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ABSTRACT 

This paper demonstrates the ability of genetic 
programming to evolve analog circuits that 
perform digital functions and mixed analog-digital 
circuits. The evolved circuits include two purely 
digital circuits (a 100 nano-second NAND circuit 
and a two-instruction arithmetic logic unit circuit) 
and one mixed-signal circuit, namely a three-input 
digital-to-analog converter.   

1. Introduction 
It has been recently demonstrated genetic programming is 
capable of synthesizing the design of certain analog 
electrical circuits (Koza, Bennett, Andre, Keane, and 
Dunlap 1997; Koza, Bennett, Andre, and Keane 1999a, 
1999b). In fact, nine of the analog circuits presented in 
Genetic Programming: Darwinian Invention and Problem 
Solving (Koza, Bennett, Andre, and Keane 1999a) were 
considered to be creative and inventive at the time they 
were first discovered and were patented by their inventors.  
Specifically, the previously patented, genetically evolved 
circuits include the Darlington emitter-follower transistor 
circuit (patented by Sidney Darlington of American 
Telephone and Telegraph in 1952), the circuit that is now 
known as the "constant K" ladder filter (patented by George 
Campbell in 1917), the “M-derived half section” for a filter 
(patented by Otto Zobel in 1925), the elliptic filter topology 
(patented by Wilhelm Cauer between 1934 and 1936), and 
the crossover filter (patented by Otto Zobel in 1925). Other 
genetically evolved circuits that were covered by one or 

more patents issued in the past 30 years include an 
electronic thermometer, a voltage reference circuit, several 
different high-gain, low-distortion, low-bias, broad-
bandwidth amplifiers, and several different computational 
circuits.  

Previous work on circuit synthesis using genetic 
programming neglected important categories of analog 
circuits, including analog circuits that perform digital 
functions and mixed analog-digital circuits.  One reason is 
that the evaluation of the behavior of digital circuits 
requires time-consuming simulations in the time domain for 
a number of fitness cases (typically c2k, where k is the 
number of input bits and c is some constant).  

Section 2 provides general background on genetic 
programming.  Sections 3 presents the preparatory steps for 
evolving a two-input NAND circuit and section 4 presents 
the results.  Sections 5 and 6 describe the evolution of a 
three-input digital-to-analog converted (DAC) circuit.  
Sections 7 and 8 describe the evolution of a two-instruction 
arithmetic logic unit ALU) circuit.  

2 Background on Genetic 
Programming 

Genetic programming is an extension of the genetic 
algorithm (Holland 1975).  Genetic programming 
automatically creates computer programs to solve problems. 
Genetic programming is described in Koza 1992; Koza and 
Rice 1992; Koza 1994a, 1994b; Banzhaf, Nordin, Keller, 
and Francone 1998; Langdon 1998; Kinnear 1994; 
Angeline and Kinnear 1996; Spector, Langdon, O'Reilly, 



 

and Angeline 1999; Koza, Goldberg, Fogel, and Riolo 
1996; Koza, Deb, Dorigo, Fogel, Garzon, Iba, and Riolo 
1997; Koza, Banzhaf, Chellapilla, Deb, Dorigo, Fogel, 
Garzon, Goldberg, Iba, and Riolo 1998; and Banzhaf, Poli, 
Schoenauer, and Fogarty 1998.  

3 Preparatory Steps for NAND 
NAND circuits are multiple transistor circuits that perform 
the elementary two-input Boolean NAND function.  

Before applying genetic programming to a problem of 
circuit synthesis, seven major preparatory steps are 
required: (1) identify the initial circuit (test fixture and 
embryo) of the developmental process, (2) determine the 
architecture of the circuit-constructing program trees, (3) 
identify the primitive functions of the program trees, (4) 
identify the terminals of the program trees, (5) create the 
fitness measure, (6) choose control parameters for the run, 
and (7) determine the termination criterion and method of 
result designation.  

3.1 Initial Circuit for NAND 
An electrical circuit can be created by genetic programming 
by means of a developmental process.  This developmental 
process entails the execution of a circuit-constructing 
program tree that contains various component-creating, 
topology-modifying, and development-controlling 
functions.  An initial circuit consisting of an embryo and a 
test fixture is the starting point of the developmental process 
for transforming a program tree in the population into a 
fully developed electrical circuit. The embryo contains at 
least one modifiable wire. The test fixture is a fixed (hard-
wired) substructure composed of nonmodifiable wires and 
nonmodifiable electrical components. The test fixture 
provides access to the circuit's external input(s) and permits 
probing of the circuit's output. A test fixture has one or 
more ports that enable an embryo to be embedded into it. 
An embryo has one or more ports that enable it to 
communicate with the test fixture in which it is embedded. 
All development originates from the modifiable wires.  

 
Figure 1 Two-input, one-output initial circuit.  

Figure 1 shows a two-input, one-output initial circuit 
consisting of an embryo embedded in a test fixture. The 
embryo consists of three modifiable wires Z1, Z2, and Z3. 
The test fixture receives two incoming signals VSOURCE1 
and VSOURCE2, each with two 1Ω source resistors 
(RSOURCE1 and RSOURCE2), a nonmodifiable wire 
ZOUT1 between nodes 3 and 5, a probe point VOUT1 
(output of the overall circuit) at node 5, and a load resistor 
RLOAD1 (whose value is 1,000 Ω) between nodes 5 and 0.  

3.2 Program Architecture for NAND 
Since there is a result-producing branch in the program tree 
for each modifiable wire in the embryo, the architecture of 
each program tree has three result-producing branches.  

3.3 Function Set for NAND 
The function set, Fccs, for each construction-continuing 
subtree is 
Fccs = {R, SERIES, PARALLEL0, PARALLEL1, FLIP, 

NOP, RETAINING_THREE_GROUND_0, 
RETAINING_THREE_GROUND_1, 
RETAINING_THREE_POS5V_0, 
RETAINING_THREE_POS5V_1, 
PAIR_CONNECT_0, PAIR_CONNECT_1, 
Q_DIODE_NPN, Q_DIODE_PNP, 
Q_THREE_NPN0, ..., Q_THREE_NPN11, 
Q_THREE_PNP0, ..., Q_THREE_PNP11, 
Q_POS5V_COLL_NPN, Q_POS5V_EMIT_PNP, 
Q_GND_EMIT_NPN, Q_GND_EMIT_PNP} 

Space does not permit a detailed explanation of all the 
above functions; however, all the functions in this section 
are described in detail in Koza, Bennett, Andre, and Keane 
1999a.  Briefly, the R function is a component-creating 
function that inserts a resistor into a developing circuit and 
that establishes the numerical value of the inserted 
component. The SERIES and the two PARALLEL 
functions modify the topology of the developing circuit by 
performing a series or parallel division, respectively. The 
FLIP function reverses the polarity of a component. The 
NOP (No operation) function is a development-controlling 
function.  

3.4 Terminal Set for NAND 
The initial terminal set, Tccs, for each construction-
continuing subtree is 
Tccs = {END, SAFE_CUT}.  

Briefly, the development-controlling END function makes 
the modifiable wire or modifiable component with which it 
is associated non-modifiable (thereby ending a particular 
developmental path). The SAFE_CUT function causes the 
highlighted component to be removed from the circuit in a 
way that preserves the validity of the circuit.   

The initial terminal set, Taps, for each arithmetic-
performing subtree consists of 
Taps = {ℜ}. 
ℜ represents floating-point constants from –1.0 to +1.0.  

The function set, Faps, for each arithmetic-performing 
subtree is, 



 

Faps = {+, -}.  

3.5 Fitness Measure for NAND 
The evaluation of each individual circuit-constructing 
program tree in the population begins with its execution. 
The execution progressively applies the functions in the 
program tree to the embryo of the circuit, thereby creating a 
fully developed circuit. A netlist is created that identifies 
each component of the developed circuit, the nodes to 
which each component is connected, and the value of each 
component. The netlist becomes the input to our modified 
version of the 217,000-line SPICE (Simulation Program 
with Integrated Circuit Emphasis) simulation program 
(Quarles, Newton, Pederson, and Sangiovanni-Vincentelli 
1994). SPICE then determines the behavior of the circuit.  

The output voltage VOUT is measured in the time 
domain. SPICE is instructed to perform a transient (time 
domain) analysis.   

Both of the inputs to the initial circuit are presented with 
18 100-ns digital signals.  Each signal is sampled every 20 
ns (i.e., five sample points per 100 ns).  Thus, there are 91 
fitness cases (figure 2). Both inputs are zero during the first 
100 ns.  The next 17 input pairs represent the 16 possible 
transitions between each of the four possible combinations 
of the two input signals.   

 
Figure 2  Ninety-one fitness cases in the time domain for 
the NAND circuit. 

The fitness of a circuit is the sum, over the 91 fitness 
cases, of the weighted absolute value of the difference 
between the actual output voltage at the probe point VOUT 
and the desired output voltage.  

The fitness measure is designed to not penalize ideal 
voltage values, to slightly penalize every acceptable voltage, 
and to heavily penalize every unacceptable voltage.  

If the desired digital signal is 1 and the actual voltage is 
5.0 volts or the desired digital signal is 0 and the actual 
voltage is 0, the deviation is 0.  If the desired digital signal 
is 1 and the actual voltage is within 0.3 volts of 5.0 volts or 
the desired digital signal is 0 and the actual voltage is within 
0.4 volts of 0.0 volts, the absolute value of the deviation 
from the desired output voltage (5 volts or 0 volts, 
respectively) is weighted by a factor of 1.0.  If the actual 
voltage is outside this range, the absolute value of the 
deviation is weighted by a factor of 10.0.  The smaller the 
overall value of fitness, the better.  

The number of “hits” is defined as the number of fitness 
cases for which the voltage is acceptable.  

Many of the random initial circuits and many that are 
created by crossover and mutation in subsequent 
generations are so pathological that the SPICE simulator 
cannot simulate them. These circuits receive a high penalty 
value of fitness (108) and become the worst-of-generation 
programs for each generation.  

3.6 Control Parameters for NAND 
The population size, M, is 132,000.  A maximum size of 
300 points (functions and terminals) was established for 
each branch of each circuit-constructing program tree.  
Other control parameters were the ones that are used 
previously for the robot controller problem in chapter 48 
and appendix D of Koza, Bennett, Andre, and Keane 1999a.   

3.7 Termination Criterion for NAND 
Since the goal is to generate a variety of 100%-compliant 
circuits for examination, the run was not automatically 
terminated upon evolution of the first 100%-compliant 
individual. Instead, the maximum number of generations, G, 
is set to an arbitrary large number (e.g., 501); numerous 
100%-compliant circuits were harvested; and the run was 
manually monitored and manually terminated.  

3.8 Implementation on Parallel 
Computer 
This problem was run on a home-built Beowulf-style 
(Sterling, Salmon, Becker, and Savarese 1999) parallel 
cluster computer system consisting of 66 processing nodes 
(each containing a 533-MHz DEC Alpha microprocessor 
and 64 megabytes of RAM) arranged in a two-dimensional 
6 × 11 toroidal mesh. This computer was approximately 
eight time faster than the 64-node parallel computer with 80 
MHz PowerPC microprocessors at each note (used for most 
of the work in Koza, Bennett, Andre, and Keane 1999a). 
The new 66-node system has a DEC Alpha type computer 
as host. The processing nodes are connected with a 100 
megabit-per-second Ethernet. The processing nodes and the 
host use the Linux operating system. The distributed genetic 
algorithm was used with a population size of Q = 2,000 at 
each of the D = 66 demes (semi-isolated subpopulations).  
Generations are asynchronous on the nodes(Andre and 
Koza 1996).  On each generation, four boatloads of 
emigrants, each consisting of B = 2% (the migration rate) of 
the node's subpopulation (selected probabilistically on the 
basis of fitness) were dispatched to each of the four 
toroidally adjacent processing nodes. Additional details 
about both computers are found in Koza, Bennett, Andre, 
and Keane 1999s and in another GECCO-99 paper 
(Bennett, Koza, Shipman, and Stiffelman 1999).  

4 Results for NAND 
The best-of-generation circuit (figure 3) from generation 17 
has five transistors, five resistors.  This 100% compliant 
circuit scores 91 (out of 91) hits and has a fitness of 7.85.   



 

 
Figure 3  Evolved NAND circuit. 

Figure 4 shows the behavior of this best-of-generation 
circuit from generation 17 in the time domain for the 91 
fitness cases.  

 
Figure 4  Behavior of evolved NAND circuit. 

Figure 5 shows a textbook TTL NAND circuit (from 
Wakerly 1990) consisting of five transistors, four resistors, 
and three diodes.   

 
Figure 5  Textbook TTL NAND circuit. 

5 Preparatory Steps for DAC Circuit 
In this section and section 6, we evolve a digital-to-analog 
converter (DAC).  The basic function of a DAC is the 
conversion of binary numbers into analog voltages.   

The preparatory steps for the DAC are the same as for the 
NAND circuit, except as mentioned below.  

5.1 Initial Circuit for DAC 
Figure 6 shows a three-input, one-output initial circuit. The 
embryo consists of three modifiable wires Z0, Z1, and Z2. 
The test fixture receives three incoming signals, each with a 
1 Ω source resistor.  The circuit also has a voltage probe 
point VOUT and a load resistor RLOAD (whose value is 
1,000 Ω).   

 
Figure 6  Initial circuit for three-input DAC. 

5.2 Fitness for DAC 
SPICE is instructed to perform two separate transient (time 
domain) analyses.  

All three of the inputs to the initial circuit are presented 
with nine 100-µs digital signals. All three inputs are zero 
during the first 100 µs. The next eight input triples represent 
all possible combinations of the three input signals.  The 
first group of signals represent a counting from 0 up to 7 
while the second group represents a counting from 7 down 
to 0.  Each signal is sampled every 20 µs (i.e., five sample 
points per 100 µs).  This approach yields a total of 92 
fitness cases (46 fitness cases in each group ).  Figure 7 
shows the first of the two groups of fitness cases.  

 
Figure 7  First group of fitness cases in the time domain 
for the DAC circuit. 



 

5.2.1 Our First Fitness Measure Produced 
Glitches 

We first tried this problem using a fitness measure 
consisting of the sum, over the 92 fitness cases, of the 
weighted absolute value of the difference between the actual 
output voltage at the probe point VOUT and the desired 
output voltage. The desired voltages ranges from 0 volts 
(for the 000 input) to 7 volts (for the 111 input).  If the 
voltage exactly equals the desired voltage of VSOURCE0 
plus two times VSOURCE1 plus four times VSOURCE2, 
the deviation is 0.  If the voltage is within 0.25 volts of the 
desired voltage, the absolute value of the deviation from the 
desired output voltage is weighted by a factor of 1.0.  If the 
voltage is outside this range, the absolute value of the 
deviation is weighted by a factor of 10.0.  The number of 
hits is the number of fitness cases for which the output is 
within 0.25 volts of the desired voltage.  

Genetic programming successfully evolved a circuit with 
92 hits (out of 92) and a very low value of fitness using this 
first fitness measure.  Figure 8 shows the behavior of this 
circuit using this first fitness measure.  

 
Figure 8 Glitch-ridden behavior of best-of-run evolved 
DAC circuit using the first fitness measure.  

However, as can be seen in figure 8, there were three 
narrow spikes (of height was between 0.1 and 0.2 volts) at 
the boundaries between three particular fitness cases, 
namely 110 to 101, 100 to 011, and 010 to 000.  Note that 
these fitness cases are precisely the ones where two or more 
of the three bits undergo change.  An ideal distortion-free 
DAC would instantaneously create an output voltage that is 
proportional to the input voltage.  However, in practice, 
when the digital input changes from one value to another, 
the output of the DAC reaches its new value after a time 
delay.  The flaw that we observed is called a glitch (Song 
and Harjani 1995). Glitches are evaluated in terms of the 
size of the undesired voltage spike multiplied by its time 
duration.  Glitches are caused by small time differences that 
occur when some current sources turn off while others are 
turn on.  Glitches are typically eliminated by adding special 
deglitcher circuitry to DACs.  Of course, nothing in our first 
fitness measure addressed the question of glitches.  Genetic 
programming evolved a circuit that was exactly what we 

asked for.  However, what we asked for was not what we 
wanted!  

5.2.2 Our Second Fitness Measure Produced 
Even Greater Glitches 

In the hope of eliminating the glitches permitted by the first 
fitness measure, we constructed a second fitness measure.   

In simulating circuits, SPICE internally identifies 
particular points in time where the output voltage "turns."  
The number of turns, of course, varies from circuit to 
circuit.  Our second fitness measure was the sum, for each 
of SPICE's internally created turn-defining points, of the 
areas of the trapezoids between the curve representing the 
desired output voltage and the curve representing the actual 
output voltage.   

Unfortunately, the magnitude of the glitches in the best-
of-run circuit that was evolved using this second fitness 
measure were as large as 1 volt  far larger that the 
magnitude of the glitches that we were trying to eliminate.  
The second fitness measure tolerated these larger glitches 
because they were very narrow (and hence occupied very 
little total area).  As before, the glitches were at the 
boundaries where two or more bits changed.  Thus, we 
again got what we asked for, but not what we wanted.  

5.2.3 A Crossover of Our First Two Fitness 
Measure Eliminated the Glitches 

Finally, we constructed a third fitness measure by 
combining (crossing over) some of the features of the first 
and second fitness measures.  (It is the results of using this 
third fitness measure that we report in detail below).   

The third fitness measure was the sum, over SPICE's turn-
defining points, of the weighted absolute value of the 
difference between the actual output voltage at the probe 
point VOUT and the desired output voltage.  As in the first 
fitness measure, if the voltage exactly equals the desired 
voltage of VSOURCE0 plus two times VSOURCE1 plus 
four times VSOURCE2, the deviation is 0.  Also, if the 
voltage is within 0.25 volts of the desired voltage, the 
absolute value of the deviation from the desired output 
voltage is weighted by a factor of 1.0.  And, as before, if the 
voltage is outside this range, the absolute value of the 
deviation is weighted by a factor of 10.0.   

5.3 Control Parameters for DAC 
The population size, M, is 330,000.  A maximum size of 
300 points (functions and terminals) was established for 
each branch of each circuit-constructing program tree. Other 
control parameters were the ones that are used previously 
for the robot controller problem in chapter 48 and appendix 
D of Koza, Bennett, Andre, and Keane 1999a.  

6 Results for DAC Circuit 
The best-of-generation circuit (figure 9) from generation 
139 has six transistors, five capacitors, and 10 resistors.  
This circuit has a fitness of 104.8.   



 

 
Figure 9  Best-of-run evolved DAC circuit from 
generation 139.  

Figure 10 shows the behavior of this best-of-generation 
circuit from generation 139 in the time domain for the 
second group of 46 fitness cases (counting down from 7 to 
0).  

 
Figure 10  Behavior of best-of-run evolved DAC circuit 
from generation 139.  

7 Preparatory Steps for Two-
Instruction ALU Circuit 

The preparatory steps are the same as for the DAC circuit, 
except as mentioned below.  

7.1 Fitness for Two-Instruction ALU 
SPICE is instructed to perform a transient (time domain) 
analysis.   

All three of the inputs to the initial circuit are presented 
with 64 10-µs digital signals.  Each signal is sampled every 
2 µs (i.e., five sample points per 10 µs).  Thus, there are 321 
fitness cases. The 64 input triples represent all possible 
transitions between each of the eight possible combinations 
of the three input signals.  The first three parts of figure 11 
shows the fitness cases for this problem while the bottom 
part of the figure shows the correct answer.  

 
Figure 11  Fitness cases for the two-instruction 
arithmetic logic unit circuit. 

The fitness of a circuit is the sum, over the 321 fitness 
cases, of the weighted absolute value of the difference 
between the actual output voltage at the probe point VOUT 
and the desired output voltage.  

If the voltage exactly equals the desired voltage, the 
deviation is 0.  If the voltage is within 0.40 volts of the 
desired voltage, the absolute value of the deviation from the 
desired output voltage is weighted by a factor of 1.0.  If the 
voltage is outside this range, the absolute value of the 
deviation is weighted by a factor of 10.0.   

7.2 Control Parameters for Two-
Instruction ALU 

The population size, M, is 1,320,000.  A maximum size of 
300 points (functions and terminals) was established for 
each branch of each circuit-constructing program tree.   

8 Results for Two-Instruction ALU 
Circuit 

The best-of-generation circuit (figure 12) from generation 
33 has three transistors and two resistors.  This 100% 
compliant circuit scores 321 (out of 321) hits and has a 
fitness of 215.6.  

Figure 13 shows the behavior of this best-of-generation 
circuit from generation 33 in the time domain for the 321 
fitness cases.  

9 Conclusion 
This paper has shown three digital circuits that were 
evolved by means of genetic programming, namely a five-
transistor 100-nanosecond NAND circuit, a three-input 
digital-to-analog converter (DAC), and a two-instruction 
arithmetic logic unit (ALU) circuit.  



 

.  
Figure 12  Evolved two-instruction arithmetic logic unit 
circuit from generation 33. 

 
Figure 13  Behavior of evolved two-instruction 
arithmetic logic unit circuit from generation 33. 
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