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Abstract: 
 

Machine learning methods have been widely and successfully applied in hydrological 
problems. Most of the methods, such as artificial neural networks, have been focused on 
estimating hydrological data based on observation over time. Even though these models provide 
good results, it can be observed that results become unreliable when the training dataset is small 
or when input data is significantly out of range compared to the training data. Therefore, a new 
approach is presented, in which artificial neural networks are trained to satisfy physical laws. 
This is conducted by a novel method called physics-informed neural networks (PINNs), in 
which physical principles are embedded in a custom loss function. This paper presents the 
application of physics informed neural networks for solving 1D flood wave propagation in open 
channels. The research has shown promising results.  
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1. Introduction 
Water resource management requires tools for long-term and, more often, short-term 

forecasting of various hydrological data (e.g. stage and flow hydrographs). This is significant 
in the field of flood risk management, hydropower plant control, inland navigation, water 
supply, etc. Numerous tasks related to hydrological data forecasting have been successfully 
treated by using a model-driven forecasting approach. Even though this approach provides 
excellent results and represents an inevitable step, there are still many issues to be addressed. 
In many cases, computational time is the parameter that can limit a real-world application of 
physically based hydrological and hydraulic models. Additionally, physically based models are 
insufficiently flexible in cases of inverse problems, parameter identification, introduction of the 
experimental data, etc. Therefore, machine learning (ML) methods are rapidly being applied in 
solving different hydrological-hydraulic problems, where artificial neural networks (ANN) are 
widely used. 

ANN-based forecasting models have been applied in rainfall-runoff modelling [1], early 
flood warning systems [2] and the modelling of urban water networks [3]. These approaches 
require a large amount of data for training which can create problems when there is no data. In 
addition, although these models perform well in the exploitation phase, it can be seen that they 
are unable to give good results when input data are out of the range of the data used for training. 
In these cases, ANN models can produce physically impossible results. Hence, a new approach 
called physics-informed machine learning has been proposed recently [4]. ANNs are trained to 
emulate physical phenomenon using custom made loss (criteria) function, which specifies a 
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physical law. This paper presents the potential of using physics-informed neural networks 
(PINNs) for 1D flood wave propagation in open channels by joining the physical law with the 
initial and boundary conditions described by kinematic wave propagation in the loss function. 

2. Materials and methods 

2.1 Flood routing – physical law 

Flood wave propagation (flood routing) in open channels is described using two equations: 
the mass conservation principle, a continuity equation (1), and the momentum conservation 
principle, a dynamic equation (2). This equation contains impacts of friction, gravity, pressure 
force as well as local and convective acceleration. In this research, flood routing in a rectangular 
channel is represented by a kinematic wave which simplifies the dynamic equation using only 
friction and gravity impacts: 

𝜕𝜕ℎ(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

+ 𝑐𝑐 ∙
𝜕𝜕ℎ(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= 0 (1) 

𝑄𝑄(𝑥𝑥, 𝑡𝑡) = 1
𝑛𝑛
∙ 𝐵𝐵 ∙ ℎ(𝑥𝑥, 𝑡𝑡)

5
3 ∙ �𝐼𝐼𝑑𝑑, (2) 

where ℎ [𝑚𝑚] represents water depth, 𝑡𝑡 [𝑠𝑠] represents time, 𝑥𝑥 [𝑚𝑚] represents spatial coordinate, 
𝑐𝑐 [𝑚𝑚/𝑠𝑠] represents disturbance propagation velocity, 𝑄𝑄 [𝑚𝑚3/𝑠𝑠] represents flow (discharge), 
𝑛𝑛 [𝑚𝑚−13𝑠𝑠] represents Manning’s roughness, B [m] represents cross-section width and 𝐼𝐼𝑑𝑑 [/] 
represents longitudinal slope. The goal of flood routing is to estimate water depth change along 
the channel ℎ(𝑥𝑥, 𝑡𝑡) caused by the flood wave represented by flow hydrograph 𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡)  =
 𝑄𝑄(0, 𝑡𝑡) at the upstream boundary. 

2.2 Implementation of physics into neural networks – custom loss function 

Physics-informed neural networks (PINNs) are trained to solve supervised learning tasks 
while respecting any given law of physics described by general nonlinear partial differential 
equations [4]. PINNs combine two networks together: an approximator network and a residual 
network. The approximator network undergoes training after which it provides a solution 
ℎ�(𝑥𝑥, 𝑡𝑡) at a given input point (𝑥𝑥,𝑦𝑦) called the collocation point, in the simulation domain [5]. 
The major innovation with PINN is the introduction of a residual network that encodes the 
governing differential equations, takes the output of an approximator network, and calculates a 
residual value 𝑟𝑟 which acts as a loss function in deep-learning terminology. The residual 
network is not trained and its only function is to provide the approximator network with the 
residual: 

𝑟𝑟 = ∇ℎ(𝑥𝑥, 𝑡𝑡) − 𝑓𝑓(𝑥𝑥, 𝑡𝑡), (3) 
where 𝑓𝑓(𝑥𝑥, 𝑡𝑡) is defined by the right-hand-side of equation (1). To solve PDE (1), the initial 
condition ℎ(𝑥𝑥, 𝑡𝑡 = 0) = 1.751 𝑚𝑚 is required. Additionally, we impose the boundary condition 
at (𝑥𝑥 = 0) derived from eq. (2): 

ℎ(0, 𝑡𝑡) = �
𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡) ∙ 𝑛𝑛
𝐵𝐵 ∙ �𝐼𝐼𝑑𝑑

�
3/5

. (4) 

In addition to the governing equation (1), the residual network includes boundary and initial 
conditions, and their residues are also calculated and sent to the approximator network [5]. In 
the approximator model, the Mean Squared Error (MSE) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝐸𝐸𝑟𝑟 + 𝑀𝑀𝑆𝑆𝐸𝐸0 + 𝑀𝑀𝑀𝑀𝐸𝐸𝑏𝑏 (5) 
is minimized, where: 

𝑀𝑀𝑀𝑀𝐸𝐸𝑟𝑟 =
1

𝑁𝑁𝑥𝑥𝑓𝑓,𝑦𝑦𝑓𝑓
��𝑟𝑟(𝑥𝑥𝑓𝑓 ,𝑦𝑦𝑓𝑓)�2, 

𝑀𝑀𝑀𝑀𝐸𝐸0 =
1

𝑁𝑁𝑥𝑥0,𝑦𝑦0
��ℎ�(𝑥𝑥0, 0) − ℎ(𝑥𝑥0, 0)�2, 

and 
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𝑀𝑀𝑀𝑀𝐸𝐸𝑏𝑏 =
1

𝑁𝑁𝑥𝑥𝑏𝑏,𝑦𝑦𝑏𝑏
��ℎ�(0, 𝑡𝑡𝑏𝑏) − ℎ(0, 𝑡𝑡𝑏𝑏)�2. 

Here, 𝑁𝑁𝑥𝑥𝑓𝑓,𝑦𝑦𝑓𝑓, 𝑁𝑁𝑥𝑥0,𝑦𝑦0  and 𝑁𝑁𝑥𝑥𝑏𝑏,𝑦𝑦𝑏𝑏 are the total number of collocation points on ℎ(𝑥𝑥, 𝑡𝑡), initial 
and boundary conditions, respectively. To implement PINN with the given equations, we used 
SciANN [6]. SciANN is a Python package for scientific computing and physics-informed deep 
learning using artificial neural networks. SciANN employs widely used deep-learning packages 
Tensorflow and Keras to build deep neural networks and optimization models. It is designed to 
abstract neural network construction for scientific computations and solutions, but also for the 
discovery of partial differential equations (PDE) [6]. 

2.3 Test case 

Physics informed neural network (PINN) application for flood routing was tested on a 
hypothetical test case where flood wave is propagated through a 1600m long prismatic channel 
(Fig. 1) with a rectangular cross-section (15 𝑚𝑚 wide). Manning’s roughness was set to 𝑛𝑛 =
0.015 𝑚𝑚−13𝑠𝑠, the longitudinal slope is set to 𝐼𝐼𝑑𝑑 =  0.005 and disturbance propagation velocity 
is set to c = 15 m/s. The goal was to calculate the water depth change along the channel, induced 
by flood wave generated as upstream boundary conditions (x = 0): 

𝑄𝑄𝑄𝑄𝑄𝑄(𝑡𝑡) = 𝑄𝑄(0, 𝑡𝑡) = 180 ∙ �1 + �−
𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 − 600)

2
+ 0.5� ∙ sin �

𝑡𝑡 ∙ 𝜋𝜋
600

��. (6) 

 
Fig 1. Test case: Flow through a prismatic rectangular channel 

1.1 Physics informed neural network – model configuration 
Physics-informed neural networks require independent variables 𝑥𝑥 and 𝑡𝑡 as inputs to predict 

the value of ℎ. Those inputs are presented in the network as a grid of points 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖, whereby 
arranged pairs (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖), 𝑥𝑥𝑖𝑖 = 0,∆𝑥𝑥, 2 ∙ ∆𝑥𝑥, … , 1600𝑚𝑚 and 𝑦𝑦𝑗𝑗 = 0,∆𝑡𝑡, 2 ∙ ∆𝑡𝑡, … , 999𝑠𝑠, represent 
the dataset for PINN model training. The values ∆𝑥𝑥 = 50 m and ∆𝑡𝑡 = 3 s represent the spatial 
step and time step, respectively. The artificial neural network, built using SciANN package, 
consists of 10 hidden layers, each containing 20 neurons. The activation of each of these 
neurons was defined by the Rectified Linear Units activation function. We used Adam 
optimizer with a learning rate of 10−3, a batch size of 128 and taught the network for 1000 
epochs. If the number of sampling points where boundary conditions are imposed is a small 
portion, the batch size should be set to a large value to always include some of these points and 
guarantee consistent optimization. The network was trained simultaneously on both training 
data and equation (1) by minimizing the loss (5) and by satisfying initial and boundary 
conditions [6]. 

3. Results and discussion 
Once the network was trained, we compared the values ℎ(𝑥𝑥, 𝑡𝑡) predicted by the PINN 

model to a numerical solution obtained by applying the finite difference method. For each value 
𝑥𝑥 ∈ {0𝑚𝑚, 800𝑚𝑚, 1600𝑚𝑚}, the obtained results are given in Fig. 2. 
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Fig 2. Stage hydrographs calculated using the finite difference method and PINN 

The stage hydrographs provided by the PINN and by the finite difference method are very 
similar (Fig 2). These results are obtained for different values of ∆𝑥𝑥 and ∆𝑡𝑡 than those used 
during the training, which means that PINN generalizes sufficiently well. The values of Root 
Mean Squared Error (RMSE) of function ℎ for each value 𝑥𝑥 ∈ {0𝑚𝑚, 800𝑚𝑚, 1600𝑚𝑚} are given 
in Table 1. 

Function RMSE [m] 
𝒉𝒉(𝟎𝟎, 𝒕𝒕) 0.0009 
𝒉𝒉(𝟖𝟖𝟖𝟖𝟖𝟖, 𝒕𝒕) 0.0031 
𝒉𝒉(𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, 𝒕𝒕) 0.0063 
Table 1. Error of the PINN model 

4. Conclusions 
Based on the results, the PINN model for solving 1D flood wave propagation in open 

channels gives exceptional results compared to the results obtained by applying the finite 
difference method. The presented PINN-based approach for solving flood wave propagation 
requires less time and less input data, thus showing a high potential for application in hydrology 
modelling. However, for any real-world must of PINN models, a more complex physical law 
and real river geometry must be implemented, which will be must subject must forthcoming 
research. 
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