Skip to main content

Genetic Programming Symbolic Regression with Simplification-Pruning Operator for Solving Differential Equations

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Differential equations (DEs) are important mathematical models for describing natural phenomena and engineering problems. Finding analytical solutions for DEs has theoretical and practical benefits. However, traditional methods for finding analytical solutions only work for some special forms of DEs, such as separable variables or transformable to ordinary differential equations. For general nonlinear DEs, analytical solutions are often hard to obtain. The current popular method based on neural networks requires a lot of data to train the network and only gives approximate solutions with errors and instability. It is also a black-box model that is not interpretable. To obtain analytical solutions for DEs, this paper proposes a symbolic regression algorithm based on genetic programming with the simplification-pruning operator (SP-GPSR). This method introduces a new operator that can simplify the individual expressions in the population and randomly remove some structures in the formulas. Moreover, this method uses multiple fitness functions that consider the accuracy of the analytic solution satisfying the sampled data and the differential equations. In addition, this algorithm also uses a hybrid optimization technique to improve search efficiency and convergence speed. This paper conducts experiments on two typical classes of DEs. The results show that the proposed method can effectively find analytical solutions for DEs with high accuracy and simplicity.

This work was partly supported by the National Natural Science Foundation of China under Grant No. 62276222.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bar-Sinai, Y., Hoyer, S., Hickey, J., Brenner, M.P.: Learning data-driven discretizations for partial differential equations. Proc. Natl. Acad. Sci. 116(31), 15344–15349 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bomarito, G., Townsend, T., Stewart, K., Esham, K., Emery, J., Hochhalter, J.: Development of interpretable, data-driven plasticity models with symbolic regression. Comput. Struct. 252, 106557 (2021)

    Article  Google Scholar 

  3. Brenner, M.: Machine learning for partial differential equations. In: APS March Meeting Abstracts, vol. 2021, pp. P61–003 (2021)

    Google Scholar 

  4. Bueno-Orovio, A., Pérez-García, V.M., Fenton, F.H.: Spectral methods for partial differential equations in irregular domains: the spectral smoothed boundary method. SIAM J. Sci. Comput. 28(3), 886–900 (2006). https://doi.org/10.1137/040607575

  5. Cao, L., Jiang, M., Feng, L., Lin, Q., Pan, R., Tan, K.C.: Hybrid estimation of distribution based on knowledge transfer for flexible job-shop scheduling problem. In: 2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS), pp. 1–6. IEEE (2022)

    Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Denis, B.: An overview of numerical and analytical methods for solving ordinary differential equations. arXiv preprint arXiv:2012.07558 (2020)

  8. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Henner, V., Nepomnyashchy, A., Belozerova, T., Khenner, M.: Partial differential equations. In: Ordinary Differential Equations: Analytical Methods and Applications, pp. 479–545. Springer, Cham (2023)

    Google Scholar 

  10. Hernandez, A., Balasubramanian, A., Yuan, F., Mason, S.A., Mueller, T.: Fast, accurate, and transferable many-body interatomic potentials by symbolic regression. NPJ Comput. Mater. 5(1), 112 (2019)

    Google Scholar 

  11. Hong, H., Jiang, M., Feng, L., Lin, Q., Tan, K.C.: Balancing exploration and exploitation for solving large-scale multiobjective optimization via attention mechanism. In: 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2022)

    Google Scholar 

  12. Hong, H., Jiang, M., Yen, G.G.: Improving performance insensitivity of large-scale multiobjective optimization via Monte Carlo tree search. IEEE Trans. Cybern. (2023)

    Google Scholar 

  13. Jiang, M., Wang, Z., Guo, S., Gao, X., Tan, K.C.: Individual-based transfer learning for dynamic multiobjective optimization. IEEE Trans. Cybern. 51(10), 4968–4981 (2020)

    Article  Google Scholar 

  14. Karpatne, A., et al.: Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 29(10), 2318–2331 (2017)

    Article  Google Scholar 

  15. Meuris, B., Qadeer, S., Stinis, P.: Machine-learning-based spectral methods for partial differential equations. Sci. Rep. 13(1), 1739 (2023)

    Article  Google Scholar 

  16. Oh, H., Amici, R., Bomarito, G., Zhe, S., Kirby, R., Hochhalter, J.: Genetic programming based symbolic regression for analytical solutions to differential equations. arXiv preprint arXiv:2302.03175 (2023)

  17. Sacchetti, A., Bachmann, B., Löffel, K., Künzi, U., Paoli, B.: Neural networks to solve partial differential equations: a comparison with finite elements. IEEE Access 10, 32271–32279 (2022). https://doi.org/10.1109/ACCESS.2022.3160186

  18. Wang, Z., Hong, H., Ye, K., Zhang, G.E., Jiang, M., Tan, K.C.: Manifold interpolation for large-scale multiobjective optimization via generative adversarial networks. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  19. Ying, L.: Partial differential equations and the finite element method. Math. Comput. 76(259), 1693–1694 (2007). https://www.ams.org/journals/mcom/2007-76-259/S0025-5718-07-02023-6/home.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, L., Zheng, Z., Ding, C., Cai, J., Jiang, M. (2024). Genetic Programming Symbolic Regression with Simplification-Pruning Operator for Solving Differential Equations. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1962. Springer, Singapore. https://doi.org/10.1007/978-981-99-8132-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8132-8_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8131-1

  • Online ISBN: 978-981-99-8132-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics