Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13616))

Abstract

Cartesian genetic programming is a popular version of genetic programming and has meanwhile proven its performance in many use cases. This paper introduces an algorithmic level decomposition of program evolution that can be solved by a multi-agent system in a fully distributed manner. A heuristic for distributed combinatorial problem solving is adapted to evolve programs. The applicability of the approach and the effectiveness of the multi-agent approach as well as of the evolved genetic programs are demonstrated using symbolic regression, n-parity, and classification problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, J.F., et al.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1135–1142 (1999)

    Google Scholar 

  2. Miller, J.F.: Cartesian genetic programming: its status and future. Genet. Program Evolvable Mach. 21(1), 129–168 (2020)

    Article  Google Scholar 

  3. Harding, S., Leitner, J., Schmidhuber, J.: Cartesian genetic programming for image processing. In: Riolo, R., Vladislavleva, E., Ritchie, M., Moore, J. (eds.) Genetic Programming Theory and Practice X. Genetic and Evolutionary Computation, pp. 31–44. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6846-2_3

    Chapter  Google Scholar 

  4. Suganuma, M., Kobayashi, M., Shirakawa, S., Nagao, T.: Evolution of deep convolutional neural networks using CGP. Evol. Comput. 28(1), 141–163 (2020)

    Article  Google Scholar 

  5. Parziale, A., Senatore, R., Della Cioppa, A., Marcelli, A.: Cartesian genetic programming for diagnosis of Parkinson disease through handwriting analysis: performance vs. interpretability issues. Artif. Intell. Med. 111, 101984 (2021)

    Article  Google Scholar 

  6. Ahmad, A.M., Muhammad Khan, G., Mahmud, S.A.: Classification of arrhythmia types using cartesian genetic programming evolved artificial neural networks. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013. CCIS, vol. 383, pp. 282–291. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41013-0_29

    Chapter  Google Scholar 

  7. Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic programming. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 1580–1587 (2007)

    Google Scholar 

  8. Turner, A.J., Miller, J.F.: Recurrent cartesian genetic programming. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 476–486. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_47

    Chapter  Google Scholar 

  9. Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in cartesian genetic programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş, Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 61–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_6

    Chapter  Google Scholar 

  10. Walker, J.A., Völk, K., Smith, S.L., Miller, J.F.: Parallel evolution using multi-chromosome cartesian genetic programming. Genet. Program Evolvable Mach. 10(4), 417 (2009). https://doi.org/10.1007/s10710-009-9093-2

    Article  Google Scholar 

  11. Bremer, J., Lehnhoff, S.: Towards evolutionary emergence. Ann. Comput. Sci. Inf. Syst. 26, 55–60 (2021)

    Google Scholar 

  12. Poli, R.: Parallel distributed genetic programming. University of Birmingham, Cognitive Science Research Centre (1996)

    Google Scholar 

  13. Talbi, E.G.: Metaheuristics: From Design to Implementation, vol. 74. Wiley, New York (2009)

    Book  Google Scholar 

  14. Hinrichs, C., Vogel, U., Sonnenschein, M.: Approaching decentralized demand side management via self-organizing agents. In: ATES Workshop (2011)

    Google Scholar 

  15. Hinrichs, C., Sonnenschein, M., Lehnhoff, S.: Evaluation of a self-organizing heuristic for interdependent distributed search spaces. In: Filipe, J., Fred, A.L.N. (eds.) International Conference on Agents and Artificial Intelligence (ICAART 2013) - Agents, vol. 1, pp. 25–34. SciTePress (2013)

    Google Scholar 

  16. Potter, M.A., Jong, K.A.D.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

    Article  Google Scholar 

  17. Bremer, J., Lehnhoff, S.: The effect of laziness on agents for large scale global optimization. In: van den Herik, J., Rocha, A.P., Steels, L. (eds.) ICAART 2019. LNCS (LNAI), vol. 11978, pp. 317–337. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37494-5_16

    Chapter  Google Scholar 

  18. Sotto, L.F.D.P., Kaufmann, P., Atkinson, T., Kalkreuth, R., Basgalupp, M.P.: A study on graph representations for genetic programming. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, GECCO 2020, New York, NY, USA, pp. 931–939. Association for Computing Machinery (2020)

    Google Scholar 

  19. Miller, J.: Cartesian Genetic Programming, vol. 43. Springer, Heidelberg (2003)

    Google Scholar 

  20. Miller, J.F., Thomson, P., Fogarty, T.: Designing electronic circuits using evolutionary algorithms. Arithmetic circuits: a case study. Genet. Algorithms Evol. Strateg. Eng. Comput. Sci. 105–131 (1997)

    Google Scholar 

  21. Khan, M.M., Ahmad, A.M., Khan, G.M., Miller, J.F.: Fast learning neural networks using cartesian genetic programming. Neurocomputing 121, 274–289 (2013)

    Article  Google Scholar 

  22. Harding, S., Banzhaf, W., Miller, J.F.: A survey of self modifying cartesian genetic programming. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Practice VIII. Genetic and Evolutionary Computation, vol. 8, pp. 91–107. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-7747-2_6

    Chapter  Google Scholar 

  23. Hinrichs, C., Sonnenschein, M.: A distributed combinatorial optimisation heuristic for the scheduling of energy resources represented by self-interested agents. Int. J. Bio-Inspired Comput. 10(2), 69–78 (2017)

    Article  Google Scholar 

  24. Bremer, J., Lehnhoff, S.: Decentralized coalition formation with agent-based combinatorial heuristics. Adv. Distrib. Comput. Artif. Intell. 6(3), 29–44 (2017)

    Google Scholar 

  25. Tong, B., Liu, Q., Dai, C., Jia, Z.: A decentralized multiple MAV collision avoidance trajectory planning method. In: 2020 Chinese Automation Congress (CAC), pp. 1545–1552 (2020)

    Google Scholar 

  26. Bremer, J., Lehnhoff, S.: Decentralized surplus distribution estimation with weighted k-majority voting games. In: Bajo, J., et al. (eds.) PAAMS 2017. CCIS, vol. 722, pp. 327–339. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60285-1_28

    Chapter  Google Scholar 

  27. Sonnenschein, M., Lünsdorf, O., Bremer, J., Tröschel, M.: Decentralized control of units in smart grids for the support of renewable energy supply. Environ. Impact Assess. Rev. 52, 40–52 (2014)

    Article  Google Scholar 

  28. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  29. Nieße, A., Beer, S., Bremer, J., Hinrichs, C., Lünsdorf, O., Sonnenschein, M.: Conjoint dynamic aggregation and scheduling methods for dynamic virtual power plants. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the 2014 Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 2, pp. 1505–1514 (2014)

    Google Scholar 

  30. Bremer, J., Lehnhoff, S.: Lazy agents for large scale global optimization. In: ICAART (1), pp. 72–79 (2019)

    Google Scholar 

  31. Oranchak, D.: Cartesian genetic programming for the Java EC toolkit (2010)

    Google Scholar 

  32. Inácio, T., Miragaia, R., Reis, G., Grilo, C., Fernandéz, F.: Cartesian genetic programming applied to pitch estimation of piano notes. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE (2016)

    Google Scholar 

  33. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46239-2_9

    Chapter  Google Scholar 

  34. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT, Cambridge (1994)

    MATH  Google Scholar 

  35. Koza, J.R., Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  36. Christensen, S., Oppacher, F.: An analysis of Koza’s computational effort statistic for genetic programming. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 182–191. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45984-7_18

    Chapter  MATH  Google Scholar 

  37. Gathercole, C., Ross, P.: Tackling the boolean even n parity problem with genetic programming and limited-error fitness. Genet. Program. 97, 119–127 (1997)

    Google Scholar 

  38. Poli, R., Page, J.: Solving high-order boolean parity problems with smooth uniform crossover, sub-machine code GP and demes. Genet. Program Evolvable Mach. 1(1), 37–56 (2000)

    Article  Google Scholar 

  39. Mambrini, A., Oliveto, P.S.: On the analysis of simple genetic programming for evolving boolean functions. In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 99–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30668-1_7

    Chapter  Google Scholar 

  40. Parent, J., Nowé, A., Defaweux, A.: Addressing the even-n-parity problem using compressed linear genetic programming. In: Late Breaking Paper at Genetic and Evolutionary Computation Conference (GECCO 2005), Washington, DC, USA, pp. 25–29 (2005)

    Google Scholar 

  41. Muntean, O., Diosan, L., Oltean, M.: Solving the even-n-parity problems using best subtree genetic programming. In: Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007), pp. 511–518. IEEE (2007)

    Google Scholar 

  42. Koza, J.R., Andre, D., Bennett, F.H., III, Keane, M.A.: Use of automatically defined functions and architecture-altering operations in automated circuit synthesis with genetic programming. In: Proceedings of the First Annual Conference on Genetic Programming, pp. 132–140. Stanford University, MIT Press, Cambridge (1996)

    Google Scholar 

  43. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

    Article  Google Scholar 

  44. Chakraborty, I., Nandanoori, S.P., Kundu, S., Kalsi, K.: Data-driven predictive flexibility modeling of distributed energy resources. In: Sayed-Mouchaweh, M. (ed.) Artificial Intelligence Techniques for a Scalable Energy Transition, pp. 311–343. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42726-9_12

    Chapter  Google Scholar 

  45. Bremer, J., Sonnenschein, M.: Model-based integration of constrained search spaces into distributed planning of active power provision. Comput. Sci. Inf. Syst. 10(4), 1823–1854 (2013)

    Article  Google Scholar 

  46. Pinto, R., Matos, M.A., Bessa, R.J., Gouveia, J., Gouveia, C.: Multi-period modeling of behind-the-meter flexibility. In: 2017 IEEE Manchester PowerTech, pp. 1–6 (2017)

    Google Scholar 

  47. Bremer, J., Rapp, B., Sonnenschein, M.: Encoding distributed search spaces for virtual power plants. In: Computational Intelligence Applications In Smart Grid (CIASG), 2011 IEEE Symposium Series on Computational Intelligence (SSCI), Paris, France, April 2011

    Google Scholar 

  48. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Bremer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bremer, J., Lehnhoff, S. (2022). Fully Distributed Cartesian Genetic Programming. In: Dignum, F., Mathieu, P., Corchado, J.M., De La Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS Collection. PAAMS 2022. Lecture Notes in Computer Science(), vol 13616. Springer, Cham. https://doi.org/10.1007/978-3-031-18192-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18192-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18191-7

  • Online ISBN: 978-3-031-18192-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics