
Automatic Synthesis, Placement, and Routing of an
Amplifier Circuit by Means of Genetic Programming

Forrest H Bennett III
Genetic Programming Inc.

(Currently, FX Palo Alto Laboratory, Palo Alto, California)
forrest@evolute.com

John R. Koza

Stanford University, Stanford, California
koza@stanford.edu

Jessen Yu

Genetic Programming Inc., Los Altos, California
jyu@cs.stanford.edu

William Mydlowec

Genetic Programming Inc., Los Altos, California
myd@cs.stanford.edu

Abstract
The complete design of a circuit typically includes the tasks of creating the
circuit's placement and routing as well as creating its topology and
component sizing. Design engineers perform these four tasks sequentially.
Each of these four tasks is, by itself, either vexatious or computationally
intractable. This paper describes an automatic approach in which genetic
programming starts with a high-level statement of the requirements for the
desired circuit and simultaneously creates the circuit's topology,
component sizing, placement, and routing as part of a single integrated
design process. The approach is illustrated using the problem of designing
a 60 decibel amplifier. The fitness measure considers the gain, bias, and
distortion of the candidate circuit as well as the area occupied by the
circuit after the automatic placement and routing.

1 Introduction
The topology of a circuit involves specification of the gross number of components in
the circuit, the identity of each component (e.g., transistor, capacitor), and the
connections between each lead of each component. Sizing involves the specification
of the values (typically numerical) of each component. Placement involves the
assignment of each of the circuit's components to a particular geographic (physical)
location on a printed circuit board or silicon wafer. Routing involves the assignment
of a particular geographic location to the wires connecting the various components.

Design engineers typically perform the tasks of creating circuit's topology, sizing,
placement, and routing as a series of four separate sequential tasks. Each of these
tasks is either vexatious or computationally intractable. In particular, the problem of
placement and the problem of routing (both analog and digital) are computationally

intractable combinatorial optimization problems that require computing effort that
increases exponentially with problem size (Garey and Johnson 1979).

The mandatory requirements for an acceptable scheme for placement and routing
are that there must be a wire connecting every lead of all of the circuit's components,
that wires must not cross on a particular layer of a silicon chip or on a particular side
(or layer) of a printed circuit board, and that minimum clearance distances must be
maintained between wires, between components, and between wires and components.
Once these mandatory requirements are satisfied, minimization of area typically
becomes the next most important consideration.

Genetic programming has recently been shown to be capable of solving the
problem of automatically creating the topology and sizing for an analog electrical
circuit from a high-level statement of the circuit's desired behavior (Koza, Bennett,
Andre, and Keane 1996; Bennett, Koza, Andre, and Keane 1996; Koza, Bennett,
Andre, and Keane 1999; Koza, Bennett, Andre, Keane, and Brave 1999). Numerous
analog circuits have been designed using genetic programming, including lowpass,
highpass, bandpass, bandstop, crossover, multiple bandpass, and asymmetric filters,
amplifiers, computational circuits, temperature-sensing circuits, voltage reference
circuits, a frequency-measuring circuit, source identification circuits, and analog
circuits that perform digital functions. The circuits evolved using genetic
programming include eleven previously patented circuits.

However, this previous work did not address the problem of automatically placing
and routing of components and wires at particular geographic locations on a printed
circuit board or silicon wafer. This paper demonstrates that genetic programming can
be used to automatically create the topology, sizing, placement, and routing of analog
electrical circuits. Section 2 presents our method. Section 3 describes the preparatory
steps required to apply our method to an illustrative problem involving designing a 60
decibel amplifier. Section 4 presents the results.

2 Method
A printed circuit board or silicon wafer has a limited number of layers that are
available for wires and a limited number of layers (usually one for a wafer and one or
two for a board) that are available for both wires and components. Each wire and
component is located at a particular relative geographic (physical) location on the
printed circuit board or silicon wafer.

We create electrical circuits using a developmental process in which the
component-creating functions, topology-modifying functions, and development-
controlling functions of a circuit-constructing program tree are executed. Each of
these three types of functions is associated with a modifiable wire or modifiable
component in the developing circuit. The starting point of the developmental process
is an initial circuit consisting of an embryo and a test fixture. The embryo consists of
modifiable wire(s). The embryo is embedded into a test fixture consisting of fixed
(hard-wired) components (e.g., the source of the incoming signal) and certain fixed
wires that provide connectivity to the circuit's external inputs and outputs. Until the
modifiable wires are modified by the developmental process, the circuit produces
only trivial output. An electrical circuit is developed by progressively applying the
functions in a circuit-constructing program tree (in the population being bred by
genetic programming) to the modifiable wires of the original embryo and to the

modifiable components and modifiable wires created during the developmental
process. The functions in the program tree are progressively applied (in a breadth-
first order) to the initial circuit and its successors until a fully developed circuit
emerges.
2.1 The Initial Circuit
Figure 1 shows a one-input, one-output initial circuit (consisting of an embryo and a
test fixture) located on one layer of a silicon wafer or printed circuit board. The
embryo consists of the three modifiable wires, Z0, Z1, and Z2 (in the middle of the
figure). All development originates from these modifiable wires. The test fixture
contains two ground points G, an input point V (lower left), an output point O (upper
right), nonmodifiable wires (hashed), and four nonmodifiable resistors. There is a
fixed 1 kilo-Ohm (kΩ) source resistor R4, a fixed 1 kΩ load resistor R18, a fixed 1
giga-Ohm feedback resistor R14, and a fixed 999 Ω balancing resistor R3.

Each element of this initial circuit (and all successor circuits created by the
developmental process) resides at particular geographic location on the circuit’s two-
dimensional substrate. Each element occupies a particular amount of space. For
example, the resistors each occupy a 3 × 3 area; the source point V and the output
probe point O each occupy a 1 × 1 area; the nonmodifiable wires each occupy a 1 × n
or n × 1 area; the modifiable wires each occupy a 1 × 1 area.

The initial circuit in the developmental process complies with the requirements
that wires must not cross on a particular layer of a silicon chip or on a particular side
of a printed circuit board, that there must be a wire connecting 100% of the leads of
all the circuit's components, and that minimum clearance distances between wires,
between components, and between wires and components must be respected. Each of
the circuit-constructing functions (described below) preserves compliance with these
requirements. Thus, every fully laid-out circuit complies with these requirements.
The component-creating functions insert a component into the developing circuit and
assign component value(s) to the new component.
2.2 Circuit-Constructing Functions

Figure 2 shows a partial circuit containing four capacitors (C2, C3, C4, and C5)
and a modifiable wire Z0. Each capacitor occupies a 3 × 3 area and is located at a
particular geographic location (indicated by an X and Y coordinate). Each piece of
wire occupies a 1 × n or an n × 1 area. The modifiable wire Z0 occupies a 1 × 1 area.

Figure 3 shows the result of applying the one-argument transistor-creating NPN-
TRANSISTOR-LAYOUT function to the modifiable wire Z0 of figure 2. The newly
created npn (q2n3904 BJT) transistor Q6 occupies a 3 × 3 area and is located at (18,
20). The newly created component is larger than that which it replaces. Thus, its
insertion affects the locations of preexisting components C2 and C3 in the
developing circuit. Specifically, preexisting capacitor C2 is pushed north by one unit
thereby relocating it from (18, 23) to (18, 24). Similarly, preexisting capacitor C3 is
pushed south by one unit thereby relocating it from (18, 17) to (18, 16). In actual
practice, all adjustments in location are made after the completion of the entire
developmental process. Details of implementation of this function (and other
functions described herein) are found in Koza and Bennett 1999. The newly created
transistor is not subject to subsequent modification (and hence there is no

construction-continuing subtree). Similarly, the PNP-TRANSISTOR-LAYOUT

function inserts a pnp (q2n3906 BJT) transistor.
Figure 1 Initial circuit consisting of embryo and test fixture.

The two-argument capacitor-creating LAYOUT-C function inserts a capacitor into
a developing circuit in lieu of a modifiable wire (or modifiable component). This
component-creating function takes an argument that specifies component sizing.
Similar functions insert other two-leaded components (e.g., resistors and inductors).
The sizing of components are established by a numerical value. In the initial random
generation of a run, the numerical value is set, individually and separately, to a
random value in a chosen range. In later generations, the numerical value may be
perturbed by a mutation operation using a Gaussian probability distribution.
2.3 Topology-Modifying Functions
The topology-modifying functions modify the topology of the developing circuit.

The two-argument SERIES-LAYOUT function creates a series composition
consisting of the modifiable wire or modifiable component with which the function is
associated and a copy of the modifiable wire or modifiable component.

Each of the two functions in the PARALLEL-LAYOUT family of four-argument
functions creates a parallel composition consisting of two new modifiable wires, the
preexisting modifiable wire or modifiable component with which the function is
associated, and a copy of the modifiable wire or modifiable component.

The one-argument polarity-reversing FLIP function reverses the polarity of the
modifiable component or modifiable wire with which the function is associated.

Most practical circuits are not entirely planar. Vias provide a way to connect
distant points of a circuit. Each of the four functions in the VIA-TO-GROUND-
LAYOUT family of three-argument functions creates a T-shaped composition
consisting of the modifiable wire or modifiable component with which the function is
associated, a copy of it, two new modifiable wires, and a via to ground. There is a
similar VIA-TO-POSITIVE-LAYOUT family of four three-arguments functions to
allow direct connection to a positive power supply and a similar VIA-TO-
NEGATIVE-LAYOUT family for the negative power supply.

G

V

R3

R4

R14

R18

G

O

Z0

Z1

Z2

G

Z0

C2 C4

C3 C5

1 2

10 12

1311

3x3 3x3

3x3 3x3

(18,23)

(18,17) (22,17)

(22,23)

- +

(20,20)

Figure 2 Partial circuit with a 1 × 1 piece
of modifiable wire Z0 at location (20, 20).

C2
C4

C3
C5

2

10
12

13
11

3x3
3x3

3x3
3x3

(18,24)

(18,16)
(22,17)

(22,23)

Q6

3x3
(18,20)

3

4

Figure 3 The result of applying the NPN-

TRANSISTOR-LAYOUT function.
Similarly, numbered vias provide connectivity between two different layers of a

multi-layered silicon wafer or multi-layered printed circuit board. A distinct four-
member family of three-argument functions is used for each layer. For example, the
VIA-0-LAYOUT and VIA-1-LAYOUT families of functions makes connection with
a layers numbered 0 and 1, respectively, of a two-layered substrate.
2.4 Development-Controlling Functions
The zero-argument END function makes the modifiable wire or modifiable
component with which it is associated into a non-modifiable wire or component
(thereby ending a particular developmental path).

The one-argument NOOP (“No Operation”) function has no effect on the
modifiable wire or modifiable component with which it is associated; however, it
delays the developmental process on the particular path on which it appears.

3 Preparatory Steps
The method will be illustrated on the problem of creating the topology, component
sizing, placement, and routing for a 60 dB amplifier with zero distortion and zero bias
and with the smallest possible total area for the bounding rectangle of the fully laid-
out circuit. (See Bennett, Koza, Andre, and Keane 1996 for a more detailed statement
of this problem, without consideration of placement and routing). The circuit is to be
constructed on a two-sided printed circuit board with two internal layers. The top side
contains discrete components (e.g., transistors, capacitors, and resistors,) that are
connected by perpendicularly intersecting metallic wires. The bottom side is devoted
to connections to ground. The two internal layers are devoted to via 0 and via 1.

3.1 Initial Circuit
We use the one-input, one-output initial circuit (figure 1) consisting of a test fixture
and an embryo with three modifiable wires.
3.2 Program Architecture
There is one result-producing branch in the program tree for each modifiable wire in
the embryo. Thus, the architecture of each circuit-constructing program tree has three
result-producing branches. Neither automatically defined functions nor architecture-
altering operations are used.
3.3 Function and Terminal Sets
The terminal set, Tccs, for each construction-continuing subtree consists of the
development-controlling END function. The function set, Fccs, for each construction-
continuing subtree includes component-creating functions for npn transistors, pnp
transistors, capacitors, resistors, and inductors (a totally extraneous component for
this problem); the development-controlling NOOP function; and topology-modifying
functions for series, parallel, flips and vias to ground, the positive power supply, the
negative power supply, and layers 0 and 1 of the printed circuit board.
3.4 Fitness Measure
The fitness measure is based on the area of the bounding rectangle of the laid-out
circuit as well as the gain, bias, and distortion of the candidate amplifier circuit.

The evaluation of the fitness of each individual circuit-constructing program tree
in the population begins with its execution. This execution progressively applies the
functions in the program tree to the embryo of the circuit, thereby creating a fully
developed (and fully laid out) circuit. Since the developmental process for creating
the fully developed circuit includes the actual geographic placement of components
and the actual geographic routing of wires between the components, the area of the
bounding rectangle for the fully developed circuit can be easily computed.

A netlist is then created that identifies each component of the developed circuit,
the nodes to which each component is connected, and the value of each component.
The netlist is the input to our modified version of the SPICE simulator (Quarles,
Newton, Pederson, and Sangiovanni-Vincentelli 1994).

An amplifier can be viewed in terms of its response to a DC input. An ideal
inverting amplifier circuit would receive a DC input, invert it, and multiply it by the
amplification factor. A circuit is flawed to the extent that it does not achieve the
desired amplification; to the extent that the output signal is not centered on 0 volts
(i.e., it has a bias); and to the extent that the DC response of the circuit is not linear.

We used a fitness measure based on SPICE's DC sweep. The DC sweep analysis
measures the DC response of the circuit at several different DC input voltages. The
circuits were analyzed with a 5 point DC sweep ranging from –10 millvolts (mv) to
+10 mv, with input points at –10 mv, –5 mv, 0 mv, +5 mv, and +10 mv. SPICE then
simulated the circuit's behavior for each of these five DC voltages. Four penalties (an
amplification penalty, bias penalty, and two non-linearity penalties) are then derived.

First, the amplification factor of the circuit is measured by the slope of the straight
line between the output for –10 mv and the output for +10 mv (i.e., between the
outputs for the endpoints of the DC sweep). If the amplification factor is less than the
target (60 dB), there is a penalty equal to the shortfall in amplification.

Second, the bias is computed using the DC output associated with a DC input of 0
volts. There is a penalty equal to the bias times a weight. A weight of 0.1 is used.

Third, the linearity is measured by the deviation between the slope of each of two
shorter lines and the overall amplification factor of the circuit. The first shorter line
segment connects the output value associated with an input of –10 mv and the output
value for –5 mv. The second shorter line segment connects the output value for +5
mv and the output for +10 mv. There is a penalty for each of these shorter line
segments equal to the absolute value of the difference in slope between the respective
shorter line segment and the overall amplification factor of the circuit.

The fitness measure is multiobjective. Fitness is the sum of (1) the area of the
bounding rectangle for the fully developed and laid-out circuit weighted by 10-6, (2)
the amplification penalty, (3) the bias penalty, and (4) the two non-linearity penalties;
however, if this sum is less than 0.1 (indicating achievement of a very good
amplifier), the fitness becomes simply the rectangle's area multiplied by 10-6. Thus,
after a good amplifier design is once achieved, fitness is based solely on area
minimization.

Circuits that cannot be simulated by SPICE receive a penalty value of fitness
(10

8
).

3.5 Control Parameters
The population size, M, is 10,000,000. A maximum size of 300 points (functions and
terminals) was established for each of the three result-producing branches for each
program tree. The other control parameters are those that we have used on many
other problems (Koza, Bennett, Andre, and Keane 1999, Appendix D).
3.6 Implementation on Parallel Computer
This problem was run on a home-built Beowulf-style (Sterling, Salmon, Becker, and
Savarese 1999) parallel cluster computer system consisting of 1,000 350 MHz
Pentium II processors (each accompanied by 64 megabytes of RAM). The system has
a 350 MHz Pentium II computer as host. The processing nodes are connected with a
100 megabit-per-second Ethernet. The processing nodes and the host use the Linux
operating system. The distributed genetic algorithm with unsynchronized generations
and semi-isolated subpopulations was used with a subpopulation size of Q = 10,000
at each of D = 1,000 demes. As each processor (asynchronously) completes a
generation, four boatloads of emigrants from each subpopulation are dispatched to
each of the four toroidally adjacent processors. The 1,000 processors are
hierarchically organized. There are 5 × 5 = 25 high-level groups (each containing 40
processors). If the adjacent node belongs to a different group, the migration rate is
2% and emigrants are selected based on fitness. If the adjacent node belongs to the
same group, emigrants are selected randomly and the migration rate is 5% (10% if the
adjacent node is in the same physical box).

4 Results
The best-of-generation circuit from generation 0 has a fitness of 999.86890.

The first best-of-generation circuit (figure 4) delivering 60 dB of amplification
appears in generation 65. This 27-component circuit occupies an area of 8,234 and
has an overall fitness of 33.042583.

The best-of-run circuit (figure 5) appears in generation 101. This circuit contains
11 transistors, 5 resistors, and 3 capacitors. The four "P" symbols indicate via's to the
positive power supply. This 19-component circuit occupies an area of 4,751 and has
an overall fitness of 0.004751. It occupies only 58% of the area of the 27-component
circuit from generation 65. Note that figures 4 and 5 use different scales. Table 1
shows the number of components, the area, the four penalties comprising the non-
area portion of the fitness measure, and the overall fitness for the these two circuits.
Table 1 Comparison of two best-of-generation circuits.
Generation Components Area Four penalties Fitness
65 27 8,234 33.034348 33.042583
101 19 4,751 0.061965 0.004751

The best-of-generation circuit from generations 65 has 81, 189, and 26 points,
respectively, in its three branches. The best-of-run circuit from generation 101 has 65,
85, and 10 points, respectively, in its three branches. That is, the total size of both
individuals and the size of each corresponding branch was reduced.

The third branches of these two individuals are both very small (26 and 10 points,
respectively). The only effect of these branches are to insert a single transistor (a pnp
transistor in the generation 65 and an npn transistor in generation 101).

The shaded portion of figure 4 shows the portion of the best circuit from
generation 65 that is deleted in order to create the best circuit of generation 101.

The first branches of these two individuals are so similar that it is clear that these
two branches are genealogically related. These two first branches account for 14
components (nine transistors and five resistors) that are in common with both circuits.

The second branches of these two individuals are almost completely different.
The second branches account for the bulk of the reduction in component count (six
transistors and three inductors) and the one added component (capacitor C10).

G

V

R3

R4

L10

R14

R18

L20

R21

L23

R24

R27

R30

R33

G

G

G

C52

C53

G

G

G

G

O

G

P

P

P

P

Q48

Q45

Q43

Q39

Q36

Q54

Q68Q59 Q60 Q8 Q46 Q47 Q49 Q50

Q64Q72 Q73

G

Figure 4 Best-of-run circuit from generation 65

The difference between generations 65 and 101 caused by the first branches is
that two extraneous components that are present in generation 65 are missing from
the smaller 19-component circuit from generation 101.

Table 2 shows the X and Y coordinates for of the 19 components of the best
circuit of generation 101 as well as the component value (sizing) for each capacitor
and resistor and the type (npn q2n3904 or pnp q2n3904) for each transistor.

G

R3

R4

C10

R14

R18

G

R21

R24

R27

R30

R33

G

G

G

C52

C53

O

P

P

P

P

Q48

Q45

V

Q36

Q43

Q39

Q54

Q49 Q50Q47Q46Q8

G

Figure 5 Best-of-run circuit from generation 101.

Table 2 Placement of the 19 components of the best circuit of generation 101.
Component X coordinate Y coordinate Sizing / Type

Q8 -8.398678 21.184582 q2n3906
C10 -8.54565 31.121107 1.01e+02nf
R21 18.245857 -24.687471 1.48e+03k
R24 12.105233 -20.687471 5.78e+03k
R27 12.105233 -12.690355 3.61e+03k
R30 5.128666 -8.690355 8.75e+01k
R33 -3.398678 -4.690355 1.16e+03k
Q36 -3.398678 3.30961 q2n3906
Q39 -3.398678 13.309582 q2n3906
Q43 -18.472164 8.309597 q2n3904
Q45 -18.472164 -1.690355 q2n3904
Q46 -3.398678 21.184582 q2n3904
Q47 5.128666 21.184582 q2n3904
Q48 -18.472164 -17.687471 q2n3904
Q49 12.105233 21.184582 q2n3904
Q50 18.245857 21.184582 q2n3904
C52 -15.472164 31.121107 1.25e-01nf
C53 -15.472164 21.184582 7.78e+03nf
Q54 24.873787 31.121107 q2n3906

References
Bennett III, Forrest H, Koza, John R., Andre, David, and Keane, Martin A. 1996. Evolution of

a 60 Decibel op amp using genetic programming. In Higuchi, Tetsuya, Iwata, Masaya, and
Lui, Weixin (editors). Proceedings of International Conference on Evolvable Systems: From
Biology to Hardware (ICES-96). Lecture Notes in Computer Science, Volume 1259. Berlin:
Springer-Verlag. Pages 455-469.

Garey, Michael R. and Johnson, David S. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York, NY: W. H. Freeman.

Holland, John H. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor, MI:
University of Michigan Press.

Koza, John R., and Bennett III, Forrest H. 1999. Automatic synthesis, placement, and routing
of electrical circuits by means of genetic programming. In Spector, Lee, Langdon, William
B., O'Reilly, Una-May, and Angeline, Peter (editors). Advances in Genetic Programming 3.
Cambridge, MA: MIT Press. Chapter 6. Pages 105 - 134.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1996. Automated
design of both the topology and sizing of analog electrical circuits using genetic
programming. In Gero, John S. and Sudweeks, Fay (editors). Artificial Intelligence in
Design '96. Dordrecht: Kluwer Academic. Pages 151-170.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1999. Genetic
Programming III: Darwinian Invention and Problem Solving. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David, Keane, Martin A., and Brave Scott. 1999.
Genetic Programming III Videotape: Human-Competitive Machine Intelligence. San
Francisco, CA: Morgan Kaufmann.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and Sangiovanni-Vincentelli, A. 1994.
SPICE 3 Version 3F5 User's Manual. Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA. March 1994.

Sterling, Thomas L., Salmon, John, and Becker, Donald J., and Savarese. 1999. How to Build a
Beowulf: A Guide to Implementation and Application of PC Clusters. Cambridge, MA: The
MIT Press.

