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Abstract 
 
 
Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk 
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and 
ranking statements according to the predicted risk. Designing a risk evaluation formula is 
often an intuitive process done by human software engineer. This paper presents a Genetic 
Programming approach for evolving risk assessment formulæ. The empirical evaluation 
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations 
can consistently outperform many of the human-designed formulæ, such as Tarantula, 
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform 
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2 
(ITE2) structure, or even outperform it against other program structures. 

                                                
1 The program spectra data used in the paper, as well as the complete empirical results, are available from: 
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html. 

UCL DEPARTMENT OF 
COMPUTER SCIENCE 
 

Research Note
RN/17/01

Approximate Oracles and Synergy in Software Energy Search Spaces
25 January 2017

Bobby R. Bruce, Justyna Petke, Mark Harman, and Earl T. Barr

Abstract

There is a growing interest in using evolutionary computation to reduce software systems’ energy con-
sumption by utilising techniques such as genetic improvement. However, efficient and effective evolu-
tionary optimisation of software systems requires a better understanding of the energy search landscape.
One important choice practitioners have is whether to preserve the system’s original output or permit
approximation; each of which has its own search space characteristics. When output preservation is a
hard constraint, we report that the maximum energy reduction achievable by evolutionary mutation is
2.69% (0.76% on average). By contrast, this figure increases dramatically to 95.60% (33.90% on aver-
age) when approximation is permitted, indicating the critical importance of approximate output quality
assessment for effective evolutionary optimisation. We investigate synergy, a phenomenon that occurs
when simultaneously applied evolutionary mutations produce a effect greater than their individual sum.
Our results reveal that 12.0% of all joint code modifications produced such a synergistic effect though
38.5% produce an antagonistic interaction in which simultaneously applied mutations are less effective
than when applied individually. This highlights the need for an evolutionary approach over more greedy
alternatives.
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1 Introduction

Reducing energy consumption is an increasingly important software engineering concern. In 2010, large server
clusters consumed 1.12%–1.50% of global energy consumption [21]: an amount equivalent to the entire energy con-
sumption of the United Kingdom in 2015 [10]. Environmentally unfriendly sources generate much of this energy:
in 2013, 67% of global energy consumption derived from burning fossil fuels, with 41% generated from the most
highly-polluting of all sources, coal [6]. Using a variety of search techniques [16], including evolutionary compu-
tation, recent studies have shown that the energy consumption of software can be reduced when given reasonable
assumptions about the end-use of the improved software system such as the likely input data [11], network usage
information [27], and tolerance to less desirable user-interfaces [29].

Modifying a software system using evolutionary computation to improve its energy consumption is an instance of
‘Genetic Improvement’ (GI) [23, 24, 36, 39]. To genetically improve a program, search techniques modify its generic
material to construct related versions that retain some important properties while improving others. The name ‘genetic
improvement’ reveals GI’s origins as a form of genetic programming, albeit applied to existing code rather than ab
initio. GI research, hitherto, has been dominated by three operators: delete, copy, and replace which are applied at
the source-code line level [23, 24, 34]. However, until now there has been little effort put to analysing the search
space they produce when optimising for energy consumption.

The delete, copy, and replace operators generate a vast search space, bounded soley by the number of copy operator
applications. Even when restricted to a single operation, the search space remains large. For a program of size
N , every line can be deleted (N ), copied into the program before existing lines (N2), or replaced (N2 − N ). In
this study, the smallest application we investigate, Bodytrack, has 1,030 modifiable lines of code and, thus, over 2
million possible variants generated by the application of a single operator. GI techniques typically restrict the search
to a designated subset of modifiable target lines. This subset is is typically determined by an expert with intimate
knowledge of the system, or via profiling; selecting lines based on a candidate line’s likelihood of impacting the target
non-functional property. In practice, even this restricted search space remains so vas. The necessity for well-designed
search-based techniques is clear though the information required to effectively design one is not presently available.

The aim of this investigation is to gain greater understanding of the search space and considerations researchers
should take when optimising software’s energy consumption using GI.

We measure energy consumption, focusing opportunities for energy improvement under two different test oracles
— exact and approximate. An exact test oracle requires the original and improved programs to produce identical
output while an approximate test oracle uses a more relaxed notion of whether the output from the improved program
is acceptable. Each produce their own search space, both applicable to GI research and both worthy of study. Ap-
proximate test oracles permit trading quality attributes against energy consumption, which previous work on energy
improvement (using GI and other techniques) has shown effective. For example, a mobile application can trade the
aesthetics of a user-interface [29] while a graphics-based application can trade image quality [37]. In such cases,
deviation from the precise output of the original may be tolerable when it decreases energy consumption. In a survey
of software engineers responsible for systems in which energy consumption is a concern, the majority (80%) were
willing to sacrifice certain requirements for reduced energy consumption [30].

For this study, we analyse the search space of four systems — 7zip, Bodytrack, Ferret, and OMXPlayer. For each, we
define, justify, and investigate approximate oracles that make domain-specific trade-offs between energy consumption
and solution quality. We are interested in knowing at what frequency effective modifications exist in this search space,
what impact they are capable of producing, and how this varies between exact and approximate test oracles.

Most previous energy optimisation work in software engineering has used indirect measures of energy consumption.
Tools which estimate energy by logging processor states [11], monitoring bytecode execution [12], or via simulation
of hardware [39] are examples of indirect approaches to obtaining energy information. They interpolate energy from
correlated measurements. Indirect measurements are typically close actual energy consumption, but the error is often
unknown. Given that improvements reported hitherto are relatively modest (in the range of a few percent to a few
tens of percent), it is important to quantify measurement error. To this end, we conduct our experiments on a suite
of 6 MAGEEC energy measurement boards [2], connected to a cluster of 25 Raspberry Pi devices [4]. The use of
MAGEEC boards allows us to take direct energy measurements. That is, they do not estimate energy through a proxy,
they measure it directly. We chose to study the Raspberry Pi, because it is a simple, cheap, widely-available, and
easily configurable platform representative of many kinds of hardware platforms.

Our cluster parallelises the measurement of energy consumption across software variants running on different physi-
cal devices. This allows us to take many more measurements than we would be able to do otherwise, thereby allowing
us to account for statistical error, like ‘background noise’, by reporting on the averages found over many runs. A key
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finding of ours is that individual devices exhibit systematic error. The presence of significant systematic error means
that previous results based on the measuring of a single device should be revisited. We find energy changes reported
in Joules can vary considerably across different devices even when the statistical error within a single device is small.
In future work, it is paramount that such systematic error is properly addressed. Within our investigation, we find the
proportional change in energy measurements is stable across all devices and therefore report results as proportional
increases or decreases.

This setup enables us to understand the properties of the energy search space by measuring the energy consumed when
running software modified by the delete, copy, replace operators. We can analyse both the local neighbourhood (a
single modification) and beyond (multiple modifications). This allows us to give guidance on the design search-based
algorithms for the optimisation of software using GI.

If we were to find that the local search space is flat (i.e. a single modification is incapable or rarely produces a
significant proportional increase in energy consumption), then we could conclude that either the delete, copy, and
replace operators are relatively ineffective or a highly explorative search technique is required (such as a genetic
algorithm with a high mutation rate). Alternatively, if we find the local search space to be on a steady gradient, then
the search-based algorithm should be based on exploitation (such as a hill-climbing algorithm) and, depending on the
incline, may suggest that GI researchers intuitions are correct – the delete, copy, and replace are effective.

The nature of the wider search space can be determined by combining modifications and noting their interaction. In
our investigation, we observe instances when adding or removing a set of modifications produces a good solution
but adding/removing a subset of those changes produces a worse or much less effective solution. We refer to this as
synergy, a specific instance of epistasis when the improvement of simultaneously applying two modifications exceeds
the sum of applying each in isolation. We also observe antagonism, another instance of epistasis that may be seen as
the opposite of synergy. This occurs when the effectiveness of a solution worsens as modifications are combined in
comparison to when they are utilised individually.

Since many search-based approaches to program improvement seek to synthesise large sets of modifications from
smaller sets, we want to identify individual improvements that exhibit these forms of epistatic effects. If antagonism
is infrequent, then we may advocate a greedy approach to GI; randomly sample modifications, evaluate them, and, if
they are found to be effective, then add them to a list of good mutations to then be applied en-masse at the end of the
process. However, if antagonism is frequent, we require more advanced approaches. Population-based techniques,
such as genetic algorithms (GAs), may be appropriate as they allow alternative schemata [20, Chapter 5] to develop
separately in the population then merge, via crossover, without destroying the original individuals. GAs are common
in GI as modifications to the source-code can be easily represented as a series of genes with each gene being a distinct
modification to the software. Crossover in GAs are a type of antagonism detection mechanism since a child produced
by crossover will eventually be evaluated and discarded if antagonism cripples its fitness while its parents, and their
independent genetic material, will continue to exist. In our investigation, we find that antagonism occurs in 38.5% of
all modification parents thereby justifying advanced search-techniques, such as a genetic algorithm with crossover.

This paper makes three main contributions:

1. The investigation shows how real-world energy measures can be made while taking into accounts the effects
of per-device statistical error and systematic error across devices.

2. Software testing traditionally relies on exact oracles that do not tolerate output deviations; we show that ap-
proximate oracles, which tolerate output deviations, open the door to finding savings in the search space of
energy-saving software modifications.

3. Software changes that alter an application’s energy consumption exhibit epistasis: some synergistic, others
antagonistic. We show that this phenomenon is ubiquitous and implies that sophisticated search must be used
when optimising software’s energy efficiency.

2 Motivating Example

The key to understanding the search space of energy-efficient software optimisations is to understand at what fre-
quency effective modifications occur, what impact they are capable of producing, and whether synergy and antago-
nism are common. We find these using both approximate and exact test oracles. This section provides a motivating
example to highlight these concepts.
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1 P r o p e r t y g e t P r o p e r t y ( L i s t <Summary> summaries ) {
2 L i s t < i n t > v a l u e s ;
3 f o r ( Summary s i n summaries ) {
4 v a l u e s . add ( s . g e t V a l u e ( ) ) ;
5 }
6
7 re turn new P r o p e r t y (
8 / / Mod_1 : a g g r e g a t e −> sample
9 new a g g r e g a t e ( v a l u e s ) ,

10 ) ;
11 }
12
13 i n t sample ( i n p u t ) {
14 i n p u t = s o r t ( i n p u t ) ; / / Mod_2 : D e l e t e
15 re turn i n p u t . g e t ( random ( 0 , i n p u t . s i z e ( ) ) ) ;
16 }

Figure 1: Two software modifications: aggregate consumes more energy than sample; Mod_1 replaces aggregate with
sample, which does not need sorted inputs, so Mod_2 combines with Mod_1 to further reduce energy consumption.

In Figure 1, ‘Mod_1’ swaps a method which aggregates a list with one that samples. This increases the approximation
of getPropery’s output but may also achieve considerable savings in energy because of sampling’s relative efficiency.
It is this type of modification that an approximate test oracle allows.

If we further assume the input to the method sample is sorted, then line 14, input = sort (input);, is not required. The
software engineer responsible for this line may have included it to ensure robustness or due to a lack of knowledge
about the contract that the sample method obeys. Regardless, guided by a sufficiently adequate test suite, GI can
remove such redundancies when using an exact test oracle. In previous GI work by Petke et al. [34], and later
Bruce et al. [11], such optimisations were found when deleting complex assertions in MiniSAT’s Solver.c class.
The ‘Mod_2’ example is similar; an exact test oracle can find the modification since it does not affect the software’s
output.

It is tempting to pursue the modifications found by the exact oracle exclusively, as they produce benefits without any
cost. However, if we permit the quality of output to degrade (i.e. permit approximate output), then this increases
the set of valid solutions in the search space and facilitates the search for even more energy-efficient solutions. We
are the first to quantify the frequency of these modifications and measure their interactions. Figure 1 demonstrates
synergistic software modifications. ‘Mod_1’ decreases the number of times in which the more energy inefficient
method aggregate is executed by replacing it with sample while ‘Mod_2’ increases the efficiency of sample. Equation 1
explains the basic mathematics of this synergistic interaction. The energy consumed by the program, P , is equal to
the sum of the energy consumed by getProperty, Y , and sample, X , each multiplied by the number of executions, N2

and N1 respectively. Activity outside these methods is assumed to be constant and is represented by C. ‘Mod_1’
changes the control flow of getProperty to include a call to sample. The energy consumption of the program thereby
includes the energy of a single iteration of sample plus the remainder of getProperty minus the call to aggregate (Z).

P = XN1 + Y N2 + C

Y = X + Z

P = X(N1 +N2) + ZN2 + C

(1)

When ‘Mod_1’ is present, ‘Mod_2’ decreases the energy consumption of sample but, by extension, the energy con-
sumption of getProperty. Without ‘Mod_1’, ‘Mod_2’ is only capable of effecting the energy consumed in sample. In
this investigation we wish to understand how frequent these synergistic (or, the opposite- antagonistic) interactions
occur within the search space.

3 Methodology

In this section we first explain the design and implementation of our measurement framework. We then discuss our
source code representation and how we modify it, before explaining how we compare the effectiveness and energy
efficiency of an original program and one of its variants, under both exact and approximate test oracles.
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3.1 Measurement Framework

Given a set of genetic improvement operators, we seek to measure the effect on the energy consumption of a program
their application produces. In theory, the setup is simple: take a program (modified or otherwise) along with an input
and measure its energy consumption during execution. In practice, however, it is not so simple: one must choose
between direct and indirect measurement and contend with the cost of taking a measurement, since running a program
can be very expensive.

Most previous search-based approaches to optimising the energy efficiency of software have estimated energy con-
sumption [11, 12, 39]. These estimates can miss important high or low energy events thereby directing the search
away from an optimal solution. To capture these events, a framework must make direct energy measurements rather
than relying on either estimates or simulation.

Programs are one component of a larger system: the computer that executes them. At present, one cannot directly
measure the energy consumption of a program, because existing devices do not expose the coupling points between
hardware components or operating systems processes. One can, however, directly measure the energy consumption
of the entire computing system; this is what we choose to do in this investigation. Measuring the whole system carries
with it the challenge of contending with statistical measurement error due to events external to the program, like OS
background processes. To mitigate against these effects, we take multiple measurements and average the results.

Directly measuring the energy consumption of a program entails running it, and, as we have just argued, the system
that hosts it. Thus, taking multiple direct measurements exacerbates measurement cost. It thereby follows that our
framework must be efficient and scalable. For instance, the experiments outlined in Section 6 require the evaluation
of 28,000 modifications, across 4 applications, running each variant multiple times against a test suite. Indeed some
modification evaluations take up to five minutes to complete. Fortunately, this task is easily parallelisable. Our
framework exploits this fact: it is a cluster of individual computer systems, each of which can measure its own
energy consumption. Jobs (programs, modified or otherwise, along with input data) are sent from a client to the
cluster’s master node, which then distributes a job to a node. This node then measures its energy consumption. The
energy measurement, along with the output of the job, is then returned to the client. Figure 2 shows our framework’s
layout with 2 nodes.

The nodes in this cluster are Raspberry Pi 2 Model B devices [4], each running the Raspbian OS [5], a GNU/Linux
OS based on Debian. The Raspberry Pis were chosen as they provide a cheap computer system representative of a
real-world system in terms of architecture and their running of a Unix-based operating system. The cluster comprises
18 Raspberry Pi nodes, an additional Raspberry Pi master node to distribute jobs to them, and six MAGEEC Energy
Measurement Boards, each with its own Raspberry Pi to manage energy measurement start and stop commands.

Each Raspberry Pi node can measure itself using a MAGEEC Energy Measurement Board [2]. The MAGEEC
Energy Measurement Board intercepts the power supply of the Raspberry Pi, measuring the voltage drop across a
resistor inline to the power supply at a sustained sampling rate of 2 MHz. This allows us to make direct energy
measurements, avoiding the unknown uncertainties of indirect measurements. Each MAGEEC Energy Measurement
board can measure up to three targets. The MAGEEC Energy Measurement board is itself controlled by a separate
Raspberry Pi Device which accepts requests to start and stop energy measurement from the three measurement
targets over a network. Thus, each MAGEEC Energy Measurement board measures three raspberry Pis with a forth
controlling the measurement board and interaction between the board and the other three devices.

We find this setup is capable of mitigating the costly process of evaluating many thousands of modifications and
can easily be expanded if needed. The relatively inexpensive components are an advantage compared to alternative
approaches, allowing for more nodes than we would otherwise be possible. As we discuss in Subsection 6.1 these
MAGEEC energy measurement devices do not achieve a level of accuracy that we would deem acceptable for most
investigations and, as such, have had to report proportional measurement increases/decreases (which are accurate).
As in most endeavours there is a clear trade off between quantity and quality of hardware.

3.2 Producing Variants

As previously noted, we use three genetic improvement operators: copy, delete, and replace, each is applied at the
source-code line level. We apply these to a tagged representation of source-code; a representation specially created
for GI research, first introduced by Langdon and Harman in 2010 [22] and later utilised in a variety of other GI
work [23, 24, 34]. We refer to this format as the Langdon format.

At present tools only exist to transform C/C++ code into Langdon format. As the operators to be applied function at
the source-code line level the code is formatted so that each statement is on its own separate line to avoid modifica-

RN/17/01 Page 4



Approximate Oracles and Synergy in Software Energy Search Spaces 1

Figure 2: Diagram of the energy measurement cluster, showing two nodes measured by a single energy measurement
board.

<LzFind_259> ::= " if" <IF_LzFind_259> " \n"

<IF_LzFind_259> ::= "(p->keepSizeAfter >= 0)"

<LzFind_261> ::= "{\n"

<LzFind_262> ::= "" <_LzFind_262> "\n"

<_LzFind_262> ::= "MatchFinder_ReadBlock(p);"

<LzFind_265> ::= "}\n"

Figure 3: A snippet from LzFind.c, a 7zip file, in the Langdon format. Lines starting with <LzFind are unmodifiable.

tions being applied to multiple statements. Opening and closing curly brackets are moved to their own line so that
modifications line’s containing a statement does not interfere with program scopes. In order to reduce errors we also
ensure bracketless one-statement FOR/WHILE/IF bodies are refactored to be enclosed by curly brackets.

To translate this formatted C/C++ code to the Langdon format, each line is labelled with a unique identifier. These
identifiers indicate whether a line is modifiable or not. Unmodifiable identifiers begin with <{FILE}. Opening and
closing curly brackets, variable initialisations, and function declarations, are unmodifiable. Only the conditions, and
the pre- and post-statements of a FOR, and the headers of IF, WHILE, and FOR statements can be modified. Figure 3
shows a snippet of source-code in the Langdon format.

Once converted to the Langdon format the source-code can be modified taking into account the aforementioned
restrictions. It can then be expanded back to the original source-code by including the unmodifiable lines then
expanding. For example, in Figure 3 <LzFind_262>, an unmodifiable line, references <_LzFind_262>. When converted
back to source-code <LzFind_262> is added and expanded to produce MatchFinder_ReadBlock(p);\n.

Figure 4 shows an example of how modifications generated by the copy, delete, and replace operators are represented
and combined. A modifiable identifier alone, <LINE_ID>, is a delete operation; a modifiable identifier followed, without
a space, by another, <LINE1_ID><LINE2_ID> is a replace operation and replaces the former with the latter; and two
identifiers separated by +, <LINE1_ID>+<LINE2_ID>, is a copy operation which copies one line (the latter) to another area
of the source code (above the former). A space separates multiple operations.

We replace the condition of a IF, FOR, and WHILE statement only with the condition of a matching statement, i.e., an IF’s
conditional can only be replaced by another IF’s conditional, etc. A FOR’s pre-statement can only replace another FOR’s
pre-statement, the post-statement another FOR’s post-statement. When the delete operator is applied to a conditional
clause, it replaces the conditional with false. For example, the delete operator transforms if(i < 10) to if(false).

In line with previous uses of the Langdon format, we limit the search space by restricting the copy and replace
operations to a single file. For example, a line from file X can only be copied to another location in file X. This
restriction significantly decreases the number of compilation errors related to out-of-scope variables and methods.

3.3 Assessing Program Behaviour

As we observed in the introduction, our search space of possible modifications is vast, too vast to analyse exhaustively.
We choose, therefore, to uniformly sample it. We apply delete, copy, and replace operations to points, chosen

RN/17/01 Page 5



Approximate Oracles and Synergy in Software Energy Search Spaces 1

#DELETE line 262

<_LzFind_262>

#REPLACE if condition in line 259 with if

#condition in line 307

<IF_LzFind_259><IF_LzFind_307>

#COPY line 299 and insert above line 325

<_Solver_325>+<_Solver_299>

#REMOVE line 262 and REPLACE if condition

#at line 259 with if condition in line 307

<_LzFind_262> <IF_LzFind_259><IF_LzFind_307>

Figure 4: Four examples of modifications that may be applied to LzFind.c.

uniformly at random, in the source-code tagged as modifiable (let this number be n), then add individual modifications
that compile to a Modification Set until the cardinality of this set is 2n. This sampling method requires only 2.25n
evaluations since our edit operators on the Langdon format achieve compilation rates of 79-81% [34].

Algorithm 1 The Filtering Step
Input: E, A set of edit-location pairs (e, l)

S, The target software
T , The set of testcases

1: t← uniformSelection(T)
2: Mo ← {}
3: for 0 . . . N do
4: startEnergyMeasure()
5: Ro ← run(S, t)
6: m← endEnergyMeasure()
7: Mo ←Mo ∪ {m}
8: end for
9: b← lowerBound(Mo)

10: C ← {}
11: for (e, l) ∈ E do
12: Se ← applyMod(S, (e, l))
13: startEnergyMeasure()
14: Re ← run(Se, t)
15: m← endEnergyMeasure()
16:
17: if hasPassed(Ro, Re, t) and m< b then
18: C ← C ∪ {(e, l)}
19: end if
20: end for
21: return C

Even when sampling, we cannot evaluate every variant against all the available testcases. Variants that are inert,
produce software that breaks hard-constraints, or increase energy consumption are not of interest to us. In previous
work, we observed that these variants make up the majority of any given local search space [11]. Therefore, we
filter them out. Algorithm 1 presents our filtering algorithm. The algorithm evaluates members of the Modification
Set, E which we may conceptualise as a set of edit (i.e. delete, copy, and replace), e, and location, l pairs. These
are evaluated against a single, randomly chosen, testcase, t from the original program’s test suite T . If the variant
resulting from the modification Se, passes the testcase and its energy consumption is less than the 95% confidence
interval of the mean lower bound, b, for the original software running a predetermined number of times (N , 100 in
this case), we add to the Candidate Modification Set C. After this filtering step C contains those modifications for
which we can say, with statistical confidence, that an improvement in energy efficiency has been observed while still
passing the testcase.

It should be noted that ‘passing’ a testcase in this instance does not necessarily mean producing the same output as
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the original. The output may be approximated. For example, in the case of 7zip to pass a testcase the application
must compress the testcase in a manner that it may be then decompressed to its original state though the compressed
file may be approximated. For 7zip, this means a less compressed 7z file. Section 5 gives a precise description of the
criteria used for the exact and approximate test oracles which determines whether the software variants pass or fail
for a given input.

Algorithm 2 The Evaluation Step
Input: C, The set of candidate edit-location pairs (e, l)

S, The target software
T , The set of testcases

1: D ← {}
2: for t ∈ T do
3: for 1 . . . N do
4: startEnergyMeasure()
5: Ro ← run(S, t)
6: m← endEnergyMeasure()
7: D.add(N/A,t,m, 0, 1)
8: end for
9: for (e, l) ∈ C do

10: Se ← applyMod(S, (e, l))
11: for 1→ N do
12: startEnergyMeasure()
13: Re ← run(Se, t)
14: m← endEnergyMeasure()
15: p← hasPassed(t, Re)
16: a← getAproxVal(Ro, Re)
17: D.addRecord(m, t, m, a, p )
18: end for
19: end for
20: end for
21: return D

Algorithm 2 presents the pseudocode that explains how we gather data to evaluate the candidate modification set. For
each testcase, t, the unmodified software is run N times (N = 30 in our investigation) with its energy, m, measured
on each iteration. Then (again for each testcase) each candidate modification is applied to the unmodified software
to produce the modified variant, Se. The modified variant then processes the testcase with its energy, measured and
its output, Re recorded. We subsequently uses this data to determine whether a modification produces a statistically
significant reduction in energy consumption, using the Mann-Whitney U test (for the α level 0.05).

From this output data we determine the approximation value, a, and whether the software variant has passed the
testcase, p. The formula for both the approximation value and what passing a testcase means for each application is
defined in Section 5.

In the evaluation stage, we measure the ‘Approximation Value’, which we obtain from method getAproxV al), our
unified approach to recording values for both exact and approximate test oracles. In all cases, an approximation value
of zero denotes satisfaction of the exact oracle; the output of the modified program corresponds exactly to the output
of the original program. However, the results of the approximation value can be non-zero, with higher approximation
values corresponding to greater degrees of approximation. The calculation of the approximation value is unique to
the application domain and therefore approximation values from different applications cannot be directly compared.
If a new application were to be introduced the calculation of that application’s approximation value would have to be
created by an expert with domain knowledge. This common terminology serves to combine very different measures
of approximation. We define four domain-specific approximation criteria set out in Section 5.

4 Research Questions

Any attempt to improve energy consumption, search-based or otherwise, relies on the ability to reliably measure
energy. Our first question therefore investigates the degree to which energy measurements are sufficiently reliable to
assess energy improvement:

RQ1, Measurement: What variance occurs when measuring energy consumption?
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As with all forms of real-world measurement, energy measurements are vulnerable to a number of different sources
of variation. With this in mind, we wish to establish the degree of variance to expect, both for a single energy
measurement device and across multiple devices. Even on a single device, the amount of energy consumed may vary
when, on different occasions, exactly the same software system is executed with exactly the same test suite; we wish
to understand the magnitude of this variance. If the variance is high, then we have no foundation upon which to
make reliable measurements. We argue that any experimental work on energy assessment or improvement should,
as a preliminary step, report results for such variance, in order to exclude a serious potential threat to validity of the
scientific findings. This motivates our first research question, RQ1a:

RQ1a: What is the variance when measuring using a single energy measurement device?

To answer this question, we choose a node within our cluster as a test target. Then for each application, we uniformly
select a testcase and execute the application 30 times on the target node, recording the energy consumed during each
iteration. We use this data to measure within device variance. This variance informs us of the statistical error in the
measurements we obtain.

Even if the variance is small when running executions within a device, there may be variance between different
devices. Several previous studies of energy assessment and improvement have reported results based on only a single
device [7, 28, 31]. This leaves open another potential threat to the validity of the findings, which would occur if
different instances of the same device type give highly different readings for the same software system and test suite.
While RQ1a informs us of the statistical error, we may miss detecting a form of systematic error where different
devices give different measurements for the same process. However, if such an error is present, in the specific case
of work on energy improvement, this variance can be tolerated if it is consistent. We are only interested in the
relative differences in energy consumption when assessing energy improvement, not the absolute measure of energy
consumed.

This motivates RQ1b:

RQ1b: What is the variance when measuring across multiple devices?

To answer RQ1b, we carry out a process similar to that used to answer RQ1a, differing in its focus on one application,
against which it runs one testcase across all the devices in the cluster. We use box plots to determine if there is
variance across the devices.

When assessing whether an improved program is acceptable or not, we need a test oracle that determines whether the
behaviour of the improved program is acceptable with respect to the behaviour of the original. In software testing,
more generally, this is an instance of the oracle problem which, though significant, is largely unsolved [8]. However,
one of the advantages of genetic improvement is that the original version of the program acts as the test oracle,
against which improved versions are compared [17, 38]. For a given candidate improved program, we compare the
behaviour of the original program with that of the candidates to check whether it has deviated from the behaviour of
the original, and therefore should be discarded. This raises the fundamental question of how much deviation from
the behaviour of the original can be tolerated.

For some application scenarios, no deviation can be tolerated, but in many software scenarios, exact replication of
the behaviour of the original is either unnecessary or even undesirable. Previous work on genetic improvement has
shown that genetically modified programs may improve, not only targeted non-functional properties of interest, but
also the functionality of the original program [23]. In such situations, the original program’s behaviour only acts as
a guide to the desired behaviour of the genetically improved program.

Furthermore, even when functional improvement is not possible, the genetically modified program may need only
to approximate the behaviour of the original, sacrificing some degree of result quality for improvements in non-
functional characteristics. For example, work on graphics shaders inherently involves a precision-speed trade off [37].
This would allow genetic improvement to reduce shader quality for improvements in execution time (or other non-
functional properties). Often minor quality degradation is imperceptible or accepted to the end user, making such
trade-offs highly desirable. Much of the work on energy improvement falls into this category [19, 29, 33].

This motivates RQ2, which investigates the trade-off achievable when using an approximate test oracle that allows
us to trade solution quality against energy improvement:

RQ2, Improvement: What additional energy improvement can be achieved when using approximate test oracles, in
place of exact test oracles?

In answering RQ2, we investigate the degree to which energy efficiency can be improved by sacrificing solution qual-
ity, guided by a domain-specific approximate test oracle in each case. We also investigate the effect of approximate
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App Description LOC Modifiable LOC No. of Modifications
7zip Compression/decompression 136,828 2,524 5,000
Ferret Image Search-Engine 13,260 5,032 11,000
Bodytrack Body tracking 3,020 1,030 2,000
OMXPlayer Media Player 14,164 5,184 10,000
Total 28,000

Table 1: Number of modifications investigated for each application studied.

test oracles on the frequency and impact with which the different genetic operators affect energy consumed and the
trade-off between energy consumption and solution quality.

Finally, we consider the way in which different genetic improvement modifications to the original program combine
to improve energy efficiency. The motivation for this research question derives from the way in which evolutionary
algorithms typically combine lower-level building blocks of partially fit solutions in order to arrive at fitter combined
solutions [14, 18, 32]. In RQ3, we therefore study the synergistic effects of combinations of individual modifications,
reporting the frequency of different kinds of synergistic effects:

RQ3, Synergy: How frequently do synergistic effects occur when combining known effective modifications?

To answer RQ3, we perform a pairwise investigation of the modifications found to reduce energy. We take 15% of
all possible pairings from the set of effective modifications found in answering RQ2 (those found when using the
approximate test oracle). We evaluate each and report the frequency of synergy and antagonism observed.

5 Test Subjects and Their Oracles

In order to answer these Research Questions, we chose four test subjects using the following selection criteria.

5.1 Selection Criteria

Limitations in the tool used to generate the Langdon format requires all software to be written in C/C++ with this
code being open source and having a licence permitting it to be used for experimental purposes. As evaluation takes
place on a Raspberry Pi device running the Raspbian OS, the software has to be compilable in this environment.

Due to inevitable overheads associated with sending energy measurement start and stop commands over a net-
work [25], we choose applications that have a non-trivial execution time, which we have defined to be greater than 5
seconds. The larger the execution time, the smaller the overheads are as a percentage of total energy consumption.

Finally, we limited the selection further to applications that can be run via command line, have testcases (or applica-
tions in which they can easily be generated), provide a deterministic output for any given input and, once execution
has started, do not require further user interaction. We imposed these requirements to aid in the automation of
experiments.

Given these criteria, we settled on the applications in Table 1, which shows their lines of code (LOC), the number
of lines modifiable in the Langdon format, and the number of modifications we generate and study for each appli-
cation. Below, we summarize each application, focusing on the technical or implementation details relevant to our
investigation.

5.2 7zip

7zip Version 9.38.1 [1] is an open source file archiver with its own 7z archive format. It consists of 136,828 lines
of C/C++ code spread over 400 files. For the experiments outlined in this paper, we concerned ourselves only with
the core Lzma compression and decompression algorithms for optimisation. Excluding files associated with user
I/O behaviour, we identified 6 files (7zCrcOpt.c, LzFind.c, Lzma2Dec.c, Lzma- 2Enc.c, LzmaDec.c and LzmaEnc.c)
that accounted for over 99% of execution time when compressing and decompressing a 50MB text file. We chose
to optimise these files exclusively due to their dominant role in the application. These files contain 6,258 lines of C
code, 2,524 of which are modifiable when converted to the Langdon format. For our experiments, we generated a
Modification Set of size 5,000.

7zip is evaluated by measuring the total energy required to compress and then decompress a testcase. For a testcase
to pass, the testcase must be compressed and then decompressed to its original state. The approximation value is
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calculated using the compression ratio. Equation 2 shows how this approximation value is calculated, where M is
the compressed file produced by the modified software for a given testcase and O is the compressed file generated by
the original software for the same test. Function S returns the size of the compressed file. The equation determines
the ratio of the compression between the file produced by the modified software compared to that produced by the
original. This ratio has one subtracted so that a value of zero is returned when there is no change in compression
rates. A higher approximation value indicates worse compression while a lower approximation value indicates better
compression in the modified software.

There are 40 testcases used to evaluate 7zip. 10 audio files, 10 text files, 10 image files, and 10 large files. The latter
includes files and directories which range from 22.2MB to 64.4MB while the other three categories contain files with
sizes ranging from 546KB to 12MB.

f(O,M) =
S(M)

S(O)
− 1 (2)

5.3 Ferret

Ferret is an image search engine. The program takes an image database and an image query as inputs. It then searches
the databases for images similar to the input image and returns the top candidates ranked by relevance (the number
dependent on configuration). Ferret is part of Princeton’s PARSEC Benchmark Suite [9] and has previously been
used as a candidate for genetic improvement at the machine-code level by Schutle et al. [36]. We are using the most
up-to-date version of Ferret at the time of writing; that contained within Parsec 3.0. Ferret is made up of 52 C/C++
files (excluding libraries) which contain 13,260 lines of code. When the Langdon format is used 5,032 lines of code
are deemed as modifiable. Due to Ferret’s relatively small size we have chosen to optimise the entire application. We
generate a Modification Set consisting of 11,000 modifications.

We use the ‘simlarge’, ‘simmedium’, and ‘simsmall’ testcases provided as part of the PARSEC Benchmark Suite. The
‘simlarge’ runs 256 image queries on a database of 34,973, the ‘simmedium’ runs 64 images queries on a database
of 13,787 images, and ‘simsmall’ runs 16 image queries on a database of 3,544 images. Without alteration these
will return the top 10 from the ranking. In our work we increase this so that the top 50 are returned to achieve
greater granularity in the approximation value. For a testcase to be passed a non-null ranking must be returned by the
application.

The calculation of the approximation value is shown in Equations 3 and 4. The output rankings for the original
softwareO is compared against the modified software’s output rankingsM . BothO andM are a set of rankings (one
for each query).

For each query,(q ∈ Q) the ranks are compared using Kendall’s τ Ranking statistic, R. For equal rankings Kendall’s
τ returns 1 and tends to -1 for more unequal rankings produced. Our approximation value rules require zero to
be returned when no approximation has taken place and tend higher for more approximate solutions. Equation 3
manipulates the Kendall’s τ statistic to conform to this. As can be seen from the Equation 3, when the Kendall’s τ
calculation tends to -1 the approximation value tends to infinity. To avoid this we modify the Kendall’s τ calculation
to have a minimum of -0.9999. This means, in practise, the approximation value ranges from 0 to 10,000. As both O
and M contains many queries the approximation value is averaged by dividing the sum over the number of queries,
N . If an image was ranked in the top 50 for the original output but not the modified output then is added to the end
of the modified ranking.

K(L1, L2) =
2

R(L1, L2) + 1
− 1 (3)

f(O,M) =
1

N

Q∑
q

K(O(q),M(q)) (4)

5.4 Bodytrack

Bodytrack is a computer vision application that tracks a human body through an image sequence. The application is
capable, without markers or human involvement, to recognise body position from an array of cameras over a series
of frames and adds boxes to mark it for a human-readable output. It is part of Princeton’s PARSEC Benchmark Suite
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[9], version 3.0. Excluding libraries, Bodytrack consists of 23 C++ files that, in total, contain 3,020 lines of code. All
this code has been used for modification. When the Langdon format is applied 1,030 lines of code are modifiable. A
Modification Set of 2,000 was created to investigate Bodytrack.

Bodytrack comes with three test sets: ‘simsmall’, ‘simmedium’, and ‘simlarge’. The ‘simsmall’ test set consists of 4
cameras, each of which take 1 frame of footage. ‘simlarge’ has 4 cameras and takes in 2 frames of footage. ‘simlarge’
has 4 cameras and takes in 4 frames of footage. The output for each is a series of points which can be plotted on the
input frames to highlight the location of a body within it. For a testcase to be passed, Bodytrack must return the same
number of points (of non-null value) as the original, unmodified application.

The approximation value is the average of the differences between the points produced by the modified software, M ,
and the points produced by the original softwareO (both contain 0..N points) for any given input (shown in Equation
5). The difference between two points, diff , is the sum of the difference in the x component plus the difference in
the y component. An approximation value of zero means the output is identical to the original and gets higher as the
results become more approximate.

f(O,M) =
1

N

N∑
n=1

|diff(O(n),M(n))| (5)

5.5 OMXPlayer

OMXPlayer [3] is a Video Player operated via command-line interface. It takes in a video file and outputs the
necessary data to the HDMI port. Of particular interest for this investigation is that OMXPlayer has been specifically
designed with the Raspberry Pi hardware in mind, taking advantage of the Raspberry Pi’s GPU. It thereby differs
from the other candidates that exclusively interact with the traditional computer architecture.

OMXPlayer consists of 14,164 lines of code spread over 24 C++ files. This excludes the FFmpeg package which,
though included in the source-code and is necessary for execution, functions as a third-party library to the applica-
tion. The number of lines tagged as modifiable using the Langdon format is 5,184. A Modification Set of 10,000
modifications was generated.

The tests for OMXPlayer consist of MP4 video clips gathered from https://archive.org. The videos’ average length
is 14.7 seconds with a minimum of 13.0 seconds and maximum of 15.0 seconds. In order to evaluate modified
versions of OMXPlayer the application is modified to copy the data that would be sent through the HDMI interface
to a text file; one HDMI packet per line. As this writing to file may have some impact on energy consumption, all
OMXPlayer variances are run twice. Once with the HDMI-to-textfile functionality and again without. The latter is
when the energy measurement is taken, the other run is used to evaluate the approximation value. For a testcase to
pass a non-null output must be written to the text file.

As equation 6 shows, the approximation value for any given test is calculated by taking the number of lines returned
by a POSIX diff on the output generated the modified software, M , in comparison with the output of the original
software, O, for a given testcase. This is then divided by the total number of lines the original output. Therefore 0 is
returned when the outputs are identical and tends higher the more approximate the output becomes. We use this as
a proxy for video quality. The more HDMI packets that differ from the original, the more lines will be returned by
POSIX diff and the higher the approximation value will be.

f(O,M) =
N(diff(M,O))

N(O)
(6)

6 Results

We measure energy consumption for both the original and all the 28,000 software variants (see Table 1) of the four
test subjects presented in Section 5, using the methodology outlined in Section 3. Having thereby identified a set of
effective (i.e., energy reducing) modifications, we randomly sample 15% of all possible pairwise combinations. We
apply these, in turn, to the four applications under test and measure the energy consumption to check for synergistic
or antagonistic effects. We summarise our results and answer the research questions posed in Section 4 as follows.

6.1 RQ1: Measurement

The first research question is concerned with the reliability of energy measurements within our Raspberry Pi cluster.
In particular, we ask: what variance occurs when measuring energy consumption?
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(d) OMXPlayer

Figure 5: The variance in measurements that occurred when running each application (unmodified) 30 times on the
same device on a randomly chosen testcase.

RQ1a is “What is the variance when measuring using a single energy measurement device?”. To answer this we
plot the variance in energy measurement, within a single device, across all applications studied. This results in
the box-plots found in Figure 5. Within devices the coefficient of variances are 0.65%, 0.35%, 1.17%, and 0.31%
for 7zip, Ferret, Bodytrack and OMXPlayer, respectively. Therefore, we can conclude that the precision of energy
measurement in our framework is high.

RQ1b is “What is the variance when measuring across multiple devices?”. To answer this we measure the energy
consumption on each node running 7zip (chosen uniformly at random from the four applications studied) on a single,
randomly chosen testcase (in this case, ‘The Complete Works of William Shakespeare’, a 5.6MB file). The box-plots
in Figure 6 show the distribution of energy readings for each Raspberry Pi device. As can be seen, the measurements
vary noticeably between devices. In answering this research question we observed that restarting a node in the cluster
can result in different readings compared to those given before its restart. However, assuming no system reboots take
place the results remain consistent (as was determined in answering RQ1a).

Therefore, we conclude that the MAGEEC energy measurement boards lack accuracy but have good precision. This
inaccuracy, however, is only relevant if one wants to obtain energy reductions or increases in Joules. The proportional
increase or decrease for one measurement compared to another is consistent across devices and thus any energy saving
observed for one device will result in a constant observed saving on other devices.

6.2 RQ2: Improvement

We are concerned with the trade-off between energy consumption and solution quality produced by modified soft-
ware, which we obtain using the delete, copy and replace search operators. Therefore, we ask: what additional
energy improvement can be achieved when using approximate test oracles, in place of exact test oracles?

In order to obtain a baseline measurement, we first investigate the question: what is the frequency and impact of
energy-efficient modifications in the local neighbourhood when using exact test oracles?. To answer this we extract
the data generated from the experimental procedure outlined in Section 3. We only consider a modification to be
successful when it, on average, reduces energy consumption across 30 runs with this effect observed to be statistically
significant (p < 0.05 according to the Mann-Whitney U test) for each testcase. As we use exact test oracles in
answering this research question, we exclude any modifications that have an approximation value not equal to zero.

Table 2 shows the results obtained to determine the frequency and magnitude of effective modifications in the local
search space (i.e., defined by the delete, copy and replace operators), assessed using exact test oracles. The most
striking finding is the frequency of modifications that reduce energy consumption (i.e., ‘+ve mods’); averaging only
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Figure 6: The variance in measuring the same program with the same input across different devices.

Application +ve Mods %age Mods Max Average
7zip 0 0.00% N/A N/A
Ferret 0 0.00% N/A N/A
Bodytrack 6 0.30% 2.69% 1.54%
OMXPlayer 4 0.04% 2.32% 1.51%
Average 2.5 0.09% 1.25% 0.76%

Table 2: Each application with the number and percentage of modifications that reduced energy consumption accord-
ing to an exact test oracle. The average and maximum magnitude of these modifications is also included.

0.09% across all cases. The impact of these is an average decrease of 1.25% across all applications with a maximum
of 2.69%. This is a striking finding as it indicates only small improvements can be found in the one-step local
neighbourhood when using an exact test oracle.

Table 3 reports on results obtained when approximate outputs are permitted. We analyse the same dataset but allow
modifications with a non-zero approximation value. As discussed in Section 5, a higher approximation value for
7zip means less compression; for Ferret, a greater inaccuracy in the search engine result rankings (using the original
as the baseline); Bodytrack, a larger error in the plotting of the body’s location within a series of images; and for
OMXPlayer, a greater proportion of incorrect, or misplaced, HDMI packets.

We found that approximation increased the frequency of effective modifications in the local search space to 1.36%; a
15-fold increase compared to those found when using the exact test oracle. This increase in frequency is mirrored in
the increase in impact the average modification was capable of producing. While the average effective modification
energy consumption reduction when using the exact test oracles was 1.25% , an average reduction of 33.90% was
achieved when using approximate test oracles.

Thus far we have assumed that any level of approximation is acceptable. In practice, however, this is not the case. A
software variant that is more energy efficient than the original, but does not preserve any functionality of the program

Application +ve Mods %age Mods Max Average
7zip 8 0.16% 48.24% 13.16%
Ferret 157 1.43% 79.88% 51.13%
Bodytrack 72 3.60% 33.69% 8.17%
OMXPlayer 24 0.24% 95.60% 63.15%
Average 65.25 1.36% 64.35% 33.90%

Table 3: Each application with the number and percentage of modifications that reduced energy consumption accord-
ing to an approximate test oracle. The average and maximum magnitude of these modifications is also included.
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Figure 7: The output from two versions of the Bodytrack application. The image on the right is approximated but
consumes 33.69% less energy to compute.

it was derived from, is unlikely to be considered as an improved version of the original software. Therefore, in Table
4 we provide Pareto fronts for each of the applications investigated which show the energy reduction vs. output
quality trade-off. The approximation value in each case is calculated using the formulæ presented in Section 5.

In the case of 7zip the user has a choice of 4 Pareto Optimal solutions, ranging from a 5.08% energy reduction with an
approximation value of 3.93× 10−4 to a 48.30% reduction with an approximation value 0.741. The latter translates
to the compressed file generated by the modified software being, on average, 74% larger than if compressed using
the unmodified version of 7zip. This variant of 7zip is still performing non-lossy compression but less effectively.

For Ferret there are 6 Pareto Optimal solutions. This ranges from a 43.19% reduction in energy for an approximation
value of 0.154, to a 79.88% reduction in energy for an Approximation Value of 6221.220. In the case of the former,
the approximation value translates to a Kendall’s τ of 0.73. The next solution on the Pareto front achieves a 60.79%
energy reduction with an approximation value of 39.873. This approximation value translates to a Kendall’s τ of
-0.95, a value close to the Kendall’s τ ‘worst case’ (-1).

There are 5 Pareto Optimal solutions in the Bodytrack case. These range from a 2.69% reduction where there is no
approximation to a reduction of 33.68% with an approximation value of 0.452. Figure 7 shows the most energy-
efficient solution’s output compared to that produced by the original, unmodified software.

Finally the OMXPlayer Pareto front contains 5 Pareto Optimal solutions. We visually inspected the video output
when these modifications were applied. We found the three most approximate solutions did not produce video
output which was viewable (a black screen with no audio). The next most approximate solution achieved a 78.45%
reduction with an approximation value of 0.003. This approximation value means, on average, 0.15% HDMI packets
differed from the output of the original application. We found that this solution was viewable but played video files
at increased speed and with distorted audio. The solution with no approximation and a 2.32% reduction in energy
consumption, when visually inspected, was identical to the original as expected.

Using the data gathered in this investigation we were able to determine how frequently each of the search operators
occur in energy-saving modifications. Forest et al. [15] and Le Goues et al. [26] evaluated the delete, copy, and
replace operators in the context of automated software repair. They found that delete is the most effective at ‘fix-
ing’ bugs (Qi et al. have since shown that many of these ‘fixes’ reduced symptoms rather than repaired bugs [35],
however, this form of pseudo-repair may be sufficient in some circumstances), followed by replace with copy being
considerably less successful. We find this trend holds when applied to genetic improvement for energy consumption.
Table 5 shows the frequency of effective modifications, for each application studied, broken down by operator type.
Table 6 shows the average energy reduction per operator type. These tables highlight that replace and delete are the
most frequent and, on average, produce the greatest energy savings.
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Energy Reduction Approximation Value
5.08% 3.93× 10−4

12.29% 0.072
13.17% 0.102
48.30% 0.741

(a) 7zip

Energy Reduction Approximation Value
43.19% 0.154
60.79% 39.873
75.53% 78.800
75.55% 1550.200
76.21% 2669.710
79.88% 6221.220

(b) Ferret

Energy Reduction Approximation Value
2.69% 0.000

19.26% 0.131
29.97% 0.170
29.13% 0.192
33.69% 0.452

(c) Bodytrack

Energy Reduction Approximation Value
2.32% 0.000

78.45% 0.003
92.70% 0.637
95.53% 1.002
95.60% 1.043

(d) OMXPlayer

Table 4: Pareto fronts for the four subjects investigated showing trade-off between energy consumption and solution
quality.

delete copy replace
7zip 5 0 3
Ferret 81 7 69
Bodytrack 44 1 27
OMXPlayer 8 3 13
Percentage 52.9% 4.2% 42.9%

Table 5: Number of effective modifications using the delete, copy and replace search operators across all applications.

delete copy replace
7zip 16.60% 0.00% 7.38%
Ferret 56.45% 5.60% 43.50%
Bodytrack 8.27% 3.60× 10−3% 8.31%
OMXPlayer 57.01% 26.95% 64.92%
Average 46.11% 8.14% 31.03%

Table 6: The average impact of effective delete, copy, and replace modifications, in terms of % of energy reduction,
across all applications.
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Figure 8: The categorisation system used in this investigation when studying the effects of two energy-saving software
modifications (A and B) in respect to the energy consumed by the original software.

6.3 RQ3: Synergy

In order to investigate synergy we start by defining classifications for the various types of energy effects that may
occur as a result of applying multiple software modifications.

We begin by introducing a definition of the threshold at which we say a synergistic effect has occurred. If we let
R(x) be the reduction in energy consumption of the original software due to the application of modification x and
let R(xy) be the reduction in energy by the application both x and y simultaneously, then we may view synergy as
occurring at the point where R(xy) > R(x) +R(y). We refer to this as the Additive Synergy Threshold

However, there is an alternative definition. If we let P (x) be a proportional decrease of energy consumed by the
original software when modification x is applied (e.g. a 50% reduction) and let P (xy) be the proportion of energy
consumed the software when both modifications x and y are applied simultaneously then we may view synergy
occurring at the point where P (xy) > P (x) ∗ P (y). We refer to this as the Multiplicative Synergy Threshold.

As both these thresholds hold true for different views of what synergy is we require a classification system that
takes into account these two conflicting definitions. Furthermore, we desire a classification system that provinces
information as to whether antagonism has occurred and, ultimately, whether the pairing of two modifications is
greater than either one applied exclusively.

All the following definitions assume R(A) ≥ R(B) > 0 where A and B are modifications that may be applied to a
target application.

Definition 1 We say a pairing has Strong Synergy iffR(AB) > R(A)+R(B). This is an observed synergistic effect
regardless of the threshold observed as R(AB) > P (AB).

Definition 2 Weak Additive Synergy and/or Strong Multiplicative Synergy occurs iff R(AB) ≤ R(A) +R(B) and
P (AB) > P (A)∗P (B). This categorisation signifies that synergy may have taken place depending on the definition
of synergy used.

Definition 3 Weak Synergy occurs iff P (AB) ≤ P (A)∗P (B) andR(AB) ≥ R(A). In this categorisation a pairing
is not synergistic in a traditional sense of the meaning (that is, the whole being greater than the sum of its parts) but
shows that these modifications are an effective pairing. Any of the modifications individually is less effective than
that of the pairing.

Definition 4 Weak Antagonism occurs iff R(AB) < R(A) and R(AB) ≥ R(B). This categorisation suggests the
pairing is not as effective as the most effective constituent member.

Definition 5 Strong Antagonism occurs iff R(AB) < R(B) or tests fail. This categorisation suggests the pairing is
not as effective as either of the constituent modifications.

The different types of synergy for two energy-saving modifications A and B are shown in Figure 8 using the cate-
gorisations defined here.

This investigation involved selecting a subset (randomly selected 15%) of all available pairs of effective modifications
(approximation permitted), evaluating them, then classifying them accordingly.

Table 7 shows the distribution of the synergy classifications. As can be seen, at 44.8% of all pairings, ‘weak synergy’
is the most common classification, followed by weak antagonism. 12.0% of all pairings were found to be be strongly
synergistic though this figure is skewed by Bodytrack where 35.3% of all pairings were classified as having ‘Strong
Synergy’.
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App strong synergy sm/wa synergy weak synergy weak antagonism strong antagonism
7zip 0.9% 0.0% 60.4% 28.3% 10.4%
Ferret 9.2% 5.8% 43.0% 33.7% 8.2%
Bodytrack 35.3% 4.2% 35.9% 21.3% 3.3%
OMXPlayer 2.6% 9.2% 39.5% 43.4% 5.3%
Average 12.0% 4.8% 44.8% 31.7% 6.8%

Table 7: The percentage of effective modification pairings that are synergistic. ‘sm/wa’ stands for ‘strong-
multiplicative / weak-additive’ synergy.

In total 38.5% of modification pairings produce antagonistic behaviour. To obtain the most optimal solutions it is
evident that effective modifications must be selected carefully and therefore greedy approaches will rarely produce
superior solutions. With this we would advocate techniques such as GAs with crossover methods suitable for testing
the interaction of components.

We chose to investigate an instance of synergy to better understand the phenomenon. 7zip has one instance of ‘strong
synergy’ and was the first found in this investigation. We therefore dedicated some time to investigating the 7zip
strong-synergy instance.

The two modifications responsible for synergy in the case of 7zip altered two separated classes, LzmaEnc.c and
LzFind.c, the latter utilised heavily in the former. We monitored the control flow of the LzmaEnc.c class when run-
ning without any modification, modification just in LzmaEnc.c, modification just in LzFind.c, and, finally, when both
classes were modified. We observed that the control flow in LzmaEnc.c is the same whether the LzFind.c modification
is applied exclusively or no modification is applied. When the LzmaEnc.c is solely applied it results in the skipping
of a large portion of a frequently iterated for-loop, reducing execution time and thus reducing energy consumption.
When both modifications are present the LzmaEnc.c maintains the for-loop skipping behaviour but, in addition, avoids
execution of some costly branches.

This additional, synergistic, skipping behaviour is achieved by the LzmaEnc.c modification changing the control flow to
more frequently arrive at an IF condition (if(cur==lenEnd)) leading to two separate branches. One branch is ‘cheap’,
immediately calling a return statement. The other branch is ‘expensive’, executing a series of statements before
calling a return. The LzFind.c influences the value of lenEnd within the IF condition which reduces the execution fre-
quency of the more expensive branch by 15.7% Individually, the LzmaEnc.c modification achieves a 24.7% reduction
in energy consumption. Likewise, in the case of the LzFind.c modification a 17.5% reduction in energy reduction
is found. When both are combined a 43.4% reduction is achieved. The synergistic effect results in an ‘additional’
saving of 1.2%.

7 Threats to Validity

The work presented here uses direct energy measurements. Though this results in more reliable evaluations com-
pared to the ones based on simulation these direct energy measurements inevitably also contain variance. We have
quantified this in answering RQ1 but it may mean that modifications which produce very small but positive changes
are undetectable. While we were able to detect energy decreases as small as 0.009% there may modifications that
produce even smaller changes that are simply undetectable with our framework. Though our investigations show that
modifications which produce detectable, non-trivial, energy reductions are rare.

In this investigation we have been careful to ensure that any modification reported as being effective is. To achieve
this aim our requirements for what constitutes as an ‘effective modification’ have been strict. For a modification
to be classified as effective it must have produced a statistically significant decrease across all testcases. While
we believe this to be the most honest approach to presenting the data, it may not be representative of real-world
genetic improvement where modifications can be seen as effective if they cause improvements in only a proportion of
testcases. Determining at what point we may classify a modification as effective is subjective and thereby left to the
GI practitioner’s discretion. We have chosen to be strict rather than risk being too lenient thus avoiding publication
of results that may not be applicable to all those in the GI research community.

We chose to investigate the copy, delete and replace search operators because of their frequent use in state-of-the-
art genetic improvement work [23, 24, 34]. There is a possibility that other search operators would work better in
the context of energy consumption, however, our aim was to investigate the nature of the search space produced in
modern GI research.
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8 Related Work

While improved hardware performance can ameliorate software systems’ energy consumption, recent work on
search-based approaches to software improvement has demonstrated that software engineers also have an impor-
tant role to play. White et al. [39] were among the first to automatically search for modified versions of existing
programs to reduce energy consumption, trading functionality for energy reduction. More recently, the past five
years have witnessed an explosion of activity in this area.

Hoffman et al. dynamically tuned parameters to limit power spikes in server clusters [19]. Schulte et al. [36]
introduced the Genetic Optimisation Algorithm (GOA) that was able to reduce the energy consumption of existing
software systems from the PARSEC benchmark suite by an average of 20%. Manotas et al. [31] used a constrained
exhaustive search for modifications to existing open source Java systems, reporting energy improvements of between
2% and 17%. Li et al. [29] demonstrated that by sacrificing some degree of usability, energy savings of up to 40%
could be achieved for (battery-restricted) smartphones. Their approach searched for contrast-preserving changes in
screen colours, to reduce energy consumed by a smartphone display. Bruce et al. [11] showed that searching for
specialised versions of a system (tailored to its downstream applications) facilitated energy improvements of up to
25%. Burles et al. [12] used automated search to find an improved version of Google Guava’s ImmutableMultimap

class that reduced its energy consumption by up to 24% and tuned the parameters in Google Guava’s CacheBuilder to
achieve a 9% energy saving [13].

Our work differentiates from the above approaches in that we investigate the characteristics of the search space for
software improvement with respect to energy consumption.

9 Conclusions

We investigated the evolutionary energy optimisation search space, focussing on three most widely used evolutionary
mutation operators: copy, delete, and replace. We show that when using exact test oracles, modifications that produce
more energy-efficient solutions occur 0.09% of the time on average; a flat search space that would be difficult to
traverse without a highly explorative search technique. When approximation of output is permitted this figure grows
to 1.25%, a 15-fold increase.

In terms of impact, when using the exact test oracle an average decrease of 0.76% is observed though when using
the approximate test oracle the average impact increases to 33.90%. This finding points to the critical importance
of approximation for evolutionary energy optimisation. Fortunately, many Energy optimisation applications support
exactly this kind of optimisation as studied in the work reported here.

We used direct energy measurements to obtain these results and show that the devices used in this investigation
(the MAGEEC energy measurement boards) are precise but lack accuracy; highlighting an important and unreported
systematic error in measurements given by these devices. However, any proportional energy saving obtained within
one device translates into an equal proportional energy saving in another.

We also replicated previous findings (from non-energy-based evolutionary optimisation problems) that the delete and
replace mutation operators are the most frequent and produce the greatest magnitude with effective copy modifica-
tions being rare and seldom responsible for significant energy reduction. We would therefore advise the removal of
the copy from this commonly used set of operators.

We also investigated the effects that energy-efficient modifications produce when combined. We found that 61.5%
of pairings were worthwhile; that is, the pairing’s impact was greater than that of its most effective member with
12.0% being ‘strongly synergistic’. The remaining 38.5% of modification pairs were antagonistic and therefore, we
conclude there is no guarantee that two good modifications will always produce an energy-efficient software variant.
Given this information we advise the use of non-greedy search-based techniques, such as evolutionary algorithms, to
combine effective modifications in a controlled manner.
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