are zero
during the first 100 µs. The next eight input triples represent
all possible combinations of the three input signals.  The
first group of signals represent a counting from 0 up to 7
while the second group represents a counting from 7 down
to 0.  Each signal is sampled every 20 µs (i.e., five sample
points per 100 µs).  This approach yields a total of 92 fitness
cases (46 fitness cases in each group ).  Figure 7 shows the
first of the two groups of fitness cases.

Figure 7  First group of fitness cases in the time domain
for the DAC circuit.



5.2.1 Our First Fitness Measure Produced
Glitches

We first tried this problem using a fitness measure
consisting of the sum, over the 92 fitness cases, of the
weighted absolute value of the difference between the actual
output voltage at the probe point VOUT and the desired
output voltage. The desired voltages ranges from 0 volts (for
the 000 input) to 7 volts (for the 111 input).  If the voltage
exactly equals the desired voltage of VSOURCE0 plus two
times VSOURCE1 plus four times VSOURCE2, the
deviation is 0.  If the voltage is within 0.25 volts of the
desired voltage, the absolute value of the deviation from the
desired output voltage is weighted by a factor of 1.0.  If the
voltage is outside this range, the absolute value of the
deviation is weighted by a factor of 10.0.  The number of
hits is the number of fitness cases for which the output is
within 0.25 volts of the desired voltage.

Genetic programming successfully evolved a circuit with
92 hits (out of 92) and a very low value of fitness using this
first fitness measure.  Figure 8 shows the behavior of this
circuit using this first fitness measure.

Figure 8 Glitch-ridden behavior of best-of-run evolved
DAC circuit using the first fitness measure.

However, as can be seen in figure 8, there were three
narrow spikes (of height was between 0.1 and 0.2 volts) at
the boundaries between three particular fitness cases,
namely 110 to 101, 100 to 011, and 010 to 000.  Note that
these fitness cases are precisely the ones where two or more
of the three bits undergo change.  An ideal distortion-free
DAC would instantaneously create an output voltage that is
proportional to the input voltage.  However, in practice,
when the digital input changes from one value to another,
the output of the DAC reaches its new value after a time
delay.  The flaw that we observed is called a glitch (Song
and Harjani 1995). Glitches are evaluated in terms of the
size of the undesired voltage spike multiplied by its time
duration.  Glitches are caused by small time differences that
occur when some current sources turn off while others are
turn on.  Glitches are typically eliminated by adding special
deglitcher circuitry to DACs.  Of course, nothing in our first
fitness measure addressed the question of glitches.  Genetic
programming evolved a circuit that was exactly what we

asked for.  However, what we asked for was not what we
wanted!

5.2.2 Our Second Fitness Measure Produced
Even Greater Glitches

In the hope of eliminating the glitches permitted by the first
fitness measure, we constructed a second fitness measure.

In simulating circuits, SPICE internally identifies
particular points in time where the output voltage "turns."
The number of turns, of course, varies from circuit to circuit.
Our second fitness measure was the sum, for each of
SPICE’s internally created turn-defining points, of the areas
of the trapezoids between the curve representing the desired
output voltage and the curve representing the actual output
voltage.

Unfortunately, the magnitude of the glitches in the best-of-
run circuit that was evolved using this second fitness
measure were as large as 1 volt  far larger that the
magnitude of the glitches that we were trying to eliminate.
The second fitness measure tolerated these larger glitches
because they were very narrow (and hence occupied very
little total area).  As before, the glitches were at the
boundaries where two or more bits changed.  Thus, we again
got what we asked for, but not what we wanted.

5.2.3 A Crossover of Our First Two Fitness
Measure Eliminated the Glitches

Finally, we constructed a third fitness measure by combining
(crossing over) some of the features of the first and second
fitness measures.  (It is the results of using this third fitness
measure that we report in detail below).

The third fitness measure was the sum, over SPICE’s turn-
defining points, of the weighted absolute value of the
difference between the actual output voltage at the probe
point VOUT and the desired output voltage.  As in the first
fitness measure, if the voltage exactly equals the desired
voltage of VSOURCE0 plus two times VSOURCE1 plus
four times VSOURCE2, the deviation is 0.  Also, if the
voltage is within 0.25 volts of the desired voltage, the
absolute value of the deviation from the desired output
voltage is weighted by a factor of 1.0.  And, as before, if the
voltage is outside this range, the absolute value of the
deviation is weighted by a factor of 10.0.

5.3 Control Parameters for DAC
The population size, M, is 330,000.  A maximum size of 300
points (functions and terminals) was established for each
branch of each circuit-constructing program tree. Other
control parameters were the ones that are used previously for
the robot controller problem in chapter 48 and appendix D of
Koza, Bennett, Andre, and Keane 1999a.

6 Results for DAC Circuit
The best-of-generation circuit (figure 9) from generation 139
has six transistors, five capacitors, and 10 resistors.  This
circuit has a fitness of 104.8.



Figure 9  Best-of-run evolved DAC circuit from
generation 139.

Figure 10 shows the behavior of this best-of-generation
circuit from generation 139 in the time domain for the
second group of 46 fitness cases (counting down from 7 to
0).

Figure 10  Behavior of best-of-run evolved DAC circuit
from generation 139.

7 Preparatory Steps for Two-
Instruction ALU Circuit

The preparatory steps are the same as for the DAC circuit,
except as mentioned below.

7.1 Fitness for Two-Instruction ALU
SPICE is instructed to perform a transient (time domain)
analysis.

All three of the inputs to the initial circuit are presented
with 64 10-µs digital signals.  Each signal is sampled every
2 µs (i.e., five sample points per 10 µs).  Thus, there are 321
fitness cases. The 64 input triples represent all possible
transitions between each of the eight possible combinations
of the three input signals.  The first three parts of figure 11
shows the fitness cases for this problem while the bottom
part of the figure shows the correct answer.

Figure 11  Fitness cases for the two-instruction
arithmetic logic unit circuit.

The fitness of a circuit is the sum, over the 321 fitness
cases, of the weighted absolute value of the difference
between the actual output voltage at the probe point VOUT
and the desired output voltage.

If the voltage exactly equals the desired voltage, the
deviation is 0.  If the voltage is within 0.40 volts of the
desired voltage, the absolute value of the deviation from the
desired output voltage is weighted by a factor of 1.0.  If the
voltage is outside this range, the absolute value of the
deviation is weighted by a factor of 10.0.

7.2 Control Parameters for Two-
Instruction ALU

The population size, M, is 1,320,000.  A maximum size of
300 points (functions and terminals) was established for
each branch of each circuit-constructing program tree.

8 Results for Two-Instruction ALU
Circuit

The best-of-generation circuit (figure 12) from generation 33
has three transistors and two resistors.  This 100% compliant
circuit scores 321 (out of 321) hits and has a fitness of 215.6.

Figure 13 shows the behavior of this best-of-generation
circuit from generation 33 in the time domain for the 321
fitness cases.

9 Conclusion
This paper has shown three digital circuits that were evolved
by means of genetic programming, namely a five-transistor
100-nanosecond NAND circuit, a three-input digital-to-
analog converter (DAC), and a two-instruction arithmetic
logic unit (ALU) circuit.



.

Figure 12  Evolved two-instruction arithmetic logic unit
circuit from generation 33.

Figure 13  Behavior of evolved two-instruction
arithmetic logic unit circuit from generation 33.
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