IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXXX 20XX 1

Empirical Comparison of Search Heuristics for
Genetic Improvement of Software

Aymeric Blot and Justyna Petke

Abstract—Genetic improvement uses automated search to
improve existing software. It has been successfully used to
optimise various program properties, such as runtime or energy
consumption, as well as for the purpose of bug fixing. Genetic
improvement typically navigates a space of thousands of patches
in search for the program mutation that best improves the desired
software property. While genetic programming has been domi-
nantly used as the search strategy, more recently other search
strategies, such as local search, have been tried. It is, however,
still unclear which strategy is the most effective and efficient.
In this paper, we conduct an in-depth empirical comparison of
a total of 18 search processes using a set of 8 improvement
scenarios. Additionally, we also provide new genetic improvement
benchmarks and we report on new software patches found.
Our results show that, overall, local search approaches achieve
better effectiveness and efficiency than genetic programming
approaches. Moreover, improvements were found in all scenarios
(between 15% and 68%). A replication package can be found
online: https://github.com/bloa/teve_2020_artefact.

Index Terms—Genetic Improvement, Search-Based Software
Engineering, Stochastic Local Search, Genetic Programming

I. INTRODUCTION

ENETIC improvement (GI) [1]] uses automated search
in order to improve existing software. Gl arose as a
separate field of research only in the last few years, yet
it has already been successfully applied to a wide range
of programs. GI has been used to improve both functional
properties of software, such as fixing of bugs [2]] and addition
of new functionality [3]], as well as non-functional software
properties, such as reduction of software’s running time [4],
memory [5[, and energy [6] consumption. GI-evolved code
changes have been adopted into development [[7]], with a couple
of companies using GI during bug fixing process [8], [9]].
Roughly speaking, GI takes existing software and mutates it
until a variant is found that is better than the original program
with respect to some desired property. GI has been applied at
the source code [4], binary, and assembly level [[10]]; however,
with explainability and exploitability in mind, most GI works
target source code [1[]. Mutation granularity also varies, with
changes applied at the line [4]], abstract syntax tree (AST) [|11]]
and expression level [S5]. The most common operators found
in the literature are deletion, replacement, and insertion of
code found in the original software. There is also work using
transplantation, injecting code from other programs [3].

A. Blot and J. Petke are with the Department of Computer Science,
University College, London WCIE 6BT, U.K. (e-mail: a.blot@cs.ucl.ac.uk;
j-petke @ucl.ac.uk).

This work was supported by UK EPSRC Fellowship EP/P023991/1.

Manuscript received XXXX XX, 20XX; revised XXXX XX, 20XX.

The search space for code changes is vast. Considering
the simplest case with deletions, replacements, and insertions
applied at the line level, there are [+*(I—1)+I1x(I—1) single
potential edits, where [ is the number of relevant lines in the
given software. Furthermore, this number grows exponentially
when combinations of edits are considered. Therefore, meta-
heuristics, such as genetic programming, have been proposed
to navigate the GI search space, with successful results.

Many different GI frameworks and toolkits have been de-
veloped and used, often using variations in their core search
process. Nowadays GI search processes are based on either
genetic programming (GP) [12]-[14], with, for example, the
GISMOE framework [4]], or stochastic local search [15], with,
for example, the recent PyGGI [16]-[18]] or Gin [19], [20]
frameworks. However, though literature search strategies have
proven themselves to be effective in practice, they have not
yet been empirically compared and analysed.

In order to come closer to answering the question which
search strategy is the most efficient and effective in GI, a few
studies tried to answer the question of what the search space
of code changes looks like in practice [21]. In each work a
particular GI framework was used, and none compared the
different possible search strategies. Nevertheless, it was shown
that the search space is largely neutral, i.e., many mutations
lead to software variants that pass the same number of test
cases as the original code. If such a search space is navigated
efficiently, it will open up great possibilities for improvement
of non-functional properties of software, such as running time,
energy or memory consumption. It is worth mentioning that
most of the studies looked into the search space of code
mutations in the context of bug fixing. We believe that part of
the reason for this focus is that there is no standard benchmark
for GI for improvement of non-functional properties.

In this study, we set up an empirical comparative study to
learn more about the GI search process and ultimately find out
which search strategy is the most successful in navigating the
GI search space. We focus on the following research questions:

RQ1: How generalisable are the generated patches?

RQ2: How consistent is GI performance?

RQ3: How often do GI approaches find improvements and
how good are the improvements found?

RQ4: Which search heuristic is overall the most effective?

Specifically, our contributions include:

« a comprehensive empirical study of 18 search strategies;

« new benchmarks and target software for non-functional
genetic improvement;

« implementation of new search strategies in PyGGI.


https://github.com/bloa/tevc_2020_artefact

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXXX 20XX

II. RELATED WORK

GI approaches have been traditionally built upon GP sys-
tems. In automated program repair (APR), the very influential
GenProg tool [11]] cemented the idea that genetic approaches
could be used to repair bugs and improve software’s functional
properties. Efficiency of alternative GenProg components (rep-
resentation, mutation, crossover) have been studied in several
studies [22], [23]. There has been an exponential increase in
the number of publications on GI in recent years, improving
various GI components, and expanding to new programming
languages and application domains ( [|6], [17], [18]], and many
others). Very few though compare just the search component.

Arcuri [24] compared GP, hill climbing and random search
for the purpose of repairing small Java programs, showing
superiority of GP in terms of fault fixing ability. Qi et al. [25]
implemented a random search strategy within GenProg and
concluded that random search can be as effective as GP,
whilst improving efficiency of the search process. The authors,
however, changed the regression testing strategy for their
random search. ASTOR, a comparison framework for APR
approaches has also been developed, though no study yet
exists that compares just the search component [26]. In the
context of improvement of non-functional properties, we are
the first to compare different GP search strategies and random
search in [27]. That case study suggested that all surveyed
approaches were able to produce improved software versions,
although resulted in no clear winner. Finally, there have been
studies directly investigating the program search space of
GI problems [21], for example reporting on large number
of neutral variants [28[]. Rather than primarily relying on
empirical observations, these studies can bring better insight
the search process and indirectly hint towards which type of
search should be preferred.

III. GENETIC IMPROVEMENT

In this section we deal with the general algorithmic details
of GI. First, we present edit sequences, the usual GI solution
representation. Then, we detail several types of search strate-
gieﬂ which will be compared in the experiments: (1) random
search, used as a baseline; (2) genetic programming, the origi-
nal and search strategy of many GI systems; (3) local search, as
implemented in recent GI frameworks—PyGGTI [[18]], Gin [20].
Finally, we also describe the validation procedure shared
between all search processes.

A. Edit Sequences

GI work usually processes software at either line or abstract
syntax tree (AST) level. If earlier work used to evolve software
directly [29]], nowadays most work use more lightweight
representations. Instead of representing the mutated software
with a full copy of the original code, focus is only given to
the changes necessary to obtain the desired mutant. With the
assumptions that fixed or improved software can be obtained
with very little modification, using code already existing in the
original software [30]], current GI approaches use a sequence of

IPseudo code for all algorithms can be found in supplementary material.

elementary edits that are to be applied in order. Usual types of
edits are deletions, replacement, or insertion of code. Because
edits are completely disassociated from the actual software—
they use the position of the line or the node of the AST—this
makes edit sequences very easy to generate and manipulate.

B. Random Search

Random search is arguably the simplest search strategy:
every iteration a new mutant is generated, modifying the
original software by up to m edits. At the end of the procedure
the mutant yielding the best fitness is returned. Random search
is a purely exploratory strategy, with no intensification. In
particular, combinations of good edits can only happen if those
edits are generated during the same iteration. Likewise, if the
final incumbent mutant contains multiple edits, no information
is carried on whether they all are necessary or if some of them
are either unnecessary or even have a negative impact on the
final fitness. Random search provides a very simple and natural
baseline, whilst also providing many sample-related statistics
for the target software.

C. Genetic Programming

Genetic programming (GP) [12] has been used in GI since
the inception of the field [29], and since in most of GI work
both for the improvement of functional and non-functional
properties. In contrast to random search, which was a strict
exploratory procedure, GI simultaneously evolves a population
of solutions, using both mutation and crossover.

We describe a very simple GP search process used in many
GI works. The initial population is obtained by generating n
individuals with a single random edit. Then, in each generation
invalid individuals are filtered and up to n/2 parents are
selected, starting with those having the best fitness. For each
single parent, another valid individual from the population
is selected and used through crossover to obtain a single
offspring. Each single parent is then again used to obtain a
second offspring, this time through mutation. At the end of
the generation, the offspring obtained by crossover and those
obtained by mutation are evaluated and combined to form
the next population. The valid individuals of the previous
generation are considered as parents and sorted by fitness
(as defined in Section [[V-B). If there are fewer than n/2
valid parents, new individuals with a single random edit are
generated until the new population reaches n individuals.
Multiple types of GP crossover have been proposed in the
context of GI, including concatenation crossover (e.g., in [4],
[31], [32]), 1-point crossover (e.g., in [2f, [33], [34]), or
uniform crossover (e.g., in [[11]]). We detail the four crossover
methods compared in the experiments.

Concatenation The edit sequences of the two parents are
simply concatenated.

Single-point The edit sequences of the two parents are uni-
formly split at random into two sub-sequences, and one
offspring is created by concatenating the head of the first
one with the tail of the second one.



BLOT AND PETKE: EMPIRICAL COMPARISON OF SEARCH HEURISTICS FOR GENETIC IMPROVEMENT OF SOFTWARE 3

2 @ —
AN .
B | B
Bo A2 A3 BS AS
Fig. 1. Uniform interleaved crossover: half of the edits of both parents are

selected (here: A2, A3, As, Bo, and B3), and then recombined while keeping
their original relative positions.

Uniform concatenation The edit sequences of both parents
are concatenated, then each edit is dropped with 50%
probability.

Uniform interleaved Half of the edits of both parents are
selected uniformly at random and then intertwined at their
relative positions to create the offspring (see [Figure IJ).

Finally, mutation of an edit sequence involves with equal

probabilities either the deletion of an edit selected uniformly

at random (only if the sequence is non-empty) or the creation
of a new edit, appended at the end of the sequence.

GP search processes for non-functional GI usually use
a subset of test inputs to estimate the quality of software
variants, re-sampling a new subset at the beginning of each
generation. This re-sampling enables GP to consider a smaller
subset, thus speeding the search considerably; if quality esti-
mation is necessarily worse and more noisy, genetic material
able to survive multiple generations will ultimately be assessed
using more inputs and therefore be more reliable.

In the experiments, we will distinguish two variants of GP:
first a GP search process that returns the best individual in
the last generation, as described in this section. Then, a GP
search process that returns the best individual evaluated over
the entire search: for this purpose, and to avoid overfitting to a
very small input subset, at the end of each generation the best
individual is reassessed over a larger subset of inputs, constant
over all generations. This variant will be denoted as GP".

D. Local Search

In contrast to GP, local search only relies on mutation to find
better software variants. We present three local search strate-
gies: first improvement, best improvement, and tabu search.

1) First Improvement: The random search strategy gener-
ates new mutants by applying edits to the original software.
Consider instead modifying the previous best mutated software
so-far found and the result is a first improvement exploration
strategy. The original software is now iteratively and gradually
improved, building the final mutant step by step rather than
hoping to generate it already fully constructed. Other common
names for the first improvement strategy include hill climbing,
or iterative improvement. Furthermore, neutral neighbours are
also accepted, i.e., mutants with different edits but a similar
fitness, on the basis that we are accepting (or removing) edits
that are not detrimental to the final mutant. Finally, in common
with both other local search strategies, first improvement
follows the mutation procedure described for GP.

First improvement provides the simplest means of building
improved software step by step. Because in this work first
improvement is not iterated with restarts, this strategy can be
trapped by local optima, i.e., solutions with only neighbours
of decreased fitness, or severely hindered by neutral plateaus,
i.e., sets of solutions with similar fitness that are connected by
the neighbourhood relationship. Finally, because edits with no
or insignificant impact will be accepted on the same basis as
those resulting in large fitness improvement it can be expected
that the edit sequence of the final mutant might contain a
proportion of unnecessary edits.

2) Best Improvement: First improvement performs a partial
exploration of the neighbourhood, stopping as soon as a non-
degrading neighbour is evaluated and accepted. This can lead
to a slow convergence of the search process when better neigh-
bours are available. In this situation, an exhaustive exploration
of the neighbourhood enables the process to select a more
efficient search step by accepting the neighbour achieving the
maximal improvement. Unfortunately, GI neighbourhoods are
far too large, and neighbours far too expensive to evaluate, to
exhaustively explore the neighbourhood of any solution. For
that reason, our best improvement strategy compromises by
considering reasonable fixed-size subsets of s neighbours of
the neighbourhood of the current solution. If no improving
neighbour is found, the search does not stop but simply
continues generating a new subset of s neighbours.

Best improvement provides an alternative to first improve-
ment that delays the acceptance of edits of insignificant
impact, at the cost of an additional parameter, the partial
neighbourhood size. The addition of this parameter, however,
would be anyway necessary in order to iterate both exploration
strategies with the goal of escaping local optima and plateaus.

One possible drawback of the best improvement strategy is
that when multiple very good edits are found during the same
partial neighbourhood exploration only the best one will be
accepted while the other would be simply discarded. However,
this drawback could be easily overcome with, for example,
maintaining a queue of the most promising edits. For the sake
of simple comparison we nevertheless still only consider the
simple strategy described in this section.

3) Tabu Search: Both first improvement and best improve-
ment exploration strategies are simple descent local search
strategies, which can be trapped in local optima and plateaus.
For this reason we consider a third local search-based strategy:
tabu search. Based on the best improvement strategy, it enables
escaping local optima by accepting the best neighbours from
the partial neighbourhood, even if this one worsens the fitness
of the current solution. Additionally, to avoid alternating
between the same solutions, accepted solutions are stored in
a fixed-length tabu list and ignored in the next few iterations.

E. Validation Step

It is expected that mutated software produced by GI ap-
proaches overfits on training data. Given the separable nature
of the GI representation, most GI work includes a validation
step that filters in the produced mutant individual edits harmful
to generalisation. Following Blot and Petke [27]], experiments
will use a two-stage validation step.



4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXXX 20XX

The first stage does not require running the mutated soft-
ware. On the assumption that the edit sequence may contain
large amounts of bloat, especially with GP search strategies,
each edit is sequentially extracted from the edit sequence and
the resulting sequence is applied and the resulting software
compared to the one using the complete sequence. If the two
mutants are identical, then the extracted edit is filtered out.
While this procedure does not modify in any way the resulting
software, it is very cheap and can greatly reduce the size of
the sequence, and thus the cost of the subsequent stage.

The second stage, originally by Petke et al. [32]], considers
all remaining edits independently, computing their respective
individual fitness, before ranking them and constructing the
final sequence by applying each one of them in order, keeping
only those that improve fitness.

IV. EXPERIMENTAL SETUP

In this section, we present the experimental protocol used
in our experiments in order to compare GI approaches.

A. Framework

There are currently two general GI frameworks available:
PyGGI [16]-[18] and Gin [19], [20]. While both are designed
to ease prototyping and quick GI experiments and thus adapted
to our research, the later solely focuses on Java software
with language specific features, while the former is language-
agnostic. As we mostly target C/C++ software but also con-
sider a Java scenario, we chose PyGGI for our experiments.

B. Fitness

We target improvement of a non-functional software prop-
erty: efficiency in terms of computational speed. This is most
easily understood as the time required by a given software to
finish its workload. However, measurements are extremely im-
precise and can be strongly impacted by the state of the hosting
machine, even when considering deterministic software.

To obtain more reliable measurements and better assessment
of software quality, the number of lines of code was used in
previous work as a proxy measure (e.g., [32]), at the cost of
heavy source code instrumentalisation. Furthermore, the same
weight was given to every line of code, and impact of calls
to standard or external libraries were omitted. We use instead
the number of CPU instructions as measured by the Linux
perfE] command, as it provides an alternative several orders
of magnitude more consistent.

Other GI work on non-functional fitness have targeted for
example memory [5] or energy [6] usage. We chose to focus
on software speed only, at the risk of less general conclusions,
because of its universal relevance and to better control our ob-
servations on a single type of scenario: the most common [|1]].

C. Experimental Protocol

In order to fairly compare our different GI approaches
we base our experimental protocol on the standard k-fold
cross-validation scheme, introduced in previous GI work [27]],
with some modifications to better suit the specifics of our GI
scenarios. The complete protocol is detailed as follows:

Zhttps://perf.wiki.kernel.org/index.php/Main_Page

Fig. 2. Example of nested 5-fold cross validation using a single fold for
test (X) and £ — 1 folds for both validation (V: single random fold from the
remaining k£ — 1 folds) and training (T: all remaining k — 2 folds). Each of
the five folds (a to e) is successively used once for the test step (X).

Pre-processing. The unmodified software is first repeatedly
run on every instance of the given dataset, in the condi-
tions of the training step, and the software average per-
formance is used to determine the experiment’s constants.
If the dataset is not already naturally separated into bins
of similar instances, those can be fixed at this point.

Cross-validation. Each bin of the dataset is shuffled and
divided into k£ subsets of similar size. The number of
folds of the k-fold cross-validation scheme is determined
using the size of the bins: it should be possible to divide
each bin into k disjoint subsets so that the entire dataset
can be divided into £ disjoint sets, following the same
distribution of instances and large enough so that quality
estimation is reliable. The kth fold of the dataset is
obtained by considering the kth subset of each bin. One
fold is used for the test step, a disjoint one for the
validation step, while the k—1 others are merged together
to be used during the training step.

Training budget. Computed based on the average time T’
required to run the original software on every single
instance of the dataset to be both long enough so that
improvements can be found but short enough so that the
experiments can be completed in reasonable time. We
chose to use one hundred time the average running time
on one fold (i.e., 1007/ k). Because not every instance is
used and some invalid variants are very quickly discarded
(e.g., failure to compile), this budget resulted in the exper-
iments in several hundred to several thousand evaluations,
enough for GI to find significant runtime improvements
for all benchmarks.

Training. All GI approaches are given equal chance to use
any or all of the instances for the k — 2 folds selected for
training. Starting from the original unmodified software,
new variants are iteratively considered until the training
budget is exhausted and a final individual is returned.

Validation. The software variant resulting from the training
step usually overfits to the training instances and can
contain bloat. The validation step provides new unseen
instances that can be used to investigate every individual
modification and construct a final software variant.

Test. Once more, new unseen instances are used to assess the
generalisation of the final mutated software.

Functional confirmation. The mutated software is run on the
entire dataset to ensure its functional properties.

Repetitions. The training, validation, and test steps are re-
peated as many times as there are folds in the dataset.
Each time a different fold is used for the test step, so
that every instance is used for generalisation purposes


https://perf.wiki.kernel.org/index.php/Main_Page

BLOT AND PETKE: EMPIRICAL COMPARISON OF SEARCH HEURISTICS FOR GENETIC IMPROVEMENT OF SOFTWARE 5

—>{Validation}—>{ Test j—P[ Overallj
k_/V{ Test j—>[ Overall j

Fig. 3. Experimental protocol for a single search process on a single scenario.
For each training run fitness of both validated and non-validated final software
variants are assessed over the test fold and all test cases altogether.

exactly once, as pictured in [Figure 2] [27] (for five folds).
Statistical validation. The Friedman test is used to detect

statistical difference between the different GI approaches
and provide an overall ranking. Pairwise comparisons are
then examined using the Siegel post hoc analysis when
the Friedman test reveals significant statistical differences
between approaches.

[Figure 3| provides a top-level visualisation of our experimen-
tal protocol, for a single search strategy on a single scenario. In
addition to the typical GI protocol, the fitness of final training
software variants are directly reassessed on test data and on
all data, bypassing the validation step, in order to provide
more information about the search processes and quantify the
benefit of the validation step. Note that for each scenario
the represented scheme is repeated as many times as there
are folds in the dataset, varying the distribution of test cases
between each step of the protocol.

D. GI Search Processes

First, as a baseline, we consider four approaches based on
random search: Rand(k) denotes that mutants with up to
k random edits are generated. We choose k in 1,2,5,10 to
gauge to which extent random search can find combinations
of useful edits. Then, we consider several approaches using
GP, studying the impact of four different crossover operators:
GPc (concatenation), GP1p (single-point), GPuc (uniform
concatenation), and G Pui (uniform interleaved). For each,
we consider a standard version and one in which the best
individual of every generation is reassessed on a predetermined
set of training instances; the later are denoted with an r
(e.g., GPc and GPc"). Following previous work, we use
a population of 100 individuals [32]. Finally, we consider
approaches using local search: F'irst, Best, and Tabu. For
each approach, we also indicate in subscript how many training
instances they use: either a single instance drawn from each
bin (e.g., GPcy), or two from each bin in an attempt to avoid
overfitting for approaches using a fixed set (e.g., Firsta).
Finally, we investigate variants of every GI approaches when
no validation step is performed for a total of 18 * 2 = 36
GI approaches; for those we reuse the existing results of the
computationally expensive training step.

V. SCENARIOS
A. Selection Criteria
Previous works have repeatedly proven the worth of using
GI on many different software optimisation scenarios, consid-
ering many different target: software applications, granularity
levels, performance measures, and data sets. In order to focus

our study on the comparison of search strategies as detailed
in we selected eight various software optimisation
scenarios with the selection criteria detailed hereafter.

First, notwithstanding our goal of selecting diverse scenario
it was necessary to consider ones that were similar enough
to enable general conclusions on search process performance.
To that effect, we decided to only focus on improvement of
software source code—in contrast to, e.g., improving binary
code directly. Then, to implement and fairly compare the
different search processes we considered the PyGGI frame-
work [[18]], because it has been designed for that purpose and
is one of the very few agnostic GI frameworks that easily
accommodate for target software of multiple programming
languages. Additionally, our experimental protocol uses rep-
etitions and cross validation in order to avoid biases due to
the selection of training, validation, and test sets. It requires
that a sufficient number of input cases are available, so that
a reliable fitness can be computed on each of the three steps.
Furthermore, because input cases are equiprobably distributed
among the three steps, that improvements can be found on the
training distribution—studies such as Bowtie in [4]], that use
different distributions for training and test, cannot therefore be
considered. Finally, GI experiments are notoriously computa-
tionally expensive, because many target software variants have
to considered in order to find improvements. To keep the cost
of our experiments reasonable it is necessary to keep training
budget relatively short; it follows that only software for which
compilation and fitness assessment is short enough is selected.

B. SAT Solvers

MiniSATE] is a well-known Boolean satisfiability (SAT)
solver. It has been used several times in previous GI work [[18]],
(311, [32], [35], [36]. We consider two implementations of
MiniSAT: the latest C++ one by its original authors (minisat-
2.0.0) and a Java reimplementation, Sat4ﬂ version 2.3.4.
We evolve the main solving algorithm core/Solver.cc
and org/sat4j/minisat/core/Solver. java, re-
spectively. The GI scenario we consider is very simple. The
only constraint we impose on mutated software is that it should
be able to produce, compared to the original software, the same
satisfiability result for all tested SAT instances.

1) Combinatorial Interaction Testing: To assess the per-
formance of the considered SAT solvers, we first consider
instances from the combinatorial interaction testing (CIT)
field as used in previous work [27], [32]. Due to previous
concerns about the size and heterogeneity of the dataset [27],
we included some additional hard instances and reorganised
the bins to improve relevance of fitness estimation: instead of
130 instances separated into five bins (two for SAT instances,
two for UNSAT, one for hard instances) we consider 146
instances separated into eight bins (four for SAT instances,
four for UNSAT), giving more weight to harder instances and
making sure that all estimates are based on multiple SAT and
UNSAT hard instances.

3http://minisat.se/MiniSat.html
4http://www.satdj.org/


http://minisat.se/MiniSat.html
http://www.sat4j.org/

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXXX 20XX

TABLE I
SCENARIO OVERVIEW

Software ~ Language # files # AST nodes Dataset #runs  Running time  # bins  # folds  Training budget
MiniSAT C++ 1 429 CIT 146 5.5 minutes 8 8 1.1 hours
MiniSAT C++ 1 429 Uniform-3-SAT 1000 10.8 minutes 10 10 1.8 hours
Sat4j Java 1 962 Uniform-3-SAT 1000 23.0 minutes 10 10 3.8 hours
OptiPNG C 2 790 + 375 Colour Images 100 5.6 minutes 5 5 2.0 hours
OptiPNG C 2 790 + 375 Greyscale Images 100 2.7 minutes 5 5 0.9 hours
OptiPNG C 2 790 + 375 Mixed Images 200 8.3 minutes 10 10 1.4 hours
MOEA/D C++ 2 171 4 151 Functions 45 2.9 minutes 1 9 0.4 hours
NSGA-II C++ 2 192 + 151 Functions 45 14.6 minutes 1 9 2.2 hours

2) Uniform Random-3-SAT: In addition to CIT instances,
we also consider instances from the SATLIB [37] benchmark
collection. In particular, we use 1000 instances from the
Uniform Random-3-SAT benchmarkﬂ generated at the phase
transition [38], i.e., as it happens the region of the 3-SAT
problem space associated to the hardest 3-SAT formulas. We
consider ten bins of 100 instances, with 50, 100, 150, 200,
and 250 variables: five of satisfiable instances and five of
unsatisfiable instances, for a total of 1000 instances.

C. PNG Optimisation

For this scenario, we target OptiPNG, a PNG file size
optimiser. PNG files are images that are stored using loss-
less compression. The PNG specification allows many dif-
ferent types of images types and combinations of options;
there are many ways to encode a specific matrix of pix-
els. The space of possible compression configurations being
computationally intractable, OptiPNG simply applies in or-
der increasingly large subset of manually selected schemes.
While to our present knowledge no GI work previously
targeted OptiPNG, it already had some vulnerabilities fixed
by fuzzing, another field of automated software engineer-
ing. We target two files, src/optipng/optipng.c and
src/optipng/optim. ¢, containing the code pertaining to
select and run the selected compression schemes. We constrain
mutated software to those able to produce output PNG of size
as least as small as the original OptiPNG.

1) Colour and Greyscale Benchmarks: We consider three
benchmarks of PNG images, following the dataset used in
Petke et al. [32]]. There are in total ten sets of twenty images
from various types and sources, half of them colour and half
of them greyscale, of geometric shapes, face images, houses,
galaxies, and scenes from everyday life, respectively.

The first benchmark consists of the five sets of colour
images, the second benchmark consists of the five sets of
greyscale images, while the third benchmark consists of all
the ten sets. Overall, OptiPNG reduces the size of 13 images
by less than 0.1%, of 69 images by 0.1%—1%, of 89 images
by 1%—-5%, of 20 images by 5%—10%, and 9 images by more
than 10% (average: 2.78%, best: 26.03%).

D. Multi-Objective Evolutionary Algorithms

NSGA-II [39] and MOEA/D [40] are both extremely
popular and wide-spread evolutionary algorithms for multi-

Shttps://www.cs.ubc.ca/~hoos/S ATLIB/benchm.html

objective optimisation. They have both stood the test of time
and are still nowadays used as a baseline for many new multi-
objective approaches. We reuse the experimental scenario of Li
and Zhang [41], in which the authors of MOEA/D compare
two C++ implementations of MOEA/D and NSGA-II over
“complicated Pareto sets”. In practice both implementations
partially share the same C++ code, in which nine functions to
optimise are hardcoded.

We consider two scenarios, in which the source code
of MOEA/D and NSGA-II are evolved separately. In
the first one, we target the files DMOEA/dmoeafunc.h
and common/recombination.h, while in the sec-
ond one we target the files NSGA2/nsga2func.h and
common/recombination.h. In the original paper the two
algorithms are compared using a single run on each function.
To get more generalisable results, we compute the final fitness
by averaging several individual runs using different starting
random seeds. For both algorithms we will use five random
seeds, as a trade-off between more reliable fitness quality
assessment and running time costs. In both scenarios, we
constrain the mutated evolutionary algorithm to those able to
produce reasonable Pareto sets on each of the nine functions.
By reasonable we mean here Pareto sets no worse than a given
percentage compared to the original algorithm on the same
function. We report results obtained using a 110% threshold
(i.e., accepting software variants producing solution quality no
worse than 10% worse than the original software).

E. Scenario Overview

summarises the eight GI scenarios we consider in the
experiments. For software, the table details the language, the
number of files evolved and the size of the AST; for datasets
it shows the total number of instances available before cross
validation, the time to run all instances, the number of bins
instances have been classified into, and how many times the
GI process will be repeated. Finally, also shows the
respective complete training budgets—i.e., the time to perform
as many training steps as there are folds in the protocol.

Note that we will not consider the combination of Sat4j and
CIT instances. First, Sat4j is extremely slow in solving every
instance of the CIT dataset (7.4 hours), making it by far the
most time-expensive scenario. Then, following previous use of
the dataset [32] binning was done as to follow the MiniSAT
performance distribution, which we found to not correspond
to Sat4j performance.


https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

BLOT AND PETKE: EMPIRICAL COMPARISON OF SEARCH HEURISTICS FOR GENETIC IMPROVEMENT OF SOFTWARE 7

TABLE II
TOTAL EXPERIMENTAL RUNNING TIME FOR EACH STAGE [IN DAYS]

Scenario Training  Validation  Test  Overall
MiniSAT (CIT) 7.0 0.8 0.1 0.9
MiniSAT (Uniform) 13.4 3.0 0.3 3.2
Sat4j (Uniform) 29.4 3.2 0.8 6.7
OptiPNG (Colour) 8.9 1.1 0.2 1.1
OptiPNG (Grey) 4.3 0.6 0.1 0.5
OptiPNG (Both) 12.4 1.2 0.3 3.2
MOEA/D (110%) 3.9 0.4 0.1 0.9
NSGA-II (110%) 18.6 2.3 0.5 4.4
Total 97.9 12.6 2.5 20.8
TABLE III

PERCENTAGE OF FINAL MUTANTS YIELDING > 5% IMPROVEMENT.

Scenario Training  Validation Test Overall
MiniSAT (CIT) 95.8% 57.6% 36.8% 4.9%
MiniSAT (uniform)  92.8% 87.2% 85.0%  81.7%
Sat4j (uniform) 60.6% 19.4% 18.9% 16.1%
OptiPNG (colour) 24.4% 17.8% 17.8% 17.8%
OptiPNG (grey) 24.4% 17.8% 17.8% 17.8%
OptiPNG (both) 15.6% 11.7% 8.3% 8.3%
MOEA/D (110%) 49.4% 45.1% 42.6%  40.1%
NSGA-II (110%) 39.5% 34.6% 34.0%  29.6%
V1. RESULTSY]

Training and validation steps were conducted in parallel on
four cores of a dedicated (8x3.4GHz, 16GB RAM) Intel i7-
2600 machine, running CentOS-7 with Linux kernel 3.10.0 and
GCC 4.8.5. Subsequent steps—test, functional confirmation—
were conducted sequentially on a single core. While all C++
software are single-threaded, Sat4j compilation and execution
use multi-threading. To ensure fair experiments, all Sat4j runs
used two cores each, enforced using CPU affinity. Finally,
compilation is performed as instructed by the original soft-
ware; for example, MiniSAT uses the —O3 optimisation option.

reports, for each step of the experimental protocol
and for each of the eight scenarios, the combined running
time of all runs of all approaches. Due to the number of
approaches and the repetitions of the cross-validation scheme,
despite considering very short training budgets training runs
alone required more than three months of CPU time.

In this section, we first investigate the relevance of the
chosen scenarios: how generalisable are the generated patches
to unseen tests (RQ1) and how consistent is GI performance
(RQ2). We then discuss the best patches found for every
scenario. Finally we comment on the success rate of GI (RQ3)
and compare the performance of every GI approach (RQ4).

A. Scenario Analysis

[Table III| shows for each scenario the percentage of GI
runs yielding a final software yielding a final software at each
step: after the search, on the validation fold, on the test fold,
and overall on all instances, with the additional constraint

6 Additional training statistics, complete statistical analysis, and details and
performance of patches found are provided in the supplementary material.

= 120% T T R
g H w2 % MiniSAT (CIT)
100% [-—————+ ] ini ;
8 ¢ ¥ ‘ + MlmsA.T (u.mform)
s [ Xy 1 + SAT4;j (uniform)
|
z 80% |- L xg;%‘t; a 0 OptiPNG (colour)
2 ‘0¥ # 2 ® OptiPNG (grey)
g 60%| A . ® OptiPNG (both)
k=i FoL X I MOEA/D (110%)
o 0% wﬁyﬁ — O NSGA-II (110%)
@) il A I I R
40% 60% 80% 100% 120%

CPU instructions ratio (validation)

Fig. 4. Comparison between fitness on a single fold (validation & test steps).

of being at least 5% faster than the original software. First,
results on the MiniSAT (CIT) benchmark show that even
while manually accounting with instance heterogeneity and
fine tuning the separation into bins most GI approaches fail to
generalise; although better than in previous work [27], many
of the validated software fail on test instances, and almost
none generalise to every instance of the dataset. On all other
benchmarks, while a consequent drop may be observed after
training, due to training overfit, variants that undergo vali-
dation usually generalise on all instances. Solutions to reduce
this overfit include considering more instances or reducing the
number of folds, to refine fitness approximation on each fold,
or considering more instances during training, slowing the GI
process by considering more reliable approximations.

Answer to RQ1: (Generalisability) On average, 84% of
the significant improvements confirmed during validation are
also significant in the entire dataset ratio between
columns Validation and Overall). Excluding the more hetero-
geneous MiniSAT (CIT) scenario, the rate raises to 95%.

shows the correlation between the fitness of the
final mutant on the validation and test folds. Mutants failing
to generalise to the test fold are not represented. Similarity
between fitness values indicate that the two selected folds
follow similar distributions of instances. This is the case for all
scenarios except clearly the MiniSAT (CIT) one and in a lesser
measure the two other SAT scenarios. Additionally, fitness val-
ues for all other scenarios are generally well clustered, mean-
ing that successful GI runs found very similar improvements.

presents, for each approach, the performance ratio
of the software variant the most efficient across all repetitions
of the approach on each scenario, computed using all available
instances. A ratio of 100% indicates that the best of the final
software variant performs exactly the same as the original
software. No ratio is indicated when none of runs using the
approach resulted in a better software variant. The best ratio
for each scenario is emboldened.

Answer to RQ2: (Consistency) Speedups from 15% to
68% can be found for all scenarios, with difficulties greatly
differing from scenario to scenario. Manual investigation of
final patches revealed further increased improvements. While
performance largely depends of the scenario considered, local
search and genetic programming found identical or semanti-
cally equivalent software variants in most cases.



8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXXX 20XX

TABLE IV
BEST SINGLE FITNESS RATIO FOUND AFTER VALIDATION, USING ALL INSTANCES FROM ALL FOLDS.

MiniSAT Sat4j OptiPNG MOEA/D  NSGA-II
Algo CIT Uniform  Uniform  Colour  Grey Both 110%

Randz (1) 84% 99% 59% 90% 86%
Rand2(2) 84% 57% 62% 100% 90% 91%
Randz(5) 84% 57%  62%  59% 90% 91%
Randz2(10) 84% 57% 62% 59% 90% 91%
GPic 84% 99% 59% 90% 91%
GPi1p 84% 57% 99% 100% 90% 91%
GPiuc 84% 100% 90% 91%
GPrui 84% 99% 90% 85%
GP]c 84% 57% 99% 59% 90% 91%
GPl1p 84% 62% 100% 90% 91%
GP{uc 84% 57% 62% 100% 90% 85%
GPJui 84% [ — 1 99%  100% 90% 85%
Firsty 100% 57% 61% 59% 90% 89%
Besty 84% 57% 62% 59% 90% 90%
Tabuy 99% 57% 62% 59% 90% 91%
Firsto 84% 57% 62% 59% 90% 90%
Besto 99% 57% 62% 59% 90% 90%
Tabus 99% 57% 62% 59% 90% 90%

B. Mutated Software Comparison

The changes leading to the biggest performance improve-
ments are discussed below. They have all been manually
verified to be semantically valid.

1) MiniSAT: The largest runtime improvement (22%) in
the optimisation of MiniSAT for the CIT domain scenario
comes from the addition of a return false statement in
the 1itRedundant method, which disables a nonessential
search optimisation. In the case where the solver was run
on the uniform random SAT instances, one mutation that
led to 61% speed-up simply cancelled restarts that would
have happened after a specified number of conflicts reached.
Interestingly, similar improvement was obtained by halving
the number of conflicts required before a restart.

2) Sat4J: Interestingly, similar optimisations were found in
Sat4]. In particular, a replacement operation caused the solver
to restart more frequently, leading to 84% speedup. Disabling
recording of learnt clauses also led to similar speed-ups.

3) OptiPNG: In all three scenarios the best performances
are found using a single edit: in optipng/optim.c, when
applying the selected PNG format configuration, calls to the
png_set_compression_window_bits () function are
deleted. This function is used by libpng to setup in zlib the
size of the sliding window of the LZ77 compression algorithm.
While not a parameter explicitly optimised by OptiPNG, the
compression size is set to its smallest value in some cases;
the reasons for this constraint are unclear. By removing it,
zlib always uses the default/largest value, and OptiPNG runs
use on average 40% less CPU instructions and are 20% faster.

4) MOEA/D: Both MOEA/D and NSGA-II implementa-
tions periodically compute the current population fitness for
display purposes. For MOEA/D, this intermediary fitness
computation amounts to 10% of the total work load, and can
be disabled without any consequence. Many similar software
variants have been found, including removing the computation,
modifying the reference front filename so it is not found, pre-

venting it being loaded, emptying it, or trivialising the fitness
computation function. These mutations are only valid because
our GI scenario recomputes the final fitness externally..

5) NSGA-II: For NSGA-II, the removal of the intermediary
fitness computation is also found, but only yields a 1.4%
improvement. Instead, several algorithmic changes are found.
Density evaluation can be modified for a 13% speed improve-
ment and at the minor cost of 3% solution quality (removal
of a rank++ statement in CNSGA2::eval_dens). The
CNSGA2::fill_union function can be tweaked to always
accept new individuals disregarding repetitions for a 11%
speed improvement with no impact on the final solution
quality. Finally, the best variant—found during training only—
also simplifies the the dominance ranking procedure for an
overall speedup of 50% and a 0.2% solution quality loss.

C. Evolutionary Computation Comparison

1) Overall Results: presents the testing results for
each approach. The cross-validation results in k runs, from
which we report the best and median fitness values, together
with the percentage of runs yielding improved performance.

Answer to RQ3: (Performance) With the notable excep-
tion of the MiniSAT (uniform) scenario, for which almost
every GI run yielded excellent improvements, most GI runs
were unfruitful, which can be clearly seen with very low
supports and median performance close to 100%. This can
in part be attributed to the very short training budget allowed
to GI approaches, necessitated by our large-scale comparison
study. However, longer training budgets will not necessarily
always lead to better final results as risks of overfitting will
also increase. Across all repetitions the best performances have
been obtained in around 12% of all runs.

Focusing on the 18 approaches using validation, there
are statistical differences in the performance on the test

step. presents the results of the Siegel post hoc
analysis. Statistical analysis and ranking use all independent



BLOT AND PETKE: EMPIRICAL COMPARISON OF SEARCH HEURISTICS FOR GENETIC IMPROVEMENT OF SOFTWARE 9

TABLE V
BEST AND MEDIAN FITNESS RATIO WITH PROPORTION OF SUCCESSFUL RUNS, USING ALL INSTANCES FROM THE SINGLE TEST FOLD.

MiniSAT (CIT)

MiniSAT (Uniform)

Sat4j (Uniform) OptiPNG (Colour)

Algo Best Median  Success Best Median  Success Best Median  Success Best Median  Success
Randz (1) 79% (38%) 68% 96% (50%)
Rand2(2) 65% (38%) 68% 90% (70%)
Randz(5) (38%) 68% 99% (70%)
Rand2(10) 67% = (40%)
GPic (62%) 92% 99% (70%)
GPi1p 69% (75%) 79% (40%)
GPruc 65% (62%) 80% (30%)
GPrui (38%) 81% (40%)
GPjc (38%) 81% (50%)
GP]1p 96% (62%) 90% (30%)
GP{uc 98% (50%) 91% (40%)
G Pl ui 98% (50%) 92% (40%)
Firsty 64% 84% 98% 100% (50%) (40%)
Besty 69% 90% 81% 100% (60%) (40%)
Tabuy 82% 98% (20%) (40%)
Firsta 65% 99% 68% 99% (70%) (20%)
Besta 65% 85% 98% 100% (50%) (20%)
Tabuo 65% 85% 98% 100% (50%) (20%)
OptiPNG (Grey) OptiPNG (Both) MOEA/D (110%) NSGA-II (110%)
Algo Best Median  Success Best Median  Success Best Median  Success Best Median  Success
Randz (1) 99% I (20%) 60% (30%) 86% 93% 78% 98%
Rand2(2) 64% 99% (60%) 100% (40%) 90% 92% 91% 99% (67%)
Randz(5) 61% 64% 59% 100% (70%) 92% 93% 90% 99% (56%)
Randz(10) 59% (40%) (30%) 92% 92% 91% 99% [ (718%)
GPic 99% (20%) 62% (20%) 91% 98% 90% 99%
GPi1p 99% (20%) 100% 92% 98% 91% (44%)
GPruc 100% 91% 98% 90% 99% (67%)
GPrui 99% (20%) 91% 98% 90% 99% (67%)
GP{c 99% (40%) 62% 91% 98% 90% 99%
GP{1p 59% 99% (60%) 100% 91% 98% 89% 98%
GP{uc 65% (20%) 100% 91% 98% 90% 99% (67%)
G Pl ui 99% (20%) 100% 92% 98% 90% 98%
Firsty 59% 99% (60%) (50%) 86% 98% 89% 99% (56%)
Besty 59% 99% (60%) (30%) 91% 98% 88% (44%)
Tabuy 59% 99% (60%) (30%) 86% 98% 88% 98% (67%)
Firsto 59% (40%) (30%) 92% 98% 89% 99% (56%)
Besta 59% (40%) (30%) 92% 98% 90% 98%
Tabus 59% (40%) 92% 98% 90% 98% (67%)

runs without averaging by scenario. Results are presented
pairwise, a dot (-) indicating a small statistical difference
(p < 0.1) and asterisks significant statistical differences (x:
p < 0.05; ##: p < 0.01; & p < 0.001).

Answer to RQ4: (Overall) Local search approaches clearly
outperform all other approaches on the test data. Approaches
using genetic programming and random search perform sim-
ilarly. However, there are overall not much statistical differ-
ences between approaches: when computing Vargua-Delaney
Ao significant statistical differences are tied to small
effect size, with very few medium effect sizes. These results
are a clear sign that current GI performance could be signif-
icantly improved if better search approaches are considered,
e.g., based on local search heuristics.

2) Random-based Approaches: There is no significant sta-
tistical difference between the 8 random-based approaches on
the test set (Friedman test: p = 0.088). Still, we find that the
validation step has overall a slightly adverse impact on per-
formance; this can be explained by the lack of intensification-

related overfit and marginal false-positive during filtering.

3) GP-based Approaches: There are statistical differences
between the 16 GP-based approaches on the test set (Friedman
test: p = 0.021). shows the results of the Siegel
post hoc analysis. While no single approach statistically out-
performs every other, some observations still can be made.
Every approach using reassessment of the best solution every
generation outranks its non-reassessing counterpart, despite
being slower. Similarly, approaches using the uniform inter-
leaved crossover always outranks their counterpart using the
uniform concatenation crossover. Overall, the best three GP-
based approaches use the concatenation crossover.

GP-based approaches produced significantly fewer software
variants than other approaches. The reason lies in the fact
that the crossover of valid parents has a high probability of
also producing valid offspring. In practice, GP use most of
the training budged recombining known mutations, while local
search have more opportunities to explore software variants.



TABLE VI
SIEGEL POST HOC STATISTICAL ANALYSIS, ALL VALIDATED APPROACHES,
ALL TEST DATA. (FRIEDMAN TEST: p = 4.1 x 1078)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXXX 20XX

TABLE VIII
SIEGEL POST HOC STATISTICAL ANALYSIS, ALL LOCAL SEARCH
APPROACHES, ALL TEST DATA. (FRIEDMAN TEST: p = 6.7 x 10—%)

Approach Rank Approach Rank
S S S S =z SRCECRC z
—~ —~ oA~ A~ = 5 - O 3 o~ &
Z2EEZzZRsgniEzEzEnE R R R
D o a_saanTtETagsslona S PSP SE S 9T YRS
*;,gggggg&ggggiiiggj L S T I V[ g cS
S 8T 05 SARA S SRR A First . ERsEEEE—E 4 7()
M NSO FACITICI T Blgjtf((:)) INLIS——
Firsty (v) wok oS BB OSSR A S 6.95 Tabuy (v) . % % 5091
Besta (V) Co mmmkkkrak g K 7.82 Besty (v) | #% 6.34
Tabuy (v) % ok ok kkxxakkxgh 811 Tabuy (V) % 6.63
Tabus (V) %ok ok kkkwsskr gy 8,20 Firsty (v) |#x 6.64
Best1 (V) %ok ok kkkmmkokk gy 821 Firsty ek 6.72
Firsty (v) * - ok ok xk 8.96 Besto e 6.92
Randz(5) (v) = - x %% 9.00 Tabui &5 * 6.94
GP{c (v) * <k 9.25 Besty . I 7.03
GPic (V) * -k 9.33 Tabus . 7.16
Randy(2) (v) % - EE 936 Firsty |f% % % 7.30
GP[1p (v) % % % = - 10.14
Rand2(10) (v) shekx = % * 10.35
GP{ui (V) Shekk o k% 10.47
GPrui (v) Sherkokk Rk kx - 10.64
GPluc (V) sk - 10.67 VII. CONCLUSIONS
GPiuc (V) Rk kR Rk k- 10.81
Randa(1) (v)  Saficeksink « & - 10.92 In this article, we investigated how search heuristics influ-
GP11p (v) e R R R ek ok kb ok 11.84 . Rk ..
ence effectiveness and efficiency of genetic improvement pro-
cesses, in the context of non-functional improvement. Using
a thorough experimental protocol based on cross-validation,
TABLE VII we compared the performance of 18 search processes across

SIEGEL POST HOC STATISTICAL ANALYSIS, ALL GP-BASED APPROACHES,
ALL TEST DATA. (FRIEDMAN TEST: p = 0.021)

Approach Rank

-~z 2 =z = 2 S

22 S as:9%l%zesu an

AT it Sl oI A

AR A A A A AR AR A A A A A

GCEGVEGEGEGAGEGIGEGEGEIGAGRGRGRGRG)
GP{c (V) ol TRUEEEED O7.20
GPic (V) * % % g 7.30
GPfc % ok % k% 7.51
GP[1p (v) - kw 7.89
GPl'1p * 8.00
GP{ui (v) % 8.32
GPTui . 851
G Pl uc (v) 8.52
GPJuc 8.55
GPiui (V) 8.58
GPrui 8.67
GPiuc (v) * - 8.90
GPruc ok % 9.23
GPic %% % 9.33
GP1p gk ok k- - 9.42
GPilp (V) | s sk 5k % * 10.07

4) Local Search-based Approaches: There are statistical
differences between the 12 local search approaches on the
test set (Friedman test: p = 6.7 x 10™%). shows
the results of the Siegel post hoc analysis. Very clearly,
approaches using the validation step outrank approaches that
do not, confirming the downside of local search approaches
to overfit to the training data. Interestingly, approaches using
more training instances perform worse, trend that should likely
reverse itself with the use of longer training budgets.

8 various improvement scenarios, concerned with runtime
improvement. Due to a lack of standard GI scenarios in the
literature that would be suitable for easy cross-comparisons,
we proposed new benchmarks and target software, for which
possible improvements and found patches are reported. In
particular, for one of the selected software, OptiPNG, a partic-
ularly interesting patch has been shared through a pull request.
Similarly, in addition to the implementation of the various
search processes described in this paper, multiple patches and
improvements have been shared with the PyGGI developers.

Regarding the performance of search processes, our results
indubitably show that GI still is a very young research field, as
most approaches considered fail to produce consistent results,
while random search, usually well crushed in most previous
work, was able to produce here remarkably good results.
Genetic programming approaches, usually preferred as the
original and traditional search process, are in our experiments
bested by local search based approaches. Overall, all results
point to the importance of using well suited search process,
while simultaneously indicating the very large gap that is yet
to be filled regarding optimal GI performance.

In future work, we intend to better study the fitness land-
scape of GI scenarios. Indeed, little is known about them,
with a short survey published only last year [21]. If our
results showed evidence of the possible improvements a more
suitable search process can yield, there is no doubt fitness
landscape analysis will lead to a deeper understanding of what
evolutionary process should be preferred for GI. Moreover,
one could also explore how the best performing approaches
evolve against time. Finally, another possible direction for
future research would be to investigate in more detail the



BLOT AND PETKE: EMPIRICAL COMPARISON OF SEARCH HEURISTICS FOR GENETIC IMPROVEMENT OF SOFTWARE 11

validation step of GI approaches and how to better recognise
promising combinations of edits.

[1]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, “Genetic improvement of software: A comprehensive
survey,” IEEE Trans. Evol. Comput., vol. 22, no. 3, pp. 415-432, 2018.
C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Trans. Softw. Eng.,
vol. 38, no. 1, pp. 54-72, 2012.

E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated
software transplantation,” in International Symposium on Software Test-
ing and Analysis. ACM, 2015, pp. 257-269.

W. B. Langdon and M. Harman, “Optimizing existing software with
genetic programming,” IEEE Trans. Evol. Comput., vol. 19, no. 1, pp.
118-135, 2015.

F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke, “Deep parameter
optimisation,” in Genetic and Evolutionary Computation Conference.
ACM, 2015, pp. 1375-1382.

J. Dorn, J. Lacomis, W. Weimer, and S. Forrest, “Automatically explor-
ing tradeoffs between software output fidelity and energy costs,” IEEE
Trans. Softw. Eng., vol. 45, no. 3, pp. 219-236, 2019.

W. B. Langdon, B. Y. H. Lam, J. Petke, and M. Harman, “Improving
CUDA DNA analysis software with genetic programming,” in Genetic
and Evolutionary Computation Conference. ~ACM, 2015, pp. 1063—
1070.

S. O. Haraldsson, J. R. Woodward, A. E. Brownlee, and K. Siggeirsdot-
tir, “Fixing bugs in your sleep: How genetic improvement became an
overnight success,” in Genetic and Evolutionary Computation Confer-
ence. ACM, 2017.

A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao,
A. Mols, and A. Scott, “SapFix: automated end-to-end repair at scale,”
in International Conference on Software Engineering: Software Engi-
neering in Practice. 1EEE / ACM, 2019, pp. 269-278.

E. Schulte, W. Weimer, and S. Forrest, “Repairing COTS router firmware
without access to source code or test suites: A case study in evolutionary
software repair,” in Genetic and Evolutionary Computation Conference.
ACM, 2015.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in International Conference on Software Engineering. 1EEE,
2012, pp. 3-13.

J. R. Koza, Genetic programming — On the programming of computers
by means of natural selection, ser. Complex adaptive systems. MIT
Press, 1992.

W. B. Langdon and R. Poli, Foundations of genetic programming.
Springer, 2002.

R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic
Programming. lulu.com, 2008.

H. H. Hoos and T. Stiitzle, Stochastic Local Search: Foundations &
Applications. Elsevier / Morgan Kaufmann, 2004.

G. An, J. Kim, S. Lee, and S. Yoo, “PyGGI: Python General framework
for Genetic Improvement,” in Korea Software Congress, 2017, pp. 536—
538.

G. An, J. Kim, and S. Yoo, “Comparing Line and AST granularity level
for program repair using PyGGl,” in International Workshop on Genetic
Improvement. ACM, 2018, pp. 19-26.

G. An, A. Blot, J. Petke, and S. Yoo, “PyGGI 2.0: Language independent
genetic improvement framework,” in ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, 2019, pp. 1100-1104.

D. R. White, “Gi in no time,” in Genetic and Evolutionary Computation
Conference. ACM, 2017, pp. 1549-1550.

A. E. I. Brownlee, J. Petke, B. Alexander, E. T. Barr, M. Wagner, and
D. R. White, “Gin: genetic improvement research made easy,” in Genetic
and Evolutionary Computation Conference. ACM, 2019, pp. 985-993.
J. Petke, B. Alexander, E. T. Barr, A. E. Brownlee, M. Wagner, and D. R.
White, “A survey of genetic improvement search spaces,” in Genetic and
Evolutionary Computation Conference. ACM, 2019, pp. 1715-1721.
C. Le Goues, W. Weimer, and S. Forrest, “Representations and operators
for improving evolutionary software repair,” in Genetic and Evolutionary
Computation Conference. ACM, 2012, pp. 959-966.

V. P. L. Oliveira, E. F. de Souza, C. Le Goues, and C. G. Camilo-
Junior, “Improved representation and genetic operators for linear genetic
programming for automated program repair,” Empir. Softw. Eng., vol. 23,
no. 5, pp. 2980-3006, 2018.

[24]

[25]

[26]

(27

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

A. Arcuri, “Evolutionary repair of faulty software,” Appl. Soft Comput.,
vol. 11, no. 4, pp. 3494-3514, 2011.

Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair through
fault-recorded testing prioritization,” in International Conference on
Software Maintenance. 1EEE, 2013, pp. 180-189.

M. Martinez and M. Monperrus, “ASTOR: a program repair library
for Java (demo),” in International Symposium on Software Testing and
Analysis.  ACM, 2016, pp. 441-444.

A. Blot and J. Petke, “Comparing genetic programming approaches
for non-functional genetic improvement — Case study: Improvement
of MiniSAT’s running time,” in European Conference on Genetic
Programming, ser. LNCS, vol. 12101.  Springer, 2020, pp. 68—-83.

N. Harrand, S. Allier, M. Rodriguez-Cancio, M. Monperrus, and
B. Baudry, “A journey among Java neutral program variants,” Genet.
Program. Evolvable. Mach., vol. 20, no. 4, pp. 531-580, 2019.

A. Arcuri and X. Yao, “A novel co-evolutionary approach to automatic
software bug fixing,” in Congress on Evolutionary Computation. IEEE,
2008, pp. 162-168.

E. T. Barr, , Y. Brun, , P. T. Devanbu, M. Harman, and F. Sarro, “The
plastic surgery hypothesis,” in ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2014, pp. 306-317.
J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Using genetic
improvement and code transplants to specialise a C++ program to a
problem class,” in European Conference on Genetic Programming, ser.
LNCS, vol. 8599. Springer, 2014, pp. 137-149.

——, “Specialising software for different downstream applications using
genetic improvement and code transplantation,” IEEE Trans. Softw. Eng.,
vol. 44, no. 6, pp. 574-594, 2018.

S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic
programming approach to automated software repair,” in Genetic and
Evolutionary Computation Conference. ACM, 2009, pp. 947-954.

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in International Conference
on Software Engineering. 1EEE, 2009, pp. 364-374.

J. Petke, W. B. Langdon, and M. Harman, “Applying genetic im-
provement to MiniSAT,” in International Symposium on Search Based
Software Engineering, ser. LNCS, vol. 8084. Springer, 2013, pp. 257-
262.

B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consumption
using genetic improvement,” in Genetic and Evolutionary Computation
Conference. ACM, 2015, pp. 1327-1334.

H. H. Hoos and T. Stiitzle, “SATLIB: An online resource for research
on SAT,” in Satisfiability. 10S Press, 2000, pp. 283-292.

I. P. Gent and T. Walsh, “The SAT phase transition,” in European
Conference on Artificial Intelligence, 1994, pp. 105-109.

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-IL” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182-197, 2002.

Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712-731, 2007.

H. Li and Q. Zhang, “Multiobjective optimization problems with compli-
cated Pareto sets, MOEA/D and NSGA-IL,” IEEE Trans. Evol. Comput.,
vol. 13, no. 2, pp. 284-302, 2009.

A. Vargha and H. D. Delaney, “A critique and improvement of the “cl”
common language effect size statistics of McGraw and Wong,” J. Educ.
Behav. Stat., vol. 25, no. 2, pp. 101-132, 2000.

Aymeric Blot received the Doctoral degree in computer science from the
University of Lille, Lille, France, with a focus on automated algorithm design.
He is a Research Associate at the Centre for Research on Evolution, Search
and Testing, University College London, London, U.K.

Justyna Petke is a Principal Research Fellow and Proleptic Associate
Professor at the Centre for Research on Evolution, Search and Testing,
University College London, London, U.K. She has published articles on the
applications of genetic improvement.



	Introduction
	Related Work
	Genetic Improvement
	Edit Sequences
	Random Search
	Genetic Programming
	Local Search
	First Improvement
	Best Improvement
	Tabu Search

	Validation Step

	Experimental Setup
	Framework
	Fitness
	Experimental Protocol
	GI Search Processes

	Scenarios
	Selection Criteria
	SAT Solvers
	Combinatorial Interaction Testing
	Uniform Random-3-SAT

	PNG Optimisation
	Colour and Greyscale Benchmarks

	Multi-Objective Evolutionary Algorithms
	Scenario Overview

	Results
	Scenario Analysis
	Mutated Software Comparison
	MiniSAT
	Sat4J
	OptiPNG
	MOEA/D
	NSGA-II

	Evolutionary Computation Comparison
	Overall Results
	Random-based Approaches
	GP-based Approaches
	Local Search-based Approaches


	Conclusions
	References
	Biographies
	Aymeric Blot
	Justyna Petke


