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Abstract: 
 

Due to various reasons, there is a lack of big data in the construction industry, one of the 
main obstacles to a broader implementation of AI. Another obstacle is adhering to analytical 
methods in fields more suitable for AI solutions. If appropriately used, multidisciplinary 
expert knowledge can compensate for these problems and enhance the application of AI 
techniques in construction. The case study refers to rapid earthquake loss assessment. The 
problem with traditional systems is their low accuracy, making them unreliable and unusable 
in the recovery process, which is the purpose of loss assessment systems. Low accuracy is 
caused by too much uncertainty in analytical and insufficient data sets to create vulnerability 
curves in empirical methods. The contribution of this research is designing a new kind of 
rapid earthquake loss assessment system using multidisciplinary expert knowledge and AI 
methods. The problem of small data sets was solved using the procedure of representative 
sampling, which makes a small sample informative and sufficient to use. The low accuracy of 
analytical methods is caused by assuming theoretical vulnerability relations before an 
earthquake. The new approach uses trained assessors to perform on-the-ground observation of 
actual damage on the representative sample after an earthquake. AI methods are then used to 
predict damage to the remaining building portfolio, which is more accurate and still rapid 
enough. Another contribution is using a building representation without earthquake data 
which eliminates the need for analytical methods, shake maps and robust ground motion 
sensor networks, making the proposed framework unique and applicable in any region.  
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1. Introduction 
 

The construction industry lags in implementing AI in scientific research. Some specific 
problems lead to that. Due to various reasons, there is a lack of big data (big enough data sets 
to implement AI techniques) in the construction industry, one of the main obstacles to a 
broader implementation of AI. Typical realistically obtained data sets are: 30 highway 
sections contracts, 1797 earthquake damaged buildings, or 38 residential buildings with actual 
financial data. The most common reasons for the lack of data are data ownership, the sensitive 
nature of financial information, and incomplete data sets. Such small or medium-sized data 
sets are insufficient for AI-based scientific research and limit the application of different AI 
techniques in the construction industry. It is not uncommon that researchers sometimes give 
up on ideas when faced with small data sets. In addition, researchers sometimes adhere to 
traditional engineering solutions in fields where AI could outperform analytical methods. 

When it comes to implementing AI in construction, there is another phenomenon worth 
mentioning. There are sources of larger data sets of which researchers are still not aware. For 
instance: real-time spatial labor data from construction sites, minutes of meetings (text 
mining), or digital twin-enabled evaluations. The scientific community should find ways to 
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use these IT-enabled big data sources. This intriguing topic is outside the scope of this 
research. 

This paper presents a case study that shows a way forward for overcoming two obstacles - 
the lack of big data (data sets undersized for machine learning techniques) and adhering to 
underperforming analytical methods (which can be outperformed by AI solutions). The case 
study refers to rapid earthquake loss assessment. The purpose of any loss assessment system 
is to be accurate enough to be used for budgeting the recovery process. Due to establishing 
theoretical vulnerability relations before an earthquake, the accuracy of traditional systems is 
low. The research goal is to overcome the accuracy problem by using a completely different 
approach – establishing vulnerability relations after an earthquake by observing actual 
damage. If the new system is accurate and rapid enough, it would be a significant scientific 
and practical contribution. 

 
2. The traditional approach to rapid earthquake loss assessment and what’s wrong with 
it? 
 

When an earthquake occurs, buildings are damaged, and society strives to recover as soon 
as possible. The first step in a recovery process is determining the damage to each building. 
On-the-ground surveys have to be conducted to record and verify damage officially, but it 
takes a long time to visit every building – usually a couple of months. So, a rapid assessment 
(near real-time prediction of damage and loss) is needed to start planning recovery. The 
primary goals of a rapid system are to assess safety and occupancy issues (detect higher levels 
of damage) and to monetize loss at the community level (so the local authorities can plan the 
budget and other resources). The accuracy and speed of prediction are the main quality 
features of rapid loss assessment systems. 

Rapid earthquake loss assessment consists of two phases: preparing the system (pre-
earthquake phase) and activating the system when an earthquake happens to predict loss (co-
earthquake phase).  

 
2.1 Pre-earthquake phase – preparing the system before an earthquake 
 

The preparation of traditional loss assessment systems comprises five steps: 
1. Creating the building portfolio - a database of buildings in a city or region. The 

database is populated with characteristics of the building (e.g. building type, age, and 
geometry features) and its location (e.g. geo coordinates and soil type). Classifying the 
portfolio of buildings into building types (BT) depends on the materials, construction 
methods, structural elements, and other factors influencing their seismic behavior. 

The problem with this step is that many buildings don’t fit the exact building type due to 
design modifications, improvisations, additions, or omissions. It is not always easy to 
determine the actual BT, so mislabeling can occur. 

2. Defining damage states (DS) for buildings. Various classifications exist globally to 
describe the severity of the damage, ranging from slight damage to collapse.  

The problem with this step is that actual damage states are not clear cut and often coexist 
in a building. Also, DS does not contain information about the quantity of damage, which is 
critical for budgeting the recovery process. 

3. Establishing a Ground Motion Model - to estimate ground motion intensities in the 
affected region and map the effects of an earthquake on buildings locations. The estimated 
distribution of the ground motion intensity field, updated with the observations recorded 
during the event, is called a shake-map. It shows intensity measures such as Peak Ground 
Acceleration, Spectral Acceleration, Peak Ground Velocity, or macroseismic intensity. Hence, 
generating shake maps is a procedure that maps the intensity measures of an earthquake to 
specific building locations. The most common algorithms used to generate shake-maps are the 
USGS ShakeMap® algorithms [1] and the Bayesian inference method [2]. In the pre-
earthquake phase, a region has to build a network of ground motion sensors and establish an 
organizational unit to be prepared to use the system.  
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The problem with a ground motion model is that it introduces significant uncertainty and 
requires building a network of ground motion sensors and establishing an organizational unit 
to be prepared to use the system. 

4. Damage prediction - determining the relationship between ground motion and damage 
states for each building type. Damage prediction involves methods for creating seismic 
vulnerability models (vulnerability curves) for different building types independently of the 
earthquake under assessment. Prediction methods can be analytical, empirical, and hybrid [3]. 
For a particular earthquake and observed ground motion, the system predicts the probability 
of a building type being in a certain damage state. 

4.1 In analytical methods, the assessment of expected damage states is based on dynamic 
modelling and analysis [4]. Analytical methods are capacity spectrum based, collapse 
mechanism-based, or fully displacement-based. The strength of analytical methods is the 
provable and quantifiable accuracy of seismic damage prediction for a given, well-defined 
building type. However, the actual building stock is quite diverse and numerous, such that it 
cannot be easily classified and separately investigated. As-built buildings often differ from 
theoretical building types. In addition, their seismic performance capacity diminishes due to 
ageing or poor maintenance. Thus, there is significant uncertainty in applying the analytical 
approach to a diverse building portfolio, making for less precise earthquake loss assessment 
systems.  

Machine learning (ML) methods are also used in research to create vulnerability relations 
but with no significant scientific or practical added value other than to verify already explored 
methods. Using AI this way does not solve implementation issues on a diverse portfolio. 

4.2 In empirical approaches, the evaluation of damage state probabilities for each building 
type is based on the observed damage from previous earthquakes. The outcomes are presented 
in the form of damage probability matrices or continuous vulnerability curves fitted to the 
data [3]. The weak side of this approach, when implemented for a particular locality, is the 
lack of a sufficiently large set of reliable empirical data due to the limited number of 
damaging earthquakes affecting the locality in the recent past [5]. Data from a single 
earthquake has a limited range of intensities, thus producing just a part of the vulnerability 
curve. As in analytical methods, combining data from different affected areas to develop 
vulnerability relations introduces significant uncertainty concerning the equivalence of the 
related building types – the ones used to create vulnerability models and the ones to be 
assessed for damage after a future earthquake. Typical vulnerability curves derived from 
empirical data are shown in Fig.1.  

5. Loss quantification is essential for the successful management of the recovery process 
because it provides the local authorities with a first estimate of the needed budget. Loss 
quantification usually implies using matrices with repair or replacement costs per unit area of 
a building, covering all possible combinations of building type and building damage state. 
Experts make these cost estimates considering the current construction technologies and costs. 
Typically, such cost estimates are normalized by the replacement value of the building [6], 
[7]. If not updated regularly, unit repair cost matrices may introduce significant uncertainties 
regarding both current repair costs and building replacement values. Furthermore, market 
conditions in different regions of the world may lead to very different ratios of the market 
value of an existing building, which may be in a poor state of function and maintenance, and 
the market cost to build an equivalent new building in its place. There is a need to include 
construction management experts to upgrade the current practice of loss quantification. 
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Fig.1. Vulnerability curves derived from empirical data (Kraljevo 2010 earthquake) 

 
2.2 Co-earthquake phase - activating the system immediately after an earthquake 
 

Since all components are set in advance, the co-earthquake phase is simple to perform. 
When an earthquake occurs, sensors detect ground motions, shake maps are generated and, 
using vulnerability relations, probabilities for damage states are estimated for each building in 
near real-time. Loss is computed according to pre-determined relations and replacement 
values. Based on different combinations of shake-map algorithms, damage prediction 
software, and methods for loss assessment, various local or global operational rapid 
earthquake loss assessment systems exist worldwide [4], [8]. 

Therefore, the existing loss assessment systems introduce uncertainties in all three stages: 
in generating shake maps (both in algorithms and in measurements of ground motion), in 
fragility/vulnerability relations (approximating actual buildings to theoretical models or 
empirical data gathered elsewhere), and in the loss assessment (both in repair costs and 
replacement values). According to HAZUS, the total uncertainty is “possibly at best a factor 
of two or more”, motivating researchers to investigate new approaches to create better rapid 
earthquake loss assessment systems. 

Although each step is logical and scientifically justified, the system as a whole is not 
accurate enough. The conclusion is that two problems hamper the traditional approach to loss 
assessment: analytical methods cannot be accurate because of too many assumptions and 
approximations, and empirical methods cannot work because of the lack of a sufficiently large 
set of reliable data. 

Earthquake engineers are stuck – they don’t want to let go of analytical and don’t have a 
solution for the lack of big enough samples for empirical methods. 

 
3. New approach to rapid earthquake loss assessment - based on representative 
sampling and an appropriate building representation  

 
This case study explains how to overcome the weaknesses of traditional approaches to 

damage predictions. When faced with uncertainties and limiting small data sets, researchers 
need to look for multidisciplinary expert knowledge and make higher-level abstractions to 
enable ML techniques and eliminate unnecessary sources of uncertainty (which are not 
essential for loss assessment accuracy). 

The general idea was to view an earthquake as an event that causes the distribution of 
various damage states to buildings across a territory. Regardless of the seismic nature of the 
cause, the hypothesis is that an ML technique could learn such a distribution from a small 
observed data set. That way, most of the uncertainties could be eliminated from the process. 
Since it will always be challenging to obtain large input data sets, the idea was to make an 
informative selection that enables even a small data set to teach an ML algorithm. 
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The first task was to prove that ML techniques can be used to predict damage states. The 
second was to prove that eliminating earthquake data from the input set does not affect 
accuracy. The third was to devise a method for creating a representative sample. The final 
task was to explore the relation between the size of the representative sample and 
corresponding accuracy and find the optimum tradeoff. 

The case study relates to the M5.4 2010 Kraljevo earthquake. The earthquake caused two 
fatalities and just over one hundred medically treated injuries, but almost 6,000 structures 
sustained damage, a quarter of which were unsafe to occupy after the earthquake. Due to 
minor losses elsewhere, “loss assessment” in this research refers to predicting damage states 
and repair costs of residential buildings in the earthquake-affected area. Only the main 
findings are presented in this paper, while the complete research is in [9]. 

 
3.1 M5.4 2010 Kraljevo earthquake data modeling 

 
The final dataset contained 1979 buildings located in three representative districts of 

Kraljevo, of which 652 were damaged. It took more than a year to establish the data set, 
working with different institutions, which illustrates the difficulty to obtain large data sets. 

The buildings were classified into six building types representing the building stock in 
Serbia and the broader region of the West Balkans. These building types, regarding typical 
architecture layouts, structural systems and elements, are: 

• BT1: Traditional, stone foundation, wooden superstructure buildings (constructed until 
the 1950s) 

• BT2: Masonry structures with the old brick format (constructed until 1933) 
• BT3: Masonry structures with the new brick format (constructed after 1933) 
• BT4: Masonry structures with horizontally reinforced concrete ring beams (constructed 

1963-1975) 
• BT5: Masonry structures with horizontally and vertically reinforced concrete ring 

beams (constructed 1975-1990) 
• BT6: Masonry structures with horizontally and vertically reinforced concrete ring 

beams (constructed after 1990) 
The Building group of input attributes consists of a building type, year of construction, 

number of floors and the footprint area. The Location group of input attributes contains 
numeric GIS x and y coordinates of the building and the local soil type, a discrete attribute. 

The damage state classification was: DS0 - no damage, DS1 - slight damage, DS2 - 
moderate damage, DS3 - heavy damage, and DS4 – collapse, consistent with the EMS-98 [10] 
damage classification with the provision of combining the EMS-98 very heavy and 
destruction damage state into DS. 

Due to the sparsity of local measurements, the spatial distribution of the earthquake 
ground motion intensities at the locations of the buildings in the database was described by 
the earthquake magnitude and epicentre location and modelled using the Akkar-Bommer 
ground motion prediction equation (GMPE) suitable for seismically active regions in Europe 
[11], [12]. The Earthquake group of input attributes contains all elastic acceleration response 
spectrum values in the [0, 4 sec] interval (including the Peak Ground Acceleration), and the 
distance from the building to the epicentre. 

For loss quantification construction management experts, familiar with the current market 
conditions, created repair cost matrices based on direct loss estimates per unit area. The 
matrices contain repair cost (replacement cost for collapse buildings) for each BT-DS 
combination.  
 
3.2 Can ML be used for earthquake damage prediction? 
 

The Random Forest algorithm was chosen to demonstrate that an ML model can learn the 
unknown mapping between the representation of a building and the observed damage states. 
Each building is represented as a vector containing all input attribute groups: Earthquake 
(distance to the epicenter, spectral acceleration values series), Location (x geo-coordinate, y 
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geo-coordinate, soil type), and Building (BT, construction year, footprint area, number of 
floors). 10-fold cross-validation was applied to the entire dataset (1979 buildings). The 
performance of the classification model was evaluated after accumulating the hits and misses 
from each test fold in a single confusion matrix. In this experiment, the model is validated on 
two different levels: by testing the accuracy of predicted damage states and by testing the 
accuracy of the predicted repair costs (using the expert-defined cost repair matrix, fully 
explained in [9]). 

Results in Table 1 confirm the high accuracy (85%) of the Random Forest classification 
model. Precision and recall values for DS0 suggest that the model could learn the concept of 
the prevailing undamaged buildings. Damage states DS1 and DS3 were recognized 
moderately well. The small number of buildings in some damage states in the training set 
(127 in DS2, 64 in DS4) directly influenced the classification performance. An increased 
number of entities in problematic damage classes would likely improve the classification 
performance. This experiment shows that an ML algorithm can map damage states to 
buildings types, but it needs a larger data set or a data set with a better BT-DS distribution to 
be used directly. 

 

Actual 
Predicted DS0 DS1 DS2 DS3 DS4 Total number of 

buildings: 
Recall 

DS0 1314 11 0 1 1 1327 0.99 
DS1 27 234 38 18 11 328 0.71 
DS2 6 64 37 13 7 127 0.29 
DS3 7 31 17 69 9 133 0.52 
DS4 3 18 14 10 19 64 0.30 
total: 1357 358 106 111 47 Accuracy 

1673/1979=0.85 Precision 0.97 0.65 0.35 0.62 0.40 
Table 1. Confusion matrix with accuracy, precision and recall measures 

 
3.2 Do we even need earthquake data to predict earthquake damage? 
 

This intriguing hypothesis is very important for the operational versatility of the new 
approach and would open up various possibilities if proved to be true. Choosing the right 
combination of features in a building representation has two goals: to discover the minimum 
representation that returns acceptable prediction accuracy while using building features that 
can realistically be obtained. Accordingly, an experiment was conducted to assess the 
prediction accuracy with different combinations of building features. 

In the previous experiment it was shown that an ML model can be used to predict the 
damage state of buildings in an area struck by an earthquake. Aiming to build an earthquake 
loss assessment framework usable in regions where seismic instrumentation is sparse or non-
existent, it is important to show that an ML model can learn the spatial distribution of 
earthquake intensities at building locations without any information about the earthquake or 
the local soil conditions, using only the geo-coordinates and the structural characteristics of 
the buildings coupled with the observed damage states. An experiment was conducted to 
investigate this hypothesis. Four-building representations were used, namely: 1) Earthquake + 
Location + Building (all input attributes); 2) Location + Building; 3) Earthquake + Building; 
and 4) XY + Building (geo coordinates + descriptive structural characteristics of a building). 
Four different damage prediction models were trained using the Random Forest ML 
algorithm. 

The hypothesis testing protocol comprised performing 10-fold cross-validation repeated 
100 times. In each repetition, the building dataset is divided into 10 parts differently. The 
cross-validation results were averaged over all repetitions to perform a paired t-test [13] 
between the model, which used the Earthquake + Location + Building representation, and the 
models with other, smaller, representations. The objective was to find the representation that 
enables the best damage predictions (the t-test significance level was set to 0.05). The results 
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shown in Table 2 suggest that ML models based on all four representations performed 
similarly (the paired t-tests indicated that none of the building representations performed 
statistically better than others). However, representation Location + Building and XY + 
Building performed slightly better in terms of Cohen’s Kappa statistics [14]. Kappa is often 
used as a measure of agreement between the classifier decisions and the actual class labels. It 
is considered a better indicator than accuracy since it takes into account the possibility of 
agreement occurring by chance. Models with Kappa greater than 0.7 are considered to 
indicate substantial agreement [15]. 

 

 
Earthquake + 

Location + 
Building 

Earthquake + 
Building 

Location + 
Building XY + Building 

Accuracy (%) 85.4 83.6 85.4 85.4 
Kappa 0.69 0.68 0.71 0.71 
Table 2. Damage classification performance measures for different building representations. 

 
The results shown in Table 2 indicate that a minimal building representation, consisting of 

the building geo-coordinates (x and y), its structural characteristics (building type, number of 
floors, construction year, and footprint area) and its damage state, provides a sufficiently good 
earthquake damage prediction for buildings in the affected area. It may be surprising to find 
that the information about the earthquake ground motion (location of the epicenter, magnitude 
of the earthquake, and the local soil type) can be omitted, and that resulting building damage 
prediction accuracy can still be equally good (or even slightly better!). An explanation is that 
the observed building damage indirectly contains the information about the local earthquake 
ground motion intensity. In fact, each building serves as a rudimentary seismometer. 
Furthermore, each building type captures a particular aspect of seismic behaviour that occurs 
during the earthquake, while the number of floors and the building footprint area capture the 
dynamics of the building. Moreover, viewed together, building damage and location 
information enables detecting the dependences between building types and damage states in 
local neighbourhoods. Based on these findings, the proposed rapid earthquake loss assessment 
(RELA) framework is built using the smallest building representation. 
 
3.3 The proposed RELA Framework 

 
Clearly, from the findings in Chapter 2, a new approach to rapid earthquake loss 

assessment is needed. Traditional systems assume making vulnerability relations before an 
earthquake which inevitably includes too many assumptions which compromise the accuracy. 
The new idea is to explore the possibility to form the BT-DS relations after the earthquake but 
quickly enough to still be considered rapid. The idea is to observe damage states on a small 
sample and use ML algorithms to predict damage states on the rest of the portfolio. 

Two methods exist for gathering damage data after the earthquake: remote sensing and 
on-the-ground surveys. Remote sensing uses different methods for damage observation such 
as aerial or satellite images [16-20], or more recently, synthetic aperture radar data [21]. 
Nowadays, ML methods combined with different image processing techniques gain in 
popularity in remote damage assessment, both at the city block and the individual building 
levels [22-25]. However, in most of these studies, buildings were classified as damaged or 
intact, which is not detailed enough for accurate loss assessment. Findings in [17] state that 
“there is a general tendency in remote sensing to underestimate damage” and that “there is a 
need to carry out more detailed ‘ground-truthing’ exercises to establish how typical the degree 
of error found was”, support on-the-ground post-earthquake damage inspection. Since on-the-
ground surveys would be easier to implement and must be conducted at least once during 
recovery, the authors chose to explore such an approach. 

As with traditional systems, the proposed RELA framework also consists of two phases: 
Pre-earthquake phase - preparing the system before an earthquake. Form a database 

of buildings with minimum representation. Form a sample of buildings that represents the 
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portfolio well – a representative set. Train a group of assessors to detect the damage states of 
buildings. Experts prepare and regularly update a cost matrix with repair costs for each BT-
DS combination. 

Co-earthquake phase - activating the system immediately after an earthquake. In the 
co-earthquake phase, trained assessors visit the representative set, detect the damage state and 
upload the results. The ML Random Forest algorithm immediately predicts damage states for 
the rest of the portfolio. Each day, the assessors continue to visit more buildings. As the 
observed number of buildings increases, the prediction accuracy for the remaining part of the 
portfolio increases as well. After a couple of cycles, the overall prediction process is accurate 
enough. Since observing the representative set takes a couple of days, the prediction process 
can be categorized as rapid.  

The RELA framework for ML-based loss assessment is shown in Fig. 2. 

 
Fig. 2. Proposed Rapid Earthquake Loss Assessment (RELA) framework 

 

3.4 Representative sampling and the optimum size of the representative set 
 
In the previous chapter, the RELA framework was presented in general terms. Here, the 

main aspects, which make RELA fully operational, are explained in more detail. Specifically: 
1. How to perform representative sampling to determine a representative set? 
2. What is the minimum size of the representative set enough for acceptable accuracy?  
A sampling algorithm used in the pre-earthquake phase to create a (relatively small) 

representative set of buildings from the building portfolio is illustrated in Figure 3. For the 
sampling procedure, <BT, number of floors> combination was chosen, sufficient to capture 
seismic behaviour. The portfolio is represented as a set S of n buildings. The sampling 
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algorithm should capture the variations in both the spatial distribution and the characteristics 
of the buildings in S. 

 
Fig. 3. Representative sampling algorithm divides the buildings in the portfolio into separate sets 

representing each <BT, number of floors> combination. Circles represent discovered spatial clusters. 
 
The algorithm divides S into subsets containing only buildings from the specific <BT, 

number of floors> combination. These subsets contain buildings whose seismic behavior is 
expected to be similar. If m<<n, buildings are selected to represent the portfolio, and the 
algorithm chooses a proportional number of buildings from each subset. In the example 
shown in Figure 3, 𝑛𝑛1

𝑛𝑛
𝑚𝑚, 𝑛𝑛2

𝑛𝑛
𝑚𝑚, and 𝑛𝑛3

𝑛𝑛
𝑚𝑚 buildings are selected from the corresponding 

subsets (n=n1+n2+n3).  
Buildings from each subset are selected using the K-means clustering algorithm [26], 

which finds building clusters according to their x and y geo-coordinates. The clustering 
algorithm starts by randomly choosing k buildings (i.e., 𝑘𝑘 = 𝑛𝑛1

𝑛𝑛
𝑚𝑚 for the first subset) and 

assumes they are the centroids of the initial spatial clusters. A building is associated with a 
cluster if its distances to centroids of other clusters are greater than the distance to the centroid 
of the currently associated cluster. After assigning all buildings to the clusters, the algorithm 
re-computes the centroids and repeats the same procedure a predefined number of times, or 
until the updated centroids do not move from iteration to iteration. Finally, each <BT, number 
of floors> subset is represented with one building per each discovered spatial cluster. The 
proposed sampling method selects the building which is closest to the centroid of the cluster it 
belongs to. 

Representative set size with the corresponding accuracy is a critical framework feature 
because it addresses the problem of small samples. The goal is to determine the minimum set 
size which returns satisfactory prediction accuracy. If the set is not small, it takes too much 
time for assessors to observe damage states, and the whole system is not rapid.  

Representative set size is tested in two experiments. Representative sets, consisting of 
5%, 10%, 15%, and 20% of the case study building portfolio, were created using the K-means 
algorithm described above. Representative sampling was performed without the knowledge of 
the building damage states, simulating the RELA framework pre-earthquake phase. After a 
representative set was created, the damage states were assigned to the buildings in it using the 
2010 Kraljevo earthquake damage data, simulating the damage inspection effort of the local 
assessors. Kraljevo operates a Civil Protection organization numbering 57 Civil Protection 
Deputies, distributed in all 16 districts, which were trained and are responsible for certain 
duties in an event of an earthquake. These deputes are assumed to be the local assessor 
network in this case study. Assuming the speed of assessment of 30-40 buildings per assessor 
per day, nearly 2,000 buildings could be assessed in one inspection cycle (day). 
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Fig. 4. Representative sampling algorithm divides the buildings in the portfolio into separate sets 
 
In a real-life application of the proposed RELA framework, only one representative set 

will be selected among many possible samples that could emerge from the proposed K-means 
sampling procedure. What is the chance that the selected representative set will produce a 
Random Forest model that estimates the damage, and thus the Predicted Repair Cost (PRC), 
poorly? To answer this question, the probability that a Random Forest damage prediction 
model built on a representative set containing n% of the portfolio predicts the PRC with a 
relative error less than 10%, 20% and 30%, was estimated by counting the models that 
achieved the desired performance. This data is shown in Figure 4. Evidently, increasing the 
representative set size increases the probability that the proposed framework generates good 
damage prediction models. In this case study, a 10% representative set size delivered PRCs 
whose relative error was less or equal 30% with a probability of 0.85. A relative PRC error of 
less than 20% was observed in 7 out of 10 representative sets. In the whole city of Kraljevo, 
such representative set would comprise about 4,000 buildings. Given a network of 50 to 60 
trained local damage assessors, the on-the-ground representative set damage assessment task 
could be completed in two days, allowing for one update cycle (Figure 2). This example 
shows that the proposed RELA framework enables rapid and fairly accurate earthquake loss 
assessment.  

The data in Figure 5 also shows that predicting repair costs with a relative error smaller 
than 10% is difficult. This is because the costs of the repairs of individual buildings are quite 
random, characterized by wide repair cost intervals surrounding the mean values used in the 
expert-derived repair cost matrix (Table 3). In Kraljevo, such repair cost uncertainties were 
large enough to render increasing the representative set size (and prolonging the damage 
assessment period) ineffective in terms of improving the accuracy of PRC below the 20% 
relative error. This shows that the accuracy of the direct losses assessed using the RELA 
framework can be estimated, and that it needs to be reported to the decision makers together 
with the obtained loss assessments.  

 
Figure 5. The probability that a model built on the representative set containing 5%, 10%, 15%, 

and 20% of the building portfolio produces the relative PRC error smaller than 10%, 20%, and 30%. 
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The case study shows how to solve the problems of traditional damage prediction by 
combining different kinds of expert knowledge with ML: earthquake engineers for building 
representation, project management experts for RELA framework and IT experts for 
representative sampling and testing the viability of expert’s solutions. The proposed RELA 
framework can be considered a breakthrough in rapid loss assessment systems since it is more 
accurate than traditional approaches and far more implementable since it needs no 
infrastructure other than a group of trained assessors. 
 
3. Conclusions 

 
There are obstacles preventing the broader use of AI in construction, such as obtaining 

big data sets to employ AI techniques and adhering to analytical methods in fields more 
suitable for AI solutions. This case study provides ways to move forward.  

The case study refers to rapid earthquake loss assessment systems. The problem with 
traditional systems is their low accuracy, making them unreliable and unusable in the 
recovery process, which is the purpose of loss assessment systems. Low accuracy is caused by 
too much uncertainty in analytical and insufficient data sets to create vulnerability curves in 
empirical methods. The contribution of this research is designing a new kind of rapid 
earthquake loss assessment system using multidisciplinary expert knowledge and AI methods. 
The problem of small data sets was solved using the procedure of representative sampling, 
which makes a small sample informative and sufficient to use. The low accuracy of analytical 
methods is caused by assuming theoretical vulnerability relations before an earthquake. The 
new approach uses trained assessors to perform on-the-ground observation of actual damage 
on the representative sample after an earthquake. AI methods are then used to predict damage 
to the remaining building portfolio, which is more accurate and still rapid enough. Another 
contribution is using a building representation without earthquake data which eliminates the 
need for analytical methods, shake maps and robust ground motion sensor networks, making 
the proposed framework applicable in any region.  

The RELA framework is a result of multidisciplinary expert knowledge. A combination 
of representative sampling, lean building representation, machine learning for rapid damage 
classification based on on-the-ground inspection, and a repair cost matrix defined and updated 
by local experts is unique compared to existing rapid earthquake loss assessment systems. 
Furthermore, using buildings as damage sensors opens up the possibility for implementation 
in disaster scenarios other than earthquakes, using the same representative sample. 
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