
1st Serbian International Conference on Applied Artificial Intelligence (SICAAI)
Kragujevac, Serbia, May 19-20, 2022

APPLYING AI METHODS IN AUTOMATED
THEOREM PROVING FOR SOFTWARE
VERIFICATION

Filip M. Marić1

1 Faculty of Mathematics
University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
Email: filip@matf.bg.ac.rs

Abstract

Ensuring hardware and software correctness is vital in all computer applications.
Software verification is a well-developed discipline of software engineering that relies
both on the experimental approach (software testing) and on static program analysis
(formal, mathematical proofs of software correctness). This brief survey will present
some state-of-the-art results in applying deductive and inductive artificial intelligence
methods in software verification.

Key words: software verification, machine learning, automated theorem proving, in-
teractive theorem proving

1 Introduction

Software verification can be either dynamic, examining the runtime program behav-
ior by testing, or static, examining the program source code. Static program analysis
usually employs some formal methods and tools. Formal software verification is the act
of mathematically proving the algorithm and implementation correctness with respect
to its formal specification. Therefore, software verification has always been relying on
automated, deductive reasoning techniques and tools, such as SAT and SMT solvers,
automated theorem provers (ATPs), and interactive theorem provers (ITPs). Such au-
tomated reasoning tools and techniques are based on mathematical logic (propositional
logic, first order logic, higher-order logic, modal logics etc.) and are considered to be
traditional artificial intelligence (AI) systems.

On the other hand, in the last decade we have seen an amazing development of
artificial intelligence tools based on inductive reasoning. Machine learning (ML) and
data-driven software development might have become a dominating software develop-
ment paradigm. Although such techniques are inexact and cannot be directly applied to
determine software correctness, there are many scenarios when they are applied in con-
junction with exact, deductive methods yielding more powerful, hybrid theorem proving
and software verification tools.

In this survey we shall briefly describe some of the most prominent results in applying
modern AI and ML methods in theorem proving and software verification, specially
focusing on results produced by researchers from Faculty of Mathematics, University of
Belgrade.

mailto:filip@matf.bg.ac.rs


F. Marić, Applying AI methods in automated theoreom proving for software verification

2 Applications

Artificial intelligence and machine learning techniques have been successfully ap-
plied for software testing, algorithm selection and parameter tuning, and in automated
theorem proving. On the other hand, there have been some reports on applying soft-
ware verification techniques for specifying and checking correctness of machine learning
system.

2.1 Software testing

Traditional software testing requires manually writing test-scripts, manually analyz-
ing their results (failed tests) and manually maintaining tests when requirements and
software changes (e.g., when the UI is updated). AI techniques have been successfully
applied in various ways to reduce manual work, to improve test automation and to make
the testing workflow much more convenient for testers. There are many research papers
describing specific techniques, and there are several survey studies giving a meta-analysis
and comparison of individual proposed techniques (e.g., a systematic mapping study[2]).

A key aspect of software testing is designing test cases and there has been a growing
interest in applying ML to automate test case generation (i.e., test case design). Given
a program P and a set of programs P ′, ML techniques can generate test cases that
are adequate in sense that they are able to distinguish P from all programs in P ′. In
modern GUI apps, ML can be used to learn an abstraction of the model of the GUI
during testing, so that the learned model can be used generate user inputs that visit
unexplored states of the app.

Another task where ML methods might be beneficial is designing test-oracles. Namely,
when there are no explicit specification it is hard to tell when a test-case should pass,
and ML is used to generate test oracles for determining whether a test has passed or
failed. For example, in regression testing, learning from the previous successful runs can
trigger warnings about potential performance degradation in future system versions.

Testers need to be able to assess the quality of a given test suite. Branch coverage
and mutation coverage are usually used as quality measures, but recently the idea of
behavioral coverage is introduced, which infers a model from a system by observing its
behavior (i.e., outputs) during the execution of a test suite. ML has also been applied
to remove infeasible test cases from a test suite, saving testing time (for example, an
infeasible test in a GUI application would be the one that would produce a push-button
event in a context where that button is disabled).

For large software projects test case suits might require too much time to execute
(several days or even weeks), and ML techniques have been used to prioritize tests and
improve the effectiveness of the testing effort when testing resources are limited.

2.2 Automated programming grading

In the age of online education and massive open online programming courses it is very
desirable to automate grading of students’ exams and assignments. Software verifica-
tion techniques based on both deductive and inductive reasoning have been successfully
applied for this task[5, 6]. Techniques based on regression verification detection can be
used for comparing student’s and teacher’s solutions and proving full or k-equivalence
between them (two program are k-equivalent if they yield same results when loops are
executed at most k times). Techniques based on graph similarity of control flow graphs



F. Marić, Applying AI methods in automated theoreom proving for software verification

can be used to compare solutions for structural similarity and to indicate potential errors
in programming style (in introductory programming courses, students solutions are con-
sidered to be better if they better match the coding style of official teacher’s solutions).

2.3 Algorithm selection and parameter tuning

Algorithm selection is a meta-algorithmic technique to choose an algorithm from a
portfolio on an instance-by-instance basis. In theorem proving and software verification
there are often many competing systems that solve the same problems with different
efficiency. For example, there are many propositional satisfiability (SAT) solvers that
show different performance on various SAT instances. SAT portfolio systems such as
SATZilla[14], ArgoSmArT[8] choose one of many available SAT solvers based on syntac-
tic and other characteristics of the SAT instance being solved. Various ML techniques
are used to build the model used to the select a solver that would show good perfor-
mance. Random forests of cost sensitive decision trees decision trees are often used (in
SATZilla, ISAC, 3S or CHSC), but even simpler techniques such as k nearest neighbors
show good performance (e.g. in ArgoSmArT). Similar techniques can be used for choos-
ing between different systems within a portfolio or for choosing different configurations
of parameters of a single system. Apart from SAT, this approach has been applied in
various hard combinatorial problems (e.g., MIP, CSP, AI planning, QBF, ASP, . . . ). For
example, the system MeSAT[12] offers different methods of encoding CSP into SAT and
uses algorithm selection to select the best one. The approach has also been applied on
automated theorem proving (e.g., in geometry[9]).

2.4 Theorem proving

Software verification relies on theorem proving. Automated theorem proving (ATP)
has been a long standing goal for AI systems. Theorem provers have traditionaly been
based on deductive reasoning in some logical calculi. Theorems in first and higher-
order logics are usually proved using some variants of the resolution method, tableaux
method in combination with decision procedures for specific theories (e.g., linear arith-
metic). Such ATP systems can autonomously prove non-trivial mathematical theorems.
For example, an ATP based on coherent logic manages to prove 37% of the theorems
from Tarski’s seminal book on geometry (with readable and machine verifiable proofs
generated) without any guidance[3].

Recently machine learning techniques have been applied to help guide deductive
systems. Henri Poincaré argued that we prove by logic, but discover by intuition, and
such combination of traditional logic-based methods with machine learning that can give
some sort of intuition might give us big advances in computer-based theorem proving.
We shall describe several examples of this approach.

The sledgehammer tool[10] available within interactive theorem prover Isabelle/HOL
finds proofs by running several first-order logic automated theorem provers and SMT
solvers. The current goal formulated in higher order logic of Isabelle/HOL is translated
into first order logic before being handled to FOL ATPs, along with relevant lemmas and
axioms. One of key components of the system is relevance filtering which among several
thousand available lemmas and axioms selects a subset that could potentially contribute
to proving the goal. Currently this component is learning-based[1] and it outperforms
earlier selector that did not apply learning and selected lemmas based on scores assigned
by symbols that they contain.



F. Marić, Applying AI methods in automated theoreom proving for software verification

Such hybrid systems start to show quite good performance. Flyspeck project is a large
formalization effort culminating with a formal of Kepler’s conjecture. An AI system[13]
that combined external ATPs and machine-learning premise selection methods trained
on the Flyspeck proofs managed to solve 39% of the 14185 theorems in the corpus in a
push-button mode (without any high-level advice and user interaction).

The International Mathematical Olympiad (IMO) is perhaps the most celebrated
mental competition in the world and as such is among the greatest grand challenges for
Artificial Intelligence (AI). The IMO Grand Challenge1, recently formulated, requires
to build an AI that can win a gold medal in the competition, and first steps in that
direction have been made. Problems are considered solved only when solutions can be
mechanically checked by interactive theorem provers. There have been manual formal-
izations of large collections of IMO problems[7]. A few months ago a neural theorem
prover for Lean has been built[11] that learned to solve a variety of challenging high-
school olympiad problems, including two problems adapted from the IMO. The prover
uses a language model to find proofs of formal statements. Each time a new proof is
found, it is used as new training data, which improves the neural network and enables
it to iteratively find solutions to harder and harder statements.

2.5 Verification of Machine learning systems

The current uses of ML systems in verification and theorem proving are such that
ML is used for only as guiding and heuristic components, so they need not be verified.
However, importance of ML in modern software definitely requires careful and more
formal analysis. For example, a very important property of ML systems is robustness
to adversarial examples, and ML systems can be used in safety critical applications only
when it is shown that there is no combination of inputs that will generate an undesirable
output. Verification of such properties is still in its infancy, because methods make
assumptions that prevent them from providing absolute guarantees of the absence of
adversarial examples [4]. However, this research topic gains a lot of attention recently
and we might expect to have future ML which have been formally analyzed and verified.

3 Conclusions

Theorem proving and software verification have been relying on exact, deductive AI
techniques, from its very beginning. Automated reasoning has been a field of AI that
has both enabled modern software verification system, and has been driven forward by
the needs and developments in software verification. State-of-the-art results show that
modern AI systems and ML can successfully be applied in conjuction with traditional
automated reasoning algorithms to give a new generation of more powerful automated
reasoning systems.

1https://imo-grand-challenge.github.io/



F. Marić, Applying AI methods in automated theoreom proving for software verification

References

[1] J. C. Blanchette et al., A Learning-Based Fact Selector for Isabelle/HOL, Journal of
Automated Reasoning volume 57, 2016.

[2] V. H. S. Durelli et al., ”Machine Learning Applied to Software Testing: A Systematic
Mapping Study,” in IEEE Transactions on Reliability, vol. 68, no. 3, pp. 1189-1212,
Sept. 2019.

[3] S. S. Djurdević et al. Automated generation of machine verifiable and readable proofs:
A case study of Tarski’s geometry. Ann. Math. Artif. Intell. 74(3-4): 249-269 (2015)

[4] I. Goodfellow and N. Papernot. The challenge of verification and testing of machine
learning. Cleverhans-blog, 2017.

[5] M. V. Janičić et al: Software Verification and Graph Similarity for Automated Evalu-
ation of Students’ Assignments. Information and Software Technology, Elsevier 2013.

[6] M. V. Janičić and F. Marić. Regression Verification for Automated Evaluation of
Students Programs. Computer Science and Information Systems, 17(1), 2020.

[7] F. Marić and S. Stojanović-Djurdjević, Formalizing IMO Problems and Solutions in
Isabelle/HOL, In proceedings of ThEdu 2020., EPTCS 328, 2020.

[8] M. Nikolić, F. Marić, P. Janičić, Simple algorithm portfolio for SAT, Artificial Intel-
ligence Review, 40, 2013.

[9] M. Nikolić et al. Portfolio theorem proving and prover runtime prediction for geom-
etry, Annals of Mathematics and Artificial Intelligence (85), 2019.

[10] L. C. Paulson and J. C. Blanchette. Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. PAAR-2010:
Workshop on Practical Aspects of Automated Reasoning. Edinburgh, Scotland, July
2010.

[11] S. Polu et al., Formal Mathematics Statement Curriculum Learning. preprint,
https://arxiv.org/abs/2202.01344, February, 2022.

[12] M. Stojadinović, F. Marić, meSAT: multiple encodings of CSP to SAT. Constraints,
19(4), 2008.

[13] C. Kaliszyk, J. Urban, Learning-assisted automated reasoning with Flyspeck, Jour-
nal of Automated Reasoning, 2014.

[14] Xu et al., SATzilla: Portfolio-based Algorithm Selection for SAT, Journal of Arti-
ficial Intelligence Research 32, 2008.


	Introduction
	Applications
	Software testing
	Automated programming grading
	Algorithm selection and parameter tuning
	Theorem proving
	Verification of Machine learning systems

	Conclusions

