Skip to main content

Coevolution and Linear Genetic Programming for Visual Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2723))

Abstract

In this paper, a novel genetically-inspired visual learning method is proposed. Given the training images, this general approach induces a sophisticated feature-based recognition system, by using cooperative coevolution and linear genetic programming for the procedural representation of feature extraction agents. The paper describes the learning algorithm and provides a firm rationale for its design. An extensive experimental evaluation, on the demanding real-world task of object recognition in synthetic aperture radar (SAR) imagery, shows the competitiveness of the proposed approach with human-designed recognition systems.

On a temporary leave from Institute of Computing Science, Poznań University of Technology, Poznań Poland.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banzhaf, W., Nordic, P., Keller, R., Francine, F.: Genetic Programming. An Introduction. On the automatic Evolution of Computer Programs and its Application. Morgan Kaufmann, San Francisco, Calif. (1998)

    Google Scholar 

  2. Bhanu, B., Jones, G.: Increasing the discrimination of SAR recognition models. Optical Engineering 12 (2002) 3298–3306

    Article  Google Scholar 

  3. Bhanu, B. and Krawiec, K.: Coevolutionary construction of features for transformation of representation in machine learning. Proc. Genetic and Evolutionary Computation Conference (GECCO 2002). AAAI Press, New York (2002) 249–254

    Google Scholar 

  4. Breiman, L.: Bagging predictors. Machine Learning 24 (1996) 123–140

    MATH  MathSciNet  Google Scholar 

  5. Draper, B., Hanson, A., Riseman, E.: Knowledge-Directed Vision: Control, Learning and Integration. Proc. IEEE 84 (1996) 1625–1637

    Google Scholar 

  6. Krawiec, K.: On the Use of Pair wise Comparison of Hypotheses in Evolutionary Learning Applied to Learning from Visual Examples. In: Perner, P. (ed.): Machine Learning and Data Mining in Pattern Recognition. Lecture Notes in Artificial Intelligence, Vol. 2123. Springer Verlag, Berlin (2001) 307–321.

    Chapter  Google Scholar 

  7. Luke, S.: ECJ Evolutionary Computation System. http://www.cs.umd.edu/projects/plus/ec/ecj/ (2002)

    Google Scholar 

  8. Peng, J., Bhanu, B.: Closed-Loop Object Recognition Using Reinforcement Learning. IEEE Trans. on PAMI 20 (1998) 139–154

    Google Scholar 

  9. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Schölkopf, B., Burges, C., Smola, A. (eds.): Advances in Kernel Methods-Support Vector Learning. MIT Press, Cambridge, Mass. (1998)

    Google Scholar 

  10. Potter, M.A., De Jong, K.A.: Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents. Evolutionary Computation 8 (2000) 1–29

    Article  Google Scholar 

  11. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Mateo, Calif. (1992)

    Google Scholar 

  12. Ross, T., Worell, S., Velten, V., Mossing, J., Bryant, M.: Standard SAR ATR Evaluation Experiments using the MSTAR Public Release Data Set. SPIE Proc.: Algorithms for Synthetic Aperture Radar Imagery V, Vol. 3370, Orlando, FL (1998) 566–573

    Google Scholar 

  13. Segen, J.: GEST: A Learning Computer Vision System that Recognizes Hand Gestures. In: Michalski, R.S., Tecuci, G., (eds.): Machine Learning. A Multistrategy Approach. Volume IV. Morgan Kaufmann, San Francisco, Calif. (1994) 621–634

    Google Scholar 

  14. Teller, A., Veloso, M.: A Controlled Experiment: Evolution for Learning Difficult Image Classification. Proc. 7th Portuguese Conference on Artificial Intelligence. Springer Verlag, Berlin, Germany (1995) 165–176

    Google Scholar 

  15. Wiegand, R.P., Liles, W.C., De Jong, K.A.: An Empirical Analysis of Collaboration Methods in Cooperative Coevolutionary Algorithms. Proc. Genetic and Evolutionary Computation Conference (GECCO 2001). Morgan Kaufmann, San Francisco, Calif. (2001) 1235–1242

    Google Scholar 

  16. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco, Calif. (1999)

    Google Scholar 

  17. Wolpert, D., Macready, W.G.: No Free Lunch Theorems for Search. Tech. Report SFI-TR-95-010, The Santa Fe Institute (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krawiec, K., Bhanu, B. (2003). Coevolution and Linear Genetic Programming for Visual Learning. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45105-6_39

Download citation

  • DOI: https://doi.org/10.1007/3-540-45105-6_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40602-0

  • Online ISBN: 978-3-540-45105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics