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Abstract 
The complete design of a circuit typically includes the tasks of creating the 
circuit's placement and routing as well as creating its topology and 
component sizing. Design engineers perform these four tasks sequentially. 
Each of these four tasks is, by itself, either vexatious or computationally 
intractable. This paper describes an automatic approach in which genetic 
programming starts with a high-level statement of the requirements for the 
desired circuit and simultaneously creates the circuit's topology, 
component sizing, placement, and routing as part of a single integrated 
design process. The approach is illustrated using the problem of designing 
a 60 decibel amplifier. The fitness measure considers the gain, bias, and 
distortion of the candidate circuit as well as the area occupied by the 
circuit after the automatic placement and routing.  

1 Introduction 
The topology of a circuit involves specification of the gross number of components in 
the circuit, the identity of each component (e.g., transistor, capacitor), and the 
connections between each lead of each component.  Sizing involves the specification 
of the values (typically numerical) of each component. Placement involves the 
assignment of each of the circuit's components to a particular geographic (physical) 
location on a printed circuit board or silicon wafer. Routing involves the assignment 
of a particular geographic location to the wires connecting the various components.  

Design engineers typically perform the tasks of creating circuit's topology, sizing, 
placement, and routing as a series of four separate sequential tasks. Each of these 
tasks is either vexatious or computationally intractable. In particular, the problem of 
placement and the problem of routing (both analog and digital) are computationally 



intractable combinatorial optimization problems that require computing effort that 
increases exponentially with problem size (Garey and Johnson 1979).  

The mandatory requirements for an acceptable scheme for placement and routing 
are that there must be a wire connecting every lead of all of the circuit's components, 
that wires must not cross on a particular layer of a silicon chip or on a particular side 
(or layer) of a printed circuit board, and that minimum clearance distances must be 
maintained between wires, between components, and between wires and components. 
Once these mandatory requirements are satisfied, minimization of area typically 
becomes the next most important consideration.  

Genetic programming has recently been shown to be capable of solving the 
problem of automatically creating the topology and sizing for an analog electrical 
circuit from a high-level statement of the circuit's desired behavior (Koza, Bennett, 
Andre, and Keane 1996; Bennett, Koza, Andre, and Keane 1996; Koza, Bennett, 
Andre, and Keane 1999; Koza, Bennett, Andre, Keane, and Brave 1999). Numerous 
analog circuits have been designed using genetic programming, including lowpass, 
highpass, bandpass, bandstop, crossover, multiple bandpass, and asymmetric filters, 
amplifiers, computational circuits, temperature-sensing circuits, voltage reference 
circuits, a frequency-measuring circuit, source identification circuits, and analog 
circuits that perform digital functions. The circuits evolved using genetic 
programming include eleven previously patented circuits.  

However, this previous work did not address the problem of automatically placing 
and routing of components and wires at particular geographic locations on a printed 
circuit board or silicon wafer. This paper demonstrates that genetic programming can 
be used to automatically create the topology, sizing, placement, and routing of analog 
electrical circuits. Section 2 presents our method. Section 3 describes the preparatory 
steps required to apply our method to an illustrative problem involving designing a 60 
decibel amplifier. Section 4 presents the results.  

2 Method 
A printed circuit board or silicon wafer has a limited number of layers that are 
available for wires and a limited number of layers (usually one for a wafer and one or 
two for a board) that are available for both wires and components. Each wire and 
component is located at a particular relative geographic (physical) location on the 
printed circuit board or silicon wafer.   

We create electrical circuits using a developmental process in which the 
component-creating functions, topology-modifying functions, and development-
controlling functions of a circuit-constructing program tree are executed. Each of 
these three types of functions is associated with a modifiable wire or modifiable 
component in the developing circuit.  The starting point of the developmental process 
is an initial circuit consisting of an embryo and a test fixture. The embryo consists of 
modifiable wire(s). The embryo is embedded into a test fixture consisting of fixed 
(hard-wired) components (e.g., the source of the incoming signal) and certain fixed 
wires that provide connectivity to the circuit's external inputs and outputs. Until the 
modifiable wires are modified by the developmental process, the circuit produces 
only trivial output. An electrical circuit is developed by progressively applying the 
functions in a circuit-constructing program tree (in the population being bred by 
genetic programming) to the modifiable wires of the original embryo and to the 



modifiable components and modifiable wires created during the developmental 
process. The functions in the program tree are progressively applied (in a breadth-
first order) to the initial circuit and its successors until a fully developed circuit 
emerges.  
2.1 The Initial Circuit 
Figure 1 shows a one-input, one-output initial circuit (consisting of an embryo and a 
test fixture) located on one layer of a silicon wafer or printed circuit board. The 
embryo consists of the three modifiable wires, Z0, Z1, and Z2 (in the middle of the 
figure). All development originates from these modifiable wires. The test fixture 
contains two ground points G, an input point V (lower left), an output point O (upper 
right), nonmodifiable wires (hashed), and four nonmodifiable resistors. There is a 
fixed 1 kilo-Ohm (kΩ) source resistor R4, a fixed 1 kΩ load resistor R18, a fixed 1 
giga-Ohm feedback resistor R14, and a fixed 999 Ω balancing resistor R3. 

Each element of this initial circuit (and all successor circuits created by the 
developmental process) resides at particular geographic location on the circuit’s two-
dimensional substrate. Each element occupies a particular amount of space. For 
example, the resistors each occupy a 3 × 3 area; the source point V and the output 
probe point O each occupy a 1 × 1 area; the nonmodifiable wires each occupy a 1 × n 
or n × 1 area; the modifiable wires each occupy a 1 × 1 area.  

The initial circuit in the developmental process complies with the requirements 
that wires must not cross on a particular layer of a silicon chip or on a particular side 
of a printed circuit board, that there must be a wire connecting 100% of the leads of 
all the circuit's components, and that minimum clearance distances between wires, 
between components, and between wires and components must be respected. Each of 
the circuit-constructing functions (described below) preserves compliance with these 
requirements. Thus, every fully laid-out circuit complies with these requirements.   
The component-creating functions insert a component into the developing circuit and 
assign component value(s) to the new component.  
2.2 Circuit-Constructing Functions 

Figure 2 shows a partial circuit containing four capacitors (C2, C3, C4, and C5) 
and a modifiable wire Z0. Each capacitor occupies a 3 × 3 area and is located at a 
particular geographic location (indicated by an X and Y coordinate). Each piece of 
wire occupies a 1 × n or an n × 1 area. The modifiable wire Z0 occupies a 1 × 1 area.  

Figure 3 shows the result of applying the one-argument transistor-creating NPN-
TRANSISTOR-LAYOUT function to the modifiable wire Z0 of figure 2. The newly 
created npn (q2n3904 BJT) transistor Q6 occupies a 3 × 3 area and is located at (18, 
20). The newly created component is larger than that which it replaces. Thus, its 
insertion affects the locations of preexisting components C2 and C3 in the 
developing circuit. Specifically, preexisting capacitor C2 is pushed north by one unit 
thereby relocating it from (18, 23) to (18, 24). Similarly, preexisting capacitor C3 is 
pushed south by one unit thereby relocating it from (18, 17) to (18, 16). In actual 
practice, all adjustments in location are made after the completion of the entire 
developmental process. Details of implementation of this function (and other 
functions described herein) are found in Koza and Bennett 1999. The newly created 
transistor is not subject to subsequent modification (and hence there is no 



construction-continuing subtree).  Similarly, the PNP-TRANSISTOR-LAYOUT 

function inserts a pnp (q2n3906 BJT) transistor.  
Figure 1 Initial circuit consisting of embryo and test fixture.  

The two-argument capacitor-creating LAYOUT-C function inserts a capacitor into 
a developing circuit in lieu of a modifiable wire (or modifiable component). This 
component-creating function takes an argument that specifies component sizing. 
Similar functions insert other two-leaded components (e.g., resistors and inductors). 
The sizing of components are established by a numerical value.  In the initial random 
generation of a run, the numerical value is set, individually and separately, to a 
random value in a chosen range. In later generations, the numerical value may be 
perturbed by a mutation operation using a Gaussian probability distribution. 
2.3 Topology-Modifying Functions 
The topology-modifying functions modify the topology of the developing circuit.  

The two-argument SERIES-LAYOUT function creates a series composition 
consisting of the modifiable wire or modifiable component with which the function is 
associated and a copy of the modifiable wire or modifiable component.  

Each of the two functions in the PARALLEL-LAYOUT family of four-argument 
functions creates a parallel composition consisting of two new modifiable wires, the 
preexisting modifiable wire or modifiable component with which the function is 
associated, and a copy of the modifiable wire or modifiable component.  

The one-argument polarity-reversing FLIP function reverses the polarity of the 
modifiable component or modifiable wire with which the function is associated.  

Most practical circuits are not entirely planar. Vias provide a way to connect 
distant points of a circuit. Each of the four functions in the VIA-TO-GROUND-
LAYOUT family of three-argument functions creates a T-shaped composition 
consisting of the modifiable wire or modifiable component with which the function is 
associated, a copy of it, two new modifiable wires, and a via to ground. There is a 
similar VIA-TO-POSITIVE-LAYOUT family of four three-arguments functions to 
allow direct connection to a positive power supply and a similar VIA-TO-
NEGATIVE-LAYOUT family for the negative power supply.  
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Figure 2 Partial circuit with a 1 × 1 piece 
of modifiable wire Z0 at location (20, 20). 
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Figure 3 The result of applying the NPN-

TRANSISTOR-LAYOUT function. 
Similarly, numbered vias provide connectivity between two different layers of a 

multi-layered silicon wafer or multi-layered printed circuit board. A distinct four-
member family of three-argument functions is used for each layer. For example, the 
VIA-0-LAYOUT and VIA-1-LAYOUT families of functions makes connection with 
a layers numbered 0 and 1, respectively, of a two-layered substrate. 
2.4 Development-Controlling Functions 
The zero-argument END function makes the modifiable wire or modifiable 
component with which it is associated into a non-modifiable wire or component 
(thereby ending a particular developmental path).  

The one-argument NOOP (“No Operation”) function has no effect on the 
modifiable wire or modifiable component with which it is associated; however, it 
delays the developmental process on the particular path on which it appears.  

3 Preparatory Steps 
The method will be illustrated on the problem of creating the topology, component 
sizing, placement, and routing for a 60 dB amplifier with zero distortion and zero bias 
and with the smallest possible total area for the bounding rectangle of the fully laid-
out circuit. (See Bennett, Koza, Andre, and Keane 1996 for a more detailed statement 
of this problem, without consideration of placement and routing). The circuit is to be 
constructed on a two-sided printed circuit board with two internal layers. The top side 
contains discrete components (e.g., transistors, capacitors, and resistors,) that are 
connected by perpendicularly intersecting metallic wires. The bottom side is devoted 
to connections to ground.  The two internal layers are devoted to via 0 and via 1.  



3.1 Initial Circuit 
We use the one-input, one-output initial circuit (figure 1) consisting of a test fixture 
and an embryo with three modifiable wires.   
3.2 Program Architecture 
There is one result-producing branch in the program tree for each modifiable wire in 
the embryo. Thus, the architecture of each circuit-constructing program tree has three 
result-producing branches. Neither automatically defined functions nor architecture-
altering operations are used.  
3.3 Function and Terminal Sets 
The terminal set, Tccs, for each construction-continuing subtree consists of the 
development-controlling END function. The function set, Fccs, for each construction-
continuing subtree includes component-creating functions for npn transistors, pnp 
transistors, capacitors, resistors, and inductors (a totally extraneous component for 
this problem); the development-controlling NOOP function; and topology-modifying 
functions for series, parallel, flips and vias to ground, the positive power supply, the 
negative power supply, and layers 0 and 1 of the printed circuit board.  
3.4 Fitness Measure 
The fitness measure is based on the area of the bounding rectangle of the laid-out 
circuit as well as the gain, bias, and distortion of the candidate amplifier circuit.  

The evaluation of the fitness of each individual circuit-constructing program tree 
in the population begins with its execution. This execution progressively applies the 
functions in the program tree to the embryo of the circuit, thereby creating a fully 
developed (and fully laid out) circuit. Since the developmental process for creating 
the fully developed circuit includes the actual geographic placement of components 
and the actual geographic routing of wires between the components, the area of the 
bounding rectangle for the fully developed circuit can be easily computed.  

A netlist is then created that identifies each component of the developed circuit, 
the nodes to which each component is connected, and the value of each component. 
The netlist is the input to our modified version of the SPICE simulator (Quarles, 
Newton, Pederson, and Sangiovanni-Vincentelli 1994).  

An amplifier can be viewed in terms of its response to a DC input. An ideal 
inverting amplifier circuit would receive a DC input, invert it, and multiply it by the 
amplification factor. A circuit is flawed to the extent that it does not achieve the 
desired amplification; to the extent that the output signal is not centered on 0 volts 
(i.e., it has a bias); and to the extent that the DC response of the circuit is not linear.  

We used a fitness measure based on SPICE's DC sweep. The DC sweep analysis 
measures the DC response of the circuit at several different DC input voltages. The 
circuits were analyzed with a 5 point DC sweep ranging from –10 millvolts (mv) to 
+10 mv, with input points at –10 mv, –5 mv, 0 mv, +5 mv, and +10 mv. SPICE then 
simulated the circuit's behavior for each of these five DC voltages. Four penalties (an 
amplification penalty, bias penalty, and two non-linearity penalties) are then derived.  

First, the amplification factor of the circuit is measured by the slope of the straight 
line between the output for –10 mv and the output for +10 mv (i.e., between the 
outputs for the endpoints of the DC sweep). If the amplification factor is less than the 
target (60 dB), there is a penalty equal to the shortfall in amplification.  



Second, the bias is computed using the DC output associated with a DC input of 0 
volts. There is a penalty equal to the bias times a weight. A weight of 0.1 is used.  

Third, the linearity is measured by the deviation between the slope of each of two 
shorter lines and the overall amplification factor of the circuit. The first shorter line 
segment connects the output value associated with an input of –10 mv and the output 
value for –5 mv. The second shorter line segment connects the output value for +5 
mv and the output for +10 mv. There is a penalty for each of these shorter line 
segments equal to the absolute value of the difference in slope between the respective 
shorter line segment and the overall amplification factor of the circuit.  

The fitness measure is multiobjective.  Fitness is the sum of (1) the area of the 
bounding rectangle for the fully developed and laid-out circuit weighted by 10-6, (2) 
the amplification penalty, (3) the bias penalty, and (4) the two non-linearity penalties; 
however, if this sum is less than 0.1 (indicating achievement of a very good 
amplifier), the fitness becomes simply the rectangle's area multiplied by 10-6.  Thus, 
after a good amplifier design is once achieved, fitness is based solely on area 
minimization.   

Circuits that cannot be simulated by SPICE receive a penalty value of fitness 
(10

8
).  

3.5 Control Parameters 
The population size, M, is 10,000,000. A maximum size of 300 points (functions and 
terminals) was established for each of the three result-producing branches for each 
program tree. The other control parameters are those that we have used on many 
other problems (Koza, Bennett, Andre, and Keane 1999, Appendix D).  
3.6 Implementation on Parallel Computer 
This problem was run on a home-built Beowulf-style (Sterling, Salmon, Becker, and 
Savarese 1999) parallel cluster computer system consisting of 1,000 350 MHz 
Pentium II processors (each accompanied by 64 megabytes of RAM). The system has 
a 350 MHz Pentium II computer as host. The processing nodes are connected with a 
100 megabit-per-second Ethernet. The processing nodes and the host use the Linux 
operating system. The distributed genetic algorithm with unsynchronized generations 
and semi-isolated subpopulations was used with a subpopulation size of Q = 10,000 
at each of D = 1,000 demes. As each processor (asynchronously) completes a 
generation, four boatloads of emigrants from each subpopulation are dispatched to 
each of the four toroidally adjacent processors. The 1,000 processors are 
hierarchically organized. There are 5 × 5 = 25 high-level groups (each containing 40 
processors). If the adjacent node belongs to a different group, the migration rate is 
2% and emigrants are selected based on fitness. If the adjacent node belongs to the 
same group, emigrants are selected randomly and the migration rate is 5% (10% if the 
adjacent node is in the same physical box).   

4 Results 
The best-of-generation circuit from generation 0 has a fitness of 999.86890.  

The first best-of-generation circuit (figure 4) delivering 60 dB of amplification 
appears in generation 65. This 27-component circuit occupies an area of 8,234 and 
has an overall fitness of 33.042583.  



The best-of-run circuit (figure 5) appears in generation 101. This circuit contains 
11 transistors, 5 resistors, and 3 capacitors. The four "P" symbols indicate via's to the 
positive power supply.  This 19-component circuit occupies an area of 4,751 and has 
an overall fitness of 0.004751. It occupies only 58% of the area of the 27-component 
circuit from generation 65. Note that figures 4 and 5 use different scales.  Table 1 
shows the number of components, the area, the four penalties comprising the non-
area portion of the fitness measure, and the overall fitness for the these two circuits.  
Table 1 Comparison of two best-of-generation circuits.  
Generation Components Area Four penalties Fitness 
65 27 8,234 33.034348 33.042583 
101 19 4,751 0.061965 0.004751 

The best-of-generation circuit from generations 65 has 81, 189, and 26 points, 
respectively, in its three branches. The best-of-run circuit from generation 101 has 65, 
85, and 10 points, respectively, in its three branches. That is, the total size of both 
individuals and the size of each corresponding branch was reduced.  

The third branches of these two individuals are both very small (26 and 10 points, 
respectively). The only effect of these branches are to insert a single transistor (a pnp 
transistor in the generation 65 and an npn transistor in generation 101).   

The shaded portion of figure 4 shows the portion of the best circuit from 
generation 65 that is deleted in order to create the best circuit of generation  101.  

The first branches of these two individuals are so similar that it is clear that these 
two branches are genealogically related. These two first branches account for 14 
components (nine transistors and five resistors) that are in common with both circuits.  

The second branches of these two individuals are almost completely different. 
The second branches account for the bulk of the reduction in component count (six 
transistors and three inductors) and the one added component (capacitor C10).  
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Figure 4 Best-of-run circuit from generation 65  



The difference between generations 65 and 101 caused by the first branches is 
that two extraneous components that are present in generation 65 are missing from 
the smaller 19-component circuit from generation 101.  

Table 2 shows the X and Y coordinates for of the 19 components of the best 
circuit of generation 101 as well as the component value (sizing) for each capacitor 
and resistor and the type (npn q2n3904 or pnp q2n3904) for each transistor.  
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Figure 5 Best-of-run circuit from generation 101.  



Table 2  Placement of the 19 components of the best circuit of generation 101.  
Component X coordinate Y coordinate Sizing / Type 

Q8 -8.398678 21.184582 q2n3906 
C10 -8.54565 31.121107 1.01e+02nf 
R21 18.245857 -24.687471 1.48e+03k 
R24 12.105233 -20.687471 5.78e+03k 
R27 12.105233 -12.690355 3.61e+03k 
R30 5.128666 -8.690355 8.75e+01k 
R33 -3.398678 -4.690355 1.16e+03k 
Q36 -3.398678 3.30961 q2n3906 
Q39 -3.398678 13.309582 q2n3906 
Q43 -18.472164 8.309597 q2n3904 
Q45 -18.472164 -1.690355 q2n3904 
Q46 -3.398678 21.184582 q2n3904 
Q47 5.128666 21.184582 q2n3904 
Q48 -18.472164 -17.687471 q2n3904 
Q49 12.105233 21.184582 q2n3904 
Q50 18.245857 21.184582 q2n3904 
C52 -15.472164 31.121107 1.25e-01nf 
C53 -15.472164 21.184582 7.78e+03nf 
Q54 24.873787 31.121107 q2n3906 
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