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Abstract

We consider an yield curve arbitrage as a kind of a statistical arbitrage strategy
involving portfolios of fixed-income instruments with specific maturity, which are rich
or cheap points on the yield curve, and for which convergence is anticipated by the
constructed statistical model for a yield curve.

We recall mathematical definintion of a statistical arbitrage, involving specific char-
acteristics of a stochastic process representing dynamics of a strategy.

As a main contribution, we propose a statistical model for a yield curve functional
data, which we use for predictions of a yield curve distribution. Using forecasts of a
proposed model, we construct a strategy of portfolios for a fixed-income instrument.
Then, ex post we statisticaly test conformance of employed strategy with a statistical
arbitrage one.
Key words: yield curve arbitrage, statistical arbitrage, stochastic processes, functional
data, algotrading

1 Introduction

Yield Curve Arbitrage strategy consists of portfolios involving long and short posi-
tions at different points along the yield curve of a fixed-income instrument with different
maturities.

We consider an yield curve arbitrage as a kind of statistical arbitrage strategy involv-
ing portfolios of fixed-income instruments with specific maturity, which are rich or cheap
points on the yield curve, and for which convergence is anticipated by the constructed
statistical model for a yield curve.

In the section 2, we recall mathematical definintion [18] of a statistical arbitrage, in-
volving specific characteristics of a stochastic process representing dynamics of a strategy.
We also present a statistical test introduced by [18], for an assesement of conformance of
considered strategy, with a statistical arbitrage one. Mentioned test is based on strategy
value time series data. Then we briefly discuss how a statistical arbitrage differs from a
standard arbitrage, and that latter can be considered as a specific case of a former. We
also recall statistical test wich can be used to check if strategy is a statistical arbitrage.
The statistical test is based on time series, which is a realization ofconsidered strategy
value stochastic process.
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In section 3, we give a general understanding of a yield curve arbitrage strategy,
and consider it as a case of a statistical arbitrage strategy for portfolios of fixed-income
instruments.

In sections from 4 to 6, we present our original proposition of a statistical model for
a yield curve functional data.

During the construction of our model, we treat yield curves as random functions,
and employ for them a Karhunen-Loève expansion. This enables us to represent yield
curve random functions as linear combinations of deterministic functions (e.g. specific
kind of polynomial functions), and coefficients of considered combinations are random
variables.

Based on predictions of our model for a yield curve distribution (more precisely for
a distribution of its decompostion coefficients), we construct a strategy of portfolios for
a fixed-income instrument. Then, ex post we statisticaly test conformance of employed
strategy with a statistical arbitrage one.

2 A concept of a statistical arbitrage strategy

In this section we recall formal definitions of concepts related to a statistical arbitrage
strategy. The concepts will be later used for a construction of a yield curve arbitrage,
which we consider as a variant of a statistical arbitrage strategy involving fixed-income
portoflios.

2.1 Preliminary concepts related to a statistical arbitrage strategy

We consider multi-step single-instrument market model containing two underlying
securites:

• The risk-free asset (money-market account), described by deterministic function:

A(t) = (1 + R)t, (1)

where R > −1 is the risk-free rate,

• the risky instrument, which is thought as a fixed-income instrument of a specific
maturity, or a portfolio of fixed-income instrument with different maturities.

Following definitions are based on the work [3].
[Strategy] A strategy is sequence of pairs of random variables showing, for t =

1, 2, . . . , T , the number of units x(t) of an instrument and the number y(t) of money
market account units chosen at time t−1 and held until time t, and such that (x(t), y(t))
is Ft−1. In general, a sequence of random variables satisfying this measurability require-
ment is called predicatble.

[Predictability of a process] A process X = (X(t))t≥1 is predicatble relative to given
filtration (Ft)t≥0 if for every t ≥ 1, X(t) is Ft−1-measurable.

[Value process of strategy] The value process of a strategy is a sequence defined for
n = 1, . . . , N by

V(x,y)(t) = x(t)S(t) + y(t)A(t), (2)

together with the initial investement

V(x,y)(0) = x(1)S(t) + y(1)A(t), (3)
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[Self-financing strategy] A strategy is self-financing if

V(x,y) = x(t + 1)S(t) + y(t + 1)A(t), (4)

for all t = 1, . . . , T − 1.
As we said above, in a multi-step single-instrument model, portfolio of risky in-

struments can be treated as a single underlying instrument. But in a case when we
want to explicitly consider each risky instrument in a strategy portolios, it will be more
convenient to use multi-step multiple instrument model, for more details see [3].

In the following definitions, we have d = 1 for a multi-step single instrument model
and d > 1 for a multi-step multiple instrument model.

[Portfolio] A portfolio is the vector (x, y) = (x1, . . . , xd, y) with coordinates repre-
senting positions in the corresponding securities.

[Strategy] A strategy is a sequence of portfolios

(x(t), y(t)) = (x1(t), . . . , xd(t), y(t)), t = 1, . . . , T. (5)

These are Rd+1-valued functions (i.e. random vectors), except for the initial portolio,
which is determined at time 0 and so is deterministic. We shall write (x, y) for this
sequence.

[Strategy value process] The value of a strategy a time t is V(x,y)(t) =
∑d

j=1 xj(t)Sj(t)+
y(t)A(t), fort = 1, . . . , T.
V(x,y)(0) =

∑d
j=1 xj(1)Sj(0) + y(1)A(0).

2.2 Statistical arbitrage vs. standard arbitrage strategy

Below we recall definitions of a standard arbitrage and a statistical arbitrage, and
later emphasize the relation between them.

[Standard arbitrage] A strategy (x, y) is an (standard) arbitrage opportunity in the
underlying market if its value process satisfies V(x,y)(0) = 0, V(x,y)(t) ≥ 0 for all n and
for some t there is an ω such that V(x,y)(t, ω) > 0.

Here ω ∈ Ω is an event of a probability space (Ω,F , P ), over which considered
stochastic processes are defined.

Below for a sake of a notation simplicity we omit a subscript (x, y) from a V(x,y).
[Statistical arbitrage [18]] A statistical arbitrage is a zero initial cost, self-financing

trading strategy with cumulative discounted trading profits V (n) such that:

1. V (0) = 0,

2. lim
t→∞

EP [V (t)] > 0,

3. lim
t→∞

P (V (t) < 0) = 0,

4. lim
n→∞

V ar[∆V (t)|∆V (t) < 0] = 0.

If a strategy is explicitly stated as a mathematical model of a stochastic process,
we can directly check if a strategy value stochastic process meets a formal definition of
statistical arbitrage strategy, which is stated above. This approach was used in [14] and
[15] among others.

Another possibility is to test empirically ex post, if a strategy is a statistical arbitrage
one, using realization of a considered strategy value stochastic process.
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Jarrow et al. [18] assumed that underlying stochastic process for strategy value can
be stated as an Arithemtic Brownian Motion.

For an Arithmetic Brownian Motion Jarrow et al. [18] stated subset of a parame-
ter space, for which such a strategy value process meets the definition of a statistical
arbitrage strategy.

It is assumed that a following Arithmetic Brownian Motion called unconstrained
mean model (UM), represents incremetal trading profits:

∆Vi = µiθ + σiλzi, (6)

where zi are iiN (0, 1) random variables (but frequetly to meet empirical facts normality
and independence assumptions are relaxed). The initial quantities z0 and ∆V0 are both
zero by definition.

For the UM model, the following restrictions have to be satisfied simultaneously for
a statistical arbitrage opportunity to exist [18]:

1. R1 : µ > 0,

2. R2 : −λ > 0 lub θ − λ > 0,

3. R3 : θ − λ + (1/2) > 0 oraz

4. R4 : θ + 1 > 0.

Thus, statistical arbitrage is defined by an intersection of sub-hypotheses.
Using DeMorgan’s laws, the no statistical arbitrage null hypothesis can be also stated,

with use of a following alternitve which is a negation of above stated conjunction for
parameter conditions:

1. Rc
1 : µ ≤ 0 lub

2. Rc
2 : −λ ≤ λ oraz θ − λ ≤ 0 lub

3. Rc
3 : θ − λ + (1/2) ≤ 0 lub

4. Rc
4 : θ + 1 ≤ 0.

We can estimate parameters of an UM model using empirical realization of a consid-
ered strategy value process.

For a UM model and no statistical arbitrage null hypothesis (stated as logical al-
ternative), Jarrow et al. proposed a statistical test with a Min-t statistics defined as
follows:

Min− t = min{t(µ̂), t(θ̂ − λ̂ + 0.5), t(θ̂ + 1),max{t(−λ̂), t(θ̂ − λ̂)}}, (7)

where t(µ̂), t(−λ̂), t(θ̂− λ̂+ 0.5), t(θ̂ + 1) are respective t statistics for logical alternative
constituent hypotheses, and µ̂, θ̂, λ̂ are MLE (Maximum Likelihood Estimators) of an
UM model parameters.

Taking into account Jarrow et al. definition of a statistical arbitratge strategy, when
the probability of loss becomes zero in finite time T , i.e. P (v(t) < 0) = 0 for all t ≥ T ,
this implies the existence of a standard arbitrage opportunity.

So, it was showed [15] that a standard arbitrage opportunity is a special case of
statistical arbitrage.
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[Standard arbitrage as a special case of a statistical arbitrage] For a standard arbi-
trage strategy V (self-financing) there exists a finite time Tm such that P (V(x,y)(t) >
0) > 0 and P (V(x,y)(t) ≥ 0) = 1 for all t ≥ Tm and the proceeds of this profit can be
deposited into money market account for the rest of the infinite time horizon.

It should be kept in mind that a statistical arbitrage is not a risk free profit generating
strategy in contrast to a standard arbitrage strategy. A statistical arbitrage strategy
in its assumption, tries to minimise a market volatility impact on a portfolio (market
neutral strategy), but in practice it cannot fully reduce a portfolio market risk, as is in
a case of a standard arbitrage.

3 Yield curve arbitrage as a case of statistical arbitrage strategy

In our work we consider an yield curve arbitrage as a kind of statistical arbitrage
strategy involving portfolios of fixed-income instruments with specific maturity, which
are rich or cheap points on the yield curve, for which convergence is anticipated by a
statistical model for a yield curve.

In finance, arbitrage strategies imply positive returns in different markets regardless
a market is in bull or bear state and are typically hedged in some way. This means that
such strategies are meant to carry relatively low volatility or are neutral to changes in
the key market variables. Fixed income arbitrage styles are fairly complex and usually
reduce competition in trading. Less competition leads to higher risk-adjusted returns
and weakens the performance [1].

Yield curve arbitrage is a relative value trading strategy within government debt or
related interest rates. Hence, the strategy is about identifying overtly rich and cheap
points on the yield curve with the assumption that these mispricings convergence in the
near future, so that they can be traded profitably. This means, that short rate follows
a stochastic mean-reverting process [6].

The idea behind studying the yield curve arbitrage as a trading strategy comes from
the notion that some points of the term structure of interest rates may not at all times
be in sync with each other. The yields for different maturities are not determined
independently; they are all linked across the yield curve. As pointed out in earlier
research by [6], trading of the rates that are out of the line with each other can result
in highly attractive return profiles. No-arbitrage should guarantee that the yield curve
is internally consistent, i.e. that all the forward rates are unique, and no ‘textbook
arbitrage’ is possible. Nevertheless, the ‘mispricings’ on the yield curve arise from the
nearby bond maturities trading at prices dissimilar enough. In other words, arbitrage
opportunities related to the bond risk premia can exist despite the uniqueness of all
forward rates [6].

Although changes in term structure of interest rates are relatively easy to interpret
they are however very difficult to model and forecast due to no proper economic theory
underlying such events. Yield curves are usually represented by multivariate yet quite
sparse time series ie. at any point in time infinite dimensional curve is portrayed via
relatively few points in a multivariate space of data and as a consequence multimodal
statistical dependencies behind these curves are relatively hard to extract and forecast
via typical multivariate statistical methods. We propose to model yield curves via re-
construction of joint probability distribution of parameters in functional space as a high
degree polynomial. Thanks to adoption of an orthonormal basis, the MSE estimation
of coefficients of a given function is just an average over a data sample in the space of
functions. Since such polynomial coefficients are independent and have cumulant-like
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interpretation: ie. they describe corresponding perturbation from an uniform joint dis-
tribution, our approach can also be extended to any d-dimensional space of yield curve
parameters (also in neighboring times) due to controllable accuracy. We believe that
this approach to modeling of local behavior of a sparse multivariate curved time series
can complement prediction from standard models like ARIMA, that are using long range
dependencies, but provide only inaccurate prediction of probability distribution, often
as just Gaussian with constant width.

4 Statistical model for a yield curve forecasting

4.1 The concept of yield curve forecasting

As successful forecasting of financial time series could be often turned into profit, it
makes it difficult to get a better prediction for the following value that just the previous
value. However, above self-regulatory mechanism of the market does not restrict predic-
tion of probability distribution of values, what is crucial for example for risk evaluation
or Monte Carlo simulations.

Standard approaches to predict probability distribution of values like ARIMA usually
models this distribution as Gaussian, often of constant width: predicts some value and its
inaccuracy (standard deviation). In contrast, we will model this probability distribution
using large number of independent coefficients describing joint distribution as polynomial
- what turns out leading to very different and more complex distribution than standardly
assumed Gaussian - for example multimodal in the discussed example.

Specifically, as it is difficult to obtain a better prediction than just the previous value,
we will focus on sequence of differences between two succeeding values. In discussed
example it will be 3-dimensional space of parameters of Yield Curves of Diebold-Li
model [5] (for fixed λ = 0.0609), which dimensionality can be further increased for
improved prediction by operating on time window: use a few previous values as context
for prediction.

For convenience of fitting polynomial, we will first normalize each variable to nearly
uniform distribution on [0, 1]. It can be done by transforming variables with CDF
(cumulative probability distribution) of approximated distribution of this variable, for
which we will use Laplace distributions as it agrees well with empirical CDF (Fig. 2)

Taking d such normalized variables, e.g. for different parameters in given or neigh-
boring times, if uncorrelated they would come from nearly uniform ρ ≈ 1 distribution
on [0, 1]d. We will model perturbation from this uniform density as linear combination
of orthonormal polynomials ρ(x) =

∑
j ajfj(x). It makes MSE optimal estimation very

inexpensive [10]: aj = 1
|X|

∑
x∈X fj(x) is just average over sample X. Coefficients for

different j are independent and have multivariate cumulant-like specific interpretation,
can be used for describing statistical dependencies between tested variables.

This article extends methodology from [7] for 1D variable (on example of Dow Jones
Industrial Averages time series) into the case of multidimensional random variables.

4.2 Normalization to nearly uniform density

We will discuss on example of time series of 6470 (from 1993 to 2018) daily Yield
Curve β1, β2, β3 parameters {β1, β2, β3}t=1..n0 for n0 = 6470.

Time series are usually normalized for example to allow assumption of stationary
process: such that joint probability distribution does not change while shifting position.
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Figure 1: Each variable is normalized to have nearly uniform ρ = 1 density (PDF) on [0, 1]
range. Top: sorted predicted ρ for observed values is usually much higher than base ρ = 1
thanks to exploiting joint distribution. Four graphs correspond to joint distribution of parameters
reconstructed with degree 9 polynomial for all three variables, or all their pairs. Surprisingly,
we see that (x1, x2) gives even better predictions than for all 3 variables here. Bottom: region
of predicted ρ > 2 for all 3 variables. From above plot we can read that observed values were
there in ≈ 62% of cases. In contrast to usually assumed Gaussian, distribution obtained from
the real data turns out multimodal here. Density focused near diagonal for (x1, x2) means they
are anti-correlated.

The standard approach, especially for Gaussian distribution, is to subtract mean value,
then divide by the standard deviation. However, such normalization does not exploit
local dependencies between values, what we are interested in.

Hence we will work on sequence of differences (errors, residues) from current value to
its prediction based on previous values, which can be taken for example from ARIMA-
like models. For simplicity we will use here the previous value as predictor: operate on
βi(t+1)−βi(t) sequence for t = 1 . . . n1 where n1 = n0−1. In practical applications βi(t)
can be replaced with a more sophisticated predictior, for example exploiting long-range
dependencies.
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Figure 2: Left: time series of 6470 (from 1993 to 2018) daily Yield Curve β1, β2, β3 parameters
(Diebold-Li model [5]) fitted using λ = 0.0609 standard assumption. We will work on xi(t) :=
CDFLaplace(µi,bi)(βi(t + 1) − βi(t)) time series: normalized to nearly uniform distribution on
[0, 1]. Right: comparison of empirical CDF obtained from sorted values with CDF of Laplace
and Gaussian distribution with estimated parameters - we will use Laplace as it has better
agreement.

As shown in Fig. 2, such sequences of differences from predictor turns out to have
nearly Laplace distribution: g(y)=1

2b exp
(
− |y−µ|

b

)
wheremaximumlikelihoodestimationofparametersisjust:

µ =

median of y, b = mean of |y − µ|.
For simplicity, we use Laplace distributions here to normalize variables to nearly

uniform in [0, 1], with separate parameters for different variables: xi(t) := Gi(βi(t+ 1)−
βi(t))where G(y)=

∫ y
−∞ g(y′) dy′ is CDF of used distribution (Laplace here).

We will search for ρX(x) density. To remove transformation (4.2) to retrieve the final
density of (β1, β2, β3), observe that P (y′ = G−1(x) ≤ y) = P (x ≤ G(y)). Differentiating
over y, we get ρY (y) = ρX(G(y)) · g(y).

4.3 Hierarchical correlation reconstruction

After normalization, we have {x1(t), x2(t), x3(t)} time series with nearly uniform
density of separate variables. Taking its d values: as different coordinates or neighbor-
ing in time, if uncorrelated they would come from nearly uniform distribution in [0, 1]d

- difference from uniform distribution describes statistical dependencies in our time se-
ries. We will use a polynomial to describe this difference: estimate joint density for d
neighboring values of x.

Assuming we have {xt}t=1,...,n ⊂ [0, 1]d ie. a vector sequence of neighboring values
(we will discuss various possibilities later), we would like to model density of such vectors
as polynomial. It turns out [10] that using orthonormal basis, which for multidimen-
sional case can be products of 1D orthonormal polynomials, mean square (MSE, L2)
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Figure 3: Top: the first 6 of used 1D orthonormal basis of polynomials (⟨f, g⟩ =
∫ 1

0
fg dx): j = 0

coefficient guards normalization, the remaining functions integrate to 0, and their coefficients
describe perturbation from uniform distribution. These coefficients have similar interpretation
as cumulants, but are much more convenient for reconstruction of density. Bottom: 2D product
basis fj(x) = fj1(x1)fj2(x2) for m = 2: j ∈ {0, 1, 2}. The j = 0 coordinates do not modify

the corresponding variable - generally, the given coefficient describes statistical dependencies
between coordinates having nonzero index.

optimization leads to elementary formula for estimated coefficients:

ρ(x) =
∑

j∈{0,m}d
ajfj(x) =

m∑
j1...jd=0

aj fj1(x1) · . . . · fjd(xd)

with estimated coefficients: aj = 1
n

∑n
t=1 fj(x

t)

The basis used this way has |B| = (m + 1)d functions. Besides, inexpensive calcu-
lation, this simple approach has also the very convenient property of coefficients being
independent, giving each j unique value and interpretation. Independence also allows for
flexibility of considered basis - instead of considering all j, we can focus on more promis-
ing ones: for example with larger absolute value of coefficient, replacing negligible aj.

Instead of MSE optimization, we can use often preferred: likelihood maximization [8],
but it requires additional iterative optimization and introduces dependencies between
coefficients.

Above fj 1D polynomials are orthonormal in [0, 1]:
∫ 1
0 fj(x)fk(x)dx = δjk, getting

(rescaled Legendre): f0 = 1 and for j = 1, 2, 3, 4, 5 correspondingly:

√
3(2x− 1),

√
5(6x2 − 6x + 1),

√
7(20x3 − 30x2 + 12x− 1),

3(70x4 − 140x3 + 90x2 − 20x + 1),
√

11(252x5 − 630x4 + 560x3 − 210x2 + 30x− 1).

They are plotted in the top of Fig. 3. f0 corresponds to normalization. The j = 1
coefficient decides about reducing or increasing the mean - have similar interpretation
as expected value. Analogously j = 2 coefficient decides about focusing or spreading
given variable, similarly as variance. And so on: further fj have similar interpretation
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Figure 4: Modelling joint probability distribution of (x1, x2, x3) variables, each normalized to
nearly uniform distribution on [0, 1]. Top left: largest positive and negative obtained coefficients
aj of polynomial used as density estimation: corresponding to ajfj1(x1)fj2(x2)fj3(x3) correction

from uniform distribution on [0, 1]3. The remaining 3 region plots show the actual values (6469
tiny black points) and region plots of obtained density as degree m = 9 polynomial for all 3 pairs
of variables, presenting non-uniformity of their joint distribution, especially for the (x1, x2) pair
(top right). If these variables would be uncorrelated (ρ ≈ 1), probability of a region would be
proportional to its area. In contrast, the blue region here corresponding to estimated density
1 ≤ ρ ≤ 2 has more than 1/2 of area, but only ≈ 18% of probability, which is mostly concentrated
in the diagonal, near its edges. It can be seen in the largest coefficients: negative 110 gives anti-
correlation, positive 220 increases probability of extreme values. The third variable appears much
further in coefficient list, what means weaker statistical dependency.

as cumulants, however, while reconstructing density from moments is a difficult mo-
ment problem, presented description is directly coefficients of polynomial estimating the
density.

For multiple variables, aj describes only correlations between C = {i : ji > 0}
coordinates, does not affect ji = 0 coordinates, as we can see in the bottom of Fig. 3.
Each coefficient has also a specific interpretations here, for example a11 decides between
increase and decrease of second variable with increase of the first, a12 analogously decides
focus or spread of the second variable.

Errors of such estimated coefficients come from approximately Gaussian distribution:

ãj − aj ∼ N
(

0, 1√
n

√∫
(fj − aj)

2ρ dx

)
Forρ = 1 the integral has value 1, getting σ =

1/
√
n ≈ 0.013 in our case. As we can see in Fig. 4, many coefficients are more that

tenfold larger here: can be considered as essential, not a result of a noise.
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5 Context-free modeling

We will work analogously to Markov modelling: model probability distribution of a
new value basing on one or a few previous values - referred as context for the prediction.
In contrast to standard Markov situation, values we are using are continuous: from
[0, 1] or [0, 1]2 or [0, 1]3 here. The number of previous values considered for prediction
is referred as the order of model. Order 0 or context-free models values as independent
random variables: all from the same probability density. Order 1 is standard Markov
process: uses context as one previous value to model probability distribution of the
current value. Analogously for higher-order models: using a few previous values as
context for prediction.

Let us start with basic context-free approach: just model joint distribution of ob-
served values, not looking for statistical dependencies with neighboring values. In dis-
cussed example d = 3 dimension and xt = (x1(t), x2(t), x3(t)) for t = 1 . . . n = n1.

We could also use only a subset of such variables, e.g. for d = 2 we have three
possible pairs here: (x1, x2), (x1, x3) and (x2, x3). Reducing to d = 1 should lead to
nearly uniform density due to the used normalization. Imperfection of e.g. assumed
Laplace distribution used for this purpose will be corrected while fitting polynomial - in
multidimensional case by j coefficients with ji = 0 for all but a given coordinate.

Top of Fig. 1 contains evaluation for fitting m = 9 degree polynomial (for each
variable) and 4 cases: d = 3 and all 3 pairs d = 2. It shows sorted ρ for predictions of
actually observed values - the higher it is, the better prediction. Beside the used model,
efficiency of such prediction strongly relies on objective statistical dependencies between
these variables - for example will fail if they are uncorrelated. Surprisingly, we can see
from this plot that using just first two variables gives better prediction than for all three
here - the third variable is weakly correlated, more strongly with x2 (red plot) than with
x1 (green).

Such plots evaluating prediction also allow to calibrate density plots, including in-
terpretation for negative densities being artifact of the presented method: we can see
that ≈ 3% of cases here got negative density, hence ρ > 0 region is expected to indicate
the proper value in ≈ 97% of cases.

Analogously we can interpret further lines of these graphs, for example we can see
that the blue and orange lines in Fig. 1 have ρ > 2 in ≈ 62% of cases. Lower 3D density
plot shows this ρ > 2 region in [0, 1]3: while it contains only ≈ 14% of the volume, what
would be its probability for uncorrelated variables, it contains here much more: ≈ 62%
of points from the sample.

2D regions for multiple isolines of constant ρ for all 3 pairs are presented in Fig. 4,
which alternatively can be obtained as marginalization of 3D density. It gives better
visualization of strong statistical dependance between x1 and x2, and much weaker with
x3. Percentages indicate probability of cases observed in a given region, for example for
0 < ρ < 1 for light blue regions. The missing probability is localized in further regions.
Tiny black points are the actual 6469 data points - presented density region plots MSE
fit degree m = 9 polynomial to sum of Dirac deltas in all points of the sample.

Figure 4 also contains the largest positive coefficients (left, always starts with 1 for
normalization), and negative (right). They provide unique independent cumulant-like
description of statistical dependencies in modelled sample. For example largest positive
is a220 ≈ 0.65, what corresponds to parabola in first and second variable: statistical
avoidance of being both near the center. Largest negative is a110 ≈ −0.82, saying that
with growth of the first variable, there comes reduction of the second.
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Figure 5: The most significant statistical dependencies: 100 largest absolute value coefficients for
the million coefficient model: m = 9, d = 6 modeling three neighboring pairs. The corresponding
6 coordinates are: (x1(t), x2(t), x1(t− 1), x2(t− 1), x1(t− 2), x2(t− 2)). The list obviously starts
with, a000000 = 1 corresponding to normalization (the remaining functions integrate to 0). Then
we have ”11” pairs as already seen in Fig. 4, this time in all 3 positions with nearly identical
coefficient (tiny differences come from occurrences at the beginning and the end). Then we see
large a111100 ≈ a001111 ≈ 0.81 positive coefficient describing dependency between neighboring
pairs: saying e.g. that with growth of the first 3 variables, the fourth is also likely to grow. While
using up to m = 9 order, we see that the ”9” index appears only in the last: 100th position
here - dominant statistical dependencies are described by relatively low order polynomials here.
Assuming uniform density on [0, 1]6, these coefficients should come for a Gaussian distribution
centered in zero with σ = 1/

√
n ≈ 0.012, hence the above coefficients > 40σ can be seen as

statistical significant: should not be interpreted as a result of noise.

6 Context-dependent modelling

The next step is trying to exploit statistical dependencies between values neighboring
in time: based on context representing the history, for example a few previous values, or
extracted crucial information about the past for example in some dimensionality reduc-
tion method like PCA: corresponding to the largest eigenvalues of covariance matrix.

For simplicity and reducing dimension we will work on (x1, x2) pairs as x3 has much
weaker correlation. We have considered one previous pair as the context (d = 4): xt =
(x1(t), x2(t), x1(t− 1), x2(t− 1)), or two previous pairs (d = 6): xt = (x1(t), x2(t), x1(t−
1), x2(t− 1), x1(t− 2), x2(t− 2)) for t = 1 . . . n which is n1− 1 or n1− 2 correspondingly.

The most significant 100 coefficients for the largest considered model (d = 6, m =
9, 106 coefficients) are presented in Fig. 5. Each is independent and has a specific
meaning: correction aj

∏d
i=1 fji(xi) to initially uniform density on [0, 1]6 - providing

unique description of statistical dependencies in the observed data sample. For certainty
that they are not just a result of random noise, σ ≈ 0.012 here for ρ = 1 (uniform density
on [0, 1]d), which is exceeded a few dozens of times in this sample.

The results of this m = 9 order 2 (right, 106 coefficients) and analogously order 1
(left, 104 coefficients) are presented in Fig. 6. Especially, the order 2 model gives nearly
perfect agreement: in ≈ 80% of cases, the actually observed value is in the smallest
predicted region (red boundary for ρ = 10). However, this is fitting a million coefficient
model to just 6467 data points - polynomial approaching spikes in data points.

The proper prediction evaluation should test generalization capabilities, what is pre-
sented in Fig. 7. These tests of 27 models first randomly split data sample into two
disjoint subsets, use the first one to calculate coefficients, and test on the second subset.
We see that the million coefficient model (d = 6,m = 9) in ≈ 25% of cases gives negative
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density - has strong overfitting. However, focusing on predicted high density regions, it
most frequently gives the proper prediction.

Finally, we see that the choice of the most appropriate model is a difficult question,
it might be worth to consider a few models and somehow mix their predictions.

7 Conclusion and further perspectives

While there is usually assumed Gaussian distribution for financial data, in reality it is
often much more complicated, including multimodal distributions. There was presented
basics of systematic approach for modelling such joint distribution with a polynomial -
what allows to effectively find and work with parametrisation using thousands of unique
and independent cumulant-like coefficients, each one having a specific interpretation,
and being inexpensive to calculate.

The used example applied basic methodology for educative reasons, we plan to in-
vestigate its extensions in the future, for example:

• Selective choice of basis: we have used complete basis of polynomials, what makes
its (m+1)d size impractically large especially for high dimensions. However, usually
only a small percentage of coefficients is above noise - we can selectively choose
and use a sparse basis of significant values instead - describing real statistical
dependencies. Alternatively, we can selectively reduce polynomial degree for some
of variables.

• Adaptive choice of coefficients: we have assumed that coefficients are constant in
time, what corresponds to stationarity of time series. However, in practice it is
often non-stationary, what can be modelled using coefficients being not average of
all values of a given function like here, but some local averages instead, for example
with exponentially decaying weight [8].

• Long-range value prediction: combination with state-of-art prediction models ex-
ploiting long-range dependencies, for example using a more sophisticated (than
just the previous value) predictor of the current value.

• Improving information content of context used for prediction: instead of using a
few previous values as the context, we can use some features e.g. describing long-
range behavior like average over a time window, or for example obtained from
dimensionality reduction methods like PCA (principal component analysis).

While the approach used here was analogous to Markov modelling, an alternative ap-
proach to consider in the future is using time as one of coordinates, e.g. fit polynomial to
(x1(t), x2(t), t) triples in a moving time window. It would require much lower dimension,
allowing to model longer correlations directly. It also allows working with continuous
time.
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Figure 6: Top: sorted predicted densities for the actually observed values for two degree m = 9
models: using one (left, 104 coefficients) or two (right, 106 coefficients) previous (x1, x2) pairs as
the context. It contains percentages of cases when density was above ρ = 0, 1, . . . , 10 thresholds,
drawn below in region plot. Bottom: region plots for predicted densities in some four random
points in time, the same for both models. We can see overfitting, especially in the right column,
with large white regions denoting predicted ρ < 0. This model fits million coefficients to size
6467 sample - approaching density as polynomial with spikes in the used points. The proper
model evaluation should test its generalization capabilities instead: estimate coefficients on a
subset of sample, and test on the remaining points - its results are presented in Fig. 7.
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Figure 7: The proper evaluation of 27 models: sorted predicted densities for the actually observed
values (the higher, the better prediction) in randomly chosen 25% of data points, using the
remaining 75% of points to train the model (estimate coefficients). There were used context-free
(d = 2), order 1 (d = 4) and order 2 (d = 6) models for (x1, x2) and all degrees m = 1, . . . , 9.
The highest (blue) plots are analogous as in Fig. 6, but this time with disjoint training and test
sets to prevent overfitting.
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