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Abstract
The paper presents the potential of genetic
programming (GP)-generated symbolic regression
for linearizing the response in statistical design of
experiments when significant Lack of Fit is detected
and no additional experimental runs are
economically or technically feasible because of
extreme experimental conditions.  An application of
this approach is presented with a case study in an
industrial setting at The Dow Chemical Company.

1 INTRODUCTION
The complexity of some industrial chemical processes
requires that first-principle or mechanistic model be
considered in connection with empirical models.  At the
basis of empirical models is that underlying any system
there is a fundamental relationship between the inputs and
the outputs that can be locally approximated over a
limited range of experimental conditions by a polynomial
or a linear regression model.  
Suitable statistical techniques such as design of
experiments (DOE) are available to assist in this process
(Box et al, 1978).  The capability of the linear model to
represent the data can be assessed through a formal Lack
of Fit (LOF) test when experimental replicates are
available (Montgomery, 1999).  Significant LOF in the
model indicates a regression function that is not linear;
i.e. the polynomial initially considered is not appropriate.
A more adequate model may be found by fitting a
polynomial of higher order by augmenting the original
design with additional experimental runs.  Specialized
designs such as the Central Composite Design are
available for this purpose (Box et al., 1978).
However, there are many practical cases where runs are
very expensive or technically unfeasible because of
extreme experimental conditions, thus making the fit of a
higher order polynomial impractical.  This problem can
be handled if appropriate input transformations are used,
provided that the basic assumption of least-square
estimation regarding the probability distributions of errors
is not affected. These assumptions require that errors be

uncorrelated and normally distributed with mean zero and
constant variance.
Some useful transformations are discussed in Box and
Draper.(1987). Unfortunately, transformations that
linearize the response without affecting the error structure
are not always obvious and are often developed based on
experience or theoretical insight.  Genetic programming
(GP)- generated symbolic regression provides a unique
opportunity to rapidly develop and test these
transformations.  Symbolic regression includes the
finding of a functional mathematical expression that fits a
given set of data (Koza, 1992). 
GP-generated symbolic regression is an evolution-based
algorithm for automatically generating nonlinear input-
output models.  Several possible models of the response
as a function of the input variables are obtained by
combining basic functions, inputs, and numerical
constants.  This multiplicity of solutions offers a rich set
of possible transformations of the inputs.  At the same
time, the most significant challenge of GP-generated
transforms is that most models are not parsimonious and
include chunks of inactive code or terms that do not
contribute to the overall fitness (Banzhaf et al, 1998) and
that may prove inefficient in producing a linearizing
transformation.  This problem can be managed to some
degree at the expense of extra-computation time by
appropriate algorithms that quickly test the ability of
transforms to linearize the response without altering error
structure.
The application of GP in DOE and the potential of
combining them offer a unique set of opportunities that is
beginning to grab the attention of researchers and
industry.  Experimental design techniques have already
been used to evaluate the effects of GP parameters
(Spoonger, 2000).  An excellent discussion of algorithm-
driven regression based on genetic programming for
solving supersaturated designs is presented in Cela et.al
(2001).
In this paper, a novel approach of integrating GP
with DOE is presented.  This approach has the
potential to improve the effectiveness of empirical



model building by saving time and resources in situations
where experimental runs are quite expensive or
technically unfeasible because of extreme experimental
conditions.  GP is applied to the development of variable
transforms that linearize the response in statistically
designed experiments for a chemical process in The Dow
Chemical Company.  

2 METHODOLOGY 
A series of experimental runs were performed in a lab
scale reactor in four variables.  The response variable was
the selectivity of one of the products.  These experiments
were statistically analyzed and the effect of the variables
as well as a prediction of the response within the area of
experimentation was well understood.  LOF was induced
by removing one experimental run to simulate a common
situation in which LOF is significant and additional
experimental runs are impractical due to the extreme cost
of experimentation or because it is technically unfeasible
due to extreme experimental conditions.  In this system
the potential of GP-generated transforms was studied
allowing the comparison of results with a well-known
system.
The appropriateness of GP-generated transforms to
linearize the response without affecting error structure
was assessed by performing the transformations presented
in the functional form of the GP model.  Then a linear
regression model was fit in the transformed inputs.  This
model, referred to as the transformed linear model, was
examined for Lack of Fit and appropriate error structure.
Both models, the transformed linear model and the GP
model, were tested considering 9 additional experiments
in the region of the design.  The validity of the results was
determined by comparing model predictions with the
previously analyzed experiments and with a fundamental
kinetic model (FKM) that was earlier developed.  The
results indicate that GP-generated transformations have
the potential of linearizing the response in those cases
where additional experimental runs are not possible.

3 THE EXPERIMENTAL DESIGN
The experiments conducted in lab-scale thermal
chlorination reactor system consisted of a complete 24

factorial design in the factors x1, x2, x3, x4, with three
center points.  A total of 19 experiments were performed.
The response variable, Sk, was the yield or selectivity of
one of the products.  The factors were coded to a value of
–1 at the low level, +1 at the high level, and 0 at the
center point.  The complete design in the coded variables
is shown in Table 1
To develop a base case and test for variable
transformations, LOF was induced by removing run
number 1 of the experimental design.  The response Sk,
was fit to the following first-order linear regression
equation

Table 1: 24 factorial design with three center points

RUNS x1 x2 x3 x4 Sk
1 1 -1 1 1 1.598
2 0 0 0 0 1.419
3 0 0 0 0 1.433
4 -1 1 1 1 1.281
5 -1 1 -1 1 1.147
6 1 1 -1 1 1.607
7 -1 1 1 -1 1.195
8 1 1 1 -1 2.027
9 -1 -1 -1 1 1.111
10 -1 1 -1 -1 1.159
11 -1 -1 -1 -1 1.186
12 1 -1 -1 1 1.453
13 1 1 -1 -1 1.772
14 -1 -1 1 -1 1.047
15 -1 -1 1 1 1.175
15 1 1 1 1 1.923
17 1 -1 -1 -1 1.595
18 1 -1 1 -1 1.811
19 0 0 0 0 1.412

considering only terms that are significant at the 95%
confidence level.
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Table 2 shows the corresponding Analysis of Variance
showing evidence of Lack of Fit (p = 0.0476).  Therefore,
the hypothesis that a first-order model can adequately
describe this system is rejected.

Table 2 - Analysis of variance for the linear model
Source DF Sum of Squares Mean Square F Ratio

Model 8 1.5091186 0.188640 107.6350

Error 9 0.0157733 0.001753 Prob > F

C. Total 17 1.5248919 <.0001

Lack Of Fit

Source DF Sum of Squares Mean Square F Ratio

Lack Of Fit 7 0.01555519 0.002222 20.3775

Pure Error 2 0.00021810 0.000109 Prob > F

Total Error 9 0.01577329 0.0476

Max RSq

0.99

The corresponding residual plot, presented in Figure 1,
suggested non-constant variance, which is one of the
necessary conditions of the error structure for least-square
estimation.



Figure 1 - Residual plot for first-order linear model
suggesting non-constant variance 

Under these circumstances, a variance-stabilizing power
transformation of the response (y) was performed (Box
and Cox, 1964).  The response was transformed to yλ
where the parameter λ varies from –2 to 2 and the choice
of λ that results in the minimum residual sum of squares
of the transformed model is the maximum likelihood
estimation of λ and the best transformation of the
response.  In the present case, however, the power
transformation resulted in a λ value of 1 indicating that no
transformation of the response was helpful.  Cases like
this are quite common in industrial processes.  The next
alternative to be investigated is the transformation of the
input variables by means of GP-generated symbolic
regression.

3.1 THE GP-GENERATED
TRANSFORMATIONS

The GP approach will be used to search for potential
transforms of the input variables.  The GP algorithm was
applied to the original data set, considering the response
variable as the output and the four variables, x1, x2, x3, x4,
in uncoded form as inputs.  This resulted in a series of
non-linear equations that satisfied the data.  The
functional form of these equations produced a rich set of
possible transforms that were tested for the ability to
linearize the response without altering error structure.  An
advantage of this approach is that experience or physical
interpretation may be used to identify promising
transforms, which were previously unavailable to the
experimenter.  An additional advantage is that GP
generates a sensitivity analysis ranking all the input
variables in order of importance to the fitness of the
equations ( Kordon and Smits, 2001) allowing to verify
significant factors in the linearized models.
The GP algorithm is implemented as a toolbox in
MATLAB.  The initial functions for GP included:
addition, subtraction, multiplication, division, square,
change sign, square root, natural logarithm, exponential,

and power.  Function generation takes 20 runs with 500
population size, 100 number of generations, 4
reproductions per generation, 0.6 probability for function
as next node, 0.01 parsimony pressure, and correlation
coefficient as optimization criteria.  A snapshot of the
input/output sensitivity is shown in Figure 2, which shows
x1 as the most important input.

Figure 2 GP-based Input/output sensitivity of the four
input variables

The selection of the best candidates is based on a trade-off
between the fitness of the function and the ability to
linearize the response while producing an acceptable error
distribution.  From the set of potential non-linear
equations the best fit between model prediction and
empirical response was found for the following analytical
function:

Where x1, x2, x3, x4 are the input variables and Sk is the
output.
The correlation coefficient between the analytical
function and the empirical data was 0.95.  This nonlinear
equation indicates an exponential relationship with x1, a
logarithmic relationship with x3, a linear relationship with
x2, and an inverse relationship with x4, as shown in Table
3.  To test the capability of these transforms to linearize
the response, the following transformations were applied
to the input variables as supplied by the GP function (2).

Table 3 - Variable transformations suggested by GP
model

Original Variable Transformed Variable

x1 Z1 = ( )12exp x

x2 Z2 = x2

x3 Z3 = ln[(x3)2]

x4 Z4 = x4
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Then a first-order linear regression model (i.e., the
transformed linear model) was fit to the transformed
variables.  Table 4 shows the corresponding parameter
estimates.  The analysis of variance, presented in Table
5,shows no evidence of LOF indicating that the GP-
generated transformations were succesful in linearizing
the response. 

Table 4 - Parameter estimates for transformed linear
model

Table 5 - Analysis of variance for transformed linear
model

The transformed linear model itself is less parsimonious
than the nonlinear GP model including even third order
iterations.  However, the model is very significant.
The corresponding residual plot for the transformed linear
model is presented in Figure 3.  This plot indicates no
violation regarding basic assumptions for the probability
distribution of errors required by least squares, indicating
that the GP-generated transformations linearized the
response without altering the error structure of the model
produced.  One observation is that the residual of one
center point is larger than the residuals of the other two
center points.  However, in the original analysis, this data
point had also been excluded due to problems with
experimental conditions during the run. 

The transformed linear model and the nonlinear GP model
were used to predict the selectivity to the output at the
conditions of experiment 1 (the experiment removed from
the original data set in order to induce Lack of Fit).

Figure 3 - Residual plot for the transformed linear model

Figure 4 shows the plot of predicted versus actual values
for the two models.  

 
Figure 4 - Predicted versus actual values for the
transformed linear and the nonlinear GP model
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The point corresponding to experiment 1 is indicated in
the figure by an asterisk.  The performance of both
models was very good.  The correlation coefficient was
0.99 for the transformed linear model, and 0.978 for the
GP model.
The nonlinear GP model gives a more accurate prediction
for the value of the removed point.  But both models
predict an increase response by operating at conditions of
high x1, x2, x3, and low x4.  These results were consistent
with the results obtained previously by analyzing the full
design and by a fundamental kinetic model. 

3.2 THE TESTING DATA SET
The prediction capabilities of the transformed linear
model and the GP model were tested with nine additional
experimental points within the range of experimentation.
This is a relative small data set because of the cost and
difficulty of experimentation.  Plots of the predicted
response for the transformed linear and the GP model
versus the actual values, presented in Figure 5, indicate
good performance of both models indicating that the
models are comparable in terms of prediction with
additional data inside the region of the design.  The
correlation coefficient was 0.99 for the transformed linear
model, and 0.98 for the GP model.  The selection of one
of these models over the other would be driven by the
requirements of a particular application.  For example, in
the case of process control, the more parsimonious model
would generally be preferred.

4 CONCLUSIONS
In the course of conducting designed experiments, Lack
of Fit is often encountered, indicating that the proposed
linear regression model fails to adequately describe the
data.  One traditional approach to address this problem is
to introduce higher order terms to the linear model.  This
is accomplished by adding experiments to the original
design, which can be time-consuming, costly, or may be
technically unfeasible because of extreme experimental
conditions.
A second approach is to use transformations to avoid
additional experimentation.  One technique is
transformation of the responses, but this is not always
effective.  In those cases, transformation of the input
variables may be the only alternative to remove Lack of
Fit and provide an appropriate model.  Unfortunately
these transformations are not always obvious and are
often developed based on experience or theoretical
insight. GP provides a way to rapidly develop and test
these transformations so that those appropriate linear
models are developed.
The genetic programming (GP) algorithm was
successfully applied to the results of DOE in a chemical
process in Dow Chemical Company.  Experimentation in
this system is difficult and time-consuming due to the
severe conditions of the experiments.  Data for the
interested output were manipulated to induce Lack of Fit.

Genetic programming was used to generate a nonlinear
model for the output as a function of four experimental
variables.  The form of the nonlinear model was used to
suggest input variable transformations for a linear model.
The resulting transformed linear model showed no
evidence of Lack of Fit.  No additional experimental data
had to be used in the analysis to achieve this result.  The
success of this industrial application illustrates the great
potential of using GP to address Lack of Fit in linear
regression problems. This approach can improve the
effectiveness of empirical model building by saving time 

Figure 5 - Predicted versus actual values for additional
data
and resources when experiments are expensive or
difficult. However, more systematic research in the area
of defining a methodology for robust nonlinear response
surface generated by GP is recommended.. 
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