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Abstract

In this paper, we shall be utilizing genetic programming (GP) to predict ground-state
energies of molecules made up of C, H, N, O, P, and S (CHONPS) atoms. The GP was
trained and tested on a publicly available dataset which consist of 16242 molecules where
ground state energies were computed using the density functional theory (DFT). The op-
timal parameters of GP were chosen using the random parameter search method. After
multiple GP executions, the best symbolic expression was chosen using a coe�cient of
determination (R2), mean absolute error (MAE), and root mean square error (RMSE).
The best symbolic expression achieved R2, MAE, and RMSE of 0.9434, 0.48, and 0.86,
respectively.
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1 Introduction

The idea of predicting electronic structure was investigated using neural networks
[1], support vector regression [2] and tree-based machine learning methods [3]. Unlike
the aforementioned methods, the bene�t of using genetic programming (GP) are the
symbolic expressions we get as a result, and they correlate the input variables with the
output variables. Examples of GP implementation to various problems is documented in
[4, 5, 6, 7]. In this paper, the idea is to investigate the possibility of implementing GP
on a publicly available CHNOPS dataset [8] to �nd symbolic expressions which could
estimate the ground state energy of molecules with high accuracy.

2 Materials and Methods

2.1 Dataset

As we previously mentioned, a publicly available dataset was used. This dataset con-
sists of intermolecular Coulomb repulsion operators (Coulomb matrices) for each molecule
and the corresponding ground state energies obtained with density functional theory
(DFT) simulations. However, it should be noted that the Coulomb matrices of each
molecule are symmetric matrices so for each molecule only the upper triangle data of the
matrix is provided in the dataset. So for each instance (molecule) in the dataset there are
1275 input variables and one input variable. Due to a large number of input variables the
correlation heat map which is used to investigate the correlation between variables in the
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Figure 1: Pearsons Correlation Value of 1275 input variables to output variable (Ground State
Energy)

dataset is almost impossible. So only correlation values between each input variable and
the output variable (ground state energy) is shown in Figure 1. The Pearson's correlation
method is used to investigate the correlation between input and output variables. As
seen in Figure 1 the majority of input variables have a weak correlation (-0.5 - 0.5) to
the output variable. This could potentially indicate that these variables won't end up as
one of the variables of the �nal symbolic expression obtained with GP. Initially, in GP
all input variables will be included.

2.2 Genetic Programming

The genetic programming (GP) was utilized to obtain a symbolic expression for the
estimation of ground-state energies with a random selection of GP parameters before
each algorithm execution. The initial population was crated using a ramped half-and-
half method which was evolved for a randomly selected number of generations from a
prede�ned range. The �tness function used in each generation to evaluate each pop-
ulation member was a mean absolute error (MAE). In each generation of tournament
selection winners 4 genetic operations were performed (crossover and subtree/hoist/point
mutation). If a prede�ned �tness value (stopping criteria) was achieved by one of the
population members the GP execution would be terminated. To control the size of popu-
lation members the de�nition of parsimony coe�cient is required which is also responsible
for the prevention of the bloat phenomenon. The range of all GP parameters is given in
Table 1.
The metrics used to evaluate symbolic expressions are coe�cient of determination (R2),
MAE, and root mean squared error (RMSE).

3 Results and Discussion

The best symbolic expression was selected based on the highest R2 value and the
lowest MAE and RMSE values. Due to its size, the symbolic expression will not be
shown here. However, in Table 2, GP parameters as well as R2,MAE, and RMSE values
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GP Parameters Lower Bound Upper Bound
Population size 100 200

Number of Generations 100 200
Tournament Selection 10 20
Initial Tree Depth 3 - 7 7 - 12

Crossover 0.9 1
Subree Mutation 0.1 1
Hoist Mutation 0.1 1
Point Mutation 0.1 1
Stopping Criteria 1 · 10−6 1 · 10−4

Range of Constants -10000 10000
Parsimony Coe�cient 1 · 10−6 1 · 10−4

Table 1: The range of GP parameters used in random parameters selection process

obtained on the train/test dataset are shown instead of the best symbolic expression.
From the presented results shown in Table 2 it can be noticed that over�tting occurred

GP Paramters R2 MAE RMSE
1970 147 108 (4,7)

0.37, 0.37, 0.098, 0.14, 0.00032,
0.87, (-1984.21, 4130.14), 9.51 · 10−5

0.965/0.9434 0.469/0.48 0.68/0.86

Table 2: GP parameters and evaluation metric values of the best symbolic expression

since the R2, MAE, and RMSE values are higher on the training set than those achieved
on the testing dataset. The graphical comparison of the ground state energies from the
test dataset and the values calculated using symbolic expression is shown in Table 2.

Figure 2: The comparison of the ground state energies from test dataset and the values
calculated by the obtained symbolic expression
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4 Conclusions

The GP algorithm was utilized on a publicly available dataset to investigate if it is
possible to obtain the symbolic expression for estimation of ground state energy with
high accuracy. The proposed approach showed that symbolic expressions for estimation
of ground state energies could be obtained with GP. The only problem with this approach
is over�tting which can be avoided using cross-validation techniques and di�erent data
scaling/normalizing methods.
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