
Autonomous Document Classification for Business

Chris Clack

Dept. Computer Science

University College London
Gower Street

London WC1E 6BT

C.Clack@cs.ucl.ac.uk

Jonny Farringdon

Dept. Computer Science
University College London

Gower Street
London WC1E 6BT

J.Farringdon@cs.ucl.ac.uk

Peter Lidwell

University College London
c/o Friends of the Earth
26-28 Underwood Street

London N1 7JQ

peterl@foe.co.uk

Tina Yu

Dept. Computer Science
University College London

Gower Street
London WC1E 6BT

T.Yu@cs.ucl.ac.uk

Abstract
With the continuing exponential growth of the Internet
and the more recent growth of business Intranets, the
commercial world is becoming increasingly aware of
the problem of electronic information overload. This
has encouraged interest in developing agents/softbots
that can act as electronic personal assistants and can
develop and adapt representations of users information
needs, commonly known as profiles.

As the result of collaborative research with Friends of
the Earth, a leading environmental campaigning
organisation, we have developed a general purpose
information classification agent architecture and are
applying it to the problem of document classification
and routing. Collaboration with Friends of the Earth
allows us to test our ideas in a non-academic context
involving high volumes of documents.

We use the technique of genetic programming (GP),
(Koza & Rice 1992), to evolve classifying agents.
This is a novel approach for document classification,
where each agent evolves a parse-tree representation
of a user's particular information need. The other
unusual features of our research are the longevity of
our agents and the fact that they undergo a continual
training process; feedback from the user enables the
agent to adapt to the user’s long-term information
requirements.

1. Introduction
Information overload is a common and pressing problem in
industry, commerce and academia. A significant amount of
effort has been expended to address this issue, with both

academic and commercial development of agents (or
“softbots”) to provide information filtering.

Our work differs from others in four important aspects:

1. we use Genetic Programming to evolve parse trees as

the key technology for our agents
2. we grow hybrid solutions that may emulate any

combination of “standard” information retrieval
techniques

3. we concentrate on long-lived agents with continuous
training, using unobtrusive “natural feedback”

4. our work is aimed at routing information within
organisations with large-scale information overload
problems

In this paper we describe the development of a particular
application, that of an Information Routing Agent which
classifies and re-routes documents according to their textual
content.

The paper is structured as follows: Section 2 provides the
background to our research and places our requirements in
context; Section 3 summarises related work; Section 4
explains our approach to the design of a document filtering
application; Section 5 describes the internal working of our
Information Routing Agent; Section 6 presents early results
and discusses further work; and Section 7 concludes.

2. Background
Friends of the Earth (FOE) is a leading environmental
campaigning organisation. FOE's UK activities are
geographically distributed and it has formal links with FOE
International offices across the world. The information
requirements of the head office, the regional offices, and
the international offices, are diverse and a large variety of
information must be efficiently exchanged and shared
between them. FOE responds to thousands of inquiries

each week from the public, press, teachers, academics,
industry and government. Timeliness and accuracy of
information is essential to FOE's strategic objectives.

Until recently FOE has used mainly paper-based
information management systems. This is becoming
unmanageable: research documentation alone currently
totals about a million pages and is expected to double in the
next three years. To manage this growth FOE plans to
introduce a more efficient information management system
involving innovative use of IT; the involvement of
University College London (UCL) via a collaborative
research project is an essential part of this plan.

2.1 The Working Environment
FOE's activities at head office are distributed between
several groups each specialising in a different research area.
Each group organises its own information and uses its own
cataloguing and indexing procedures. Whilst this structure
is essential to support the development and application of
specialist knowledge and skills, there are occasions that
require the sharing of information. The strong culture of
mutual support at FOE means that the different groups are
highly co-operative in sharing information, yet the process
is very labour-intensive. Furthermore, the present system is
highly reliant on individual knowledge of what information
is available and where and how it is stored. If a person is ill
or leaves, that knowledge is lost. The existence of
information is not always clear and duplication (including
the associated unnecessary costs) is a potential problem.

The initial perceived need is for information management
systems that are not dependent on individual knowledge;
however, the system must continue to support the
fundamental need for each research group to determine the
relevance or otherwise of any given document in a different
way.

2.2 Classification and Routing
Our approach is to file inbound documents (including
email) centrally, with a standard system for filing and
cataloguing, but with the additional development of
autonomous classification agents which will automatically
re-route new documents to the appropriate research group.
What is actually re-routed may be as simple as the location
code for the document - our technique allows but does not
require the physical routing of the document itself. In fact,
retaining the documents in the central file store may be the
best way to support sharing between the groups.

An interesting part of this system is the development of the
autonomous agents. Our design has three aims:

1. to provide each research group with a percentage

“confidence” value for each document, to indicate the

degree of confidence with which the Information
Routing System believes that this research group would
be interested in that document. This is far more useful
than a simple binary value.

2. to support the observation that each research group has

a different perspective on the shared information which
itself will shift with time. Thus, we require agents that
are able to undergo continuous adaptation over long
periods (perhaps the entire career of a researcher, or for
as long as the research group is active).

3. to establish a general technique which can be used for a

variety of documents, for example email, Web pages,
Usenet etc.

Our Information Routing System consists of many
Information Routing Agents per research group. All of
these agents are identical in structure; they differ only in
that they classify documents according to the different
perspectives of the different research groups. Thus, for the
remainder of this paper, we shall discuss the design and
implementation of just one such agent. First, however, we
provide a brief survey of related work.

3. Related Work

3.1 Adaptive Agents for Information Filtering
There are a number of existing software systems which use
adaptive agent techniques for information filtering. The five
systems briefly outlined below illustrate the wide range of
different machine learning methods all of which generate or
adapt a user profile (a representation of the users
information need) with the changing requirements of the
user.

1. NewT - a USENET news reader - uses a Genetic

Algorithm to manage a population of profiles; each
profile reflects the users interest in a different subject.
NewT uses the vector space model to query incoming
news articles. (Sheth 1994)

2. MAXIMS - an email assistant - uses machine based

reasoning (MBR) to filter email. MAXIMS stores
exemplars or instances (situation/action pairs) together
with priority weightings. (Metral 1993)

3. NewsWeeder (MDL) - a USENET assistant - uses

Minimum Description Length to classify documents.
(Lang 1995)

4. Magi - a mail interface agent - uses Decision tree

algorithms. (Payne 1994) concludes that there is a need
for better feature extraction techniques and notes that

using all words of the document as features will cause
the search space to be too large. Payne explores the idea
of prototypical learning. (Payne 1994)

5. General Magic provide a commercial email assistant

which sits on a mail server and applies filters to
incoming documents, routing them to interested parties.
(General Magic 1996)

3.2 Information Retrieval Techniques
Traditional information retrieval (IR) techniques (Sheth
1994, Belkin & Croft 1992) rely heavily upon their own a
priori representation scheme for documents, as described
below. These representations can be used to generate a
query (a filter) to implement the document classification
requirements of a user.

Standard representation and query profiles include:

1. Statistical - vector (tuple) weighted terms. (Vector

Space model) (Salton & McGill 1983).

2. Latent Semantic Indexing (LSI) - vector but each vector

represents a “concept”. (Dumais, Furnas, Landaver &
Harshman 1990)

3. Probabilistic - allows feature detection to be embedded

within a probability framework. (Belkin & Croft 1992)

4. Natural language.

Boolean - can be extended to use contextual information
such as words within titles, words within abstract, words
within main body of text (assuming the document has these
standard fields) (Marcus 1991). A similar technique using a
thesaurus is used by (Gauch & Smith 1989).

All of these traditional methods impose an a priori
determination of how the information need of the user is to
be structured. The choice of method therefore determines
how accurately the query represents the user's information
need; the method which works well for one user's
classification requirements may not work well for another
user.

Our Information Routing System must deal with many
different groups whose requirements will change with time;
thus, we aim to develop a system which can determine the
user's information need and use this to select the
appropriate representation for the query.

We (superficially) abandon the standard techniques because
their fixed structures do not reflect the rich variety of our
users' possible requirements. Rather, a genetic
programming (GP) approach is taken whereby the GP can
evolve hybrid techniques appropriate for the context. Thus,

the traditional techniques are generalised rather than truly
abandoned.

4. A New Approach to Document Filtering
Agent Design

Each agent in our Information Routing System is identical
in design and adheres to the following model:

1. A document is presented to an agent and the agent

generates a confidence score for that document.

2. According to the confidence score and a given

threshold, the agent decides whether to route the
document to the user.

3. The user receives notification of an interesting

document, together with a confidence value.

4. After reading the document, the user provides feedback

(explicitly or implicitly) to the agent.

5. The feedback is used to improve the performance of the

agent or to modify the agent's classification behavior in
the light of changing user requirements.

The agent's initial behavior is derived from a training set of
example document classifications for a given user.

4.1 Genetic Programming
One of the primary ways in which our work differs from
others is that we use the technique of Genetic Programming
(GP) to derive the query representation used by each agent.
That is, we use a Genetic Algorithm to evolve a parse tree -
the parse tree is a program which, when executed by an
interpreter, will take a document as input and produce a
confidence value as its output.

The advantage of using GP is that, by making appropriate
primitive functions available to the parse-tree evolver, the
system may evolve a program which uses the best query
representation method for the user's information need.
Indeed, the parse tree might use more than one
representation. For example, a vector based system has to
generate a vector query, whereas a GP system could
generate a parse tree equivalent to combinations of vector
query, Boolean query, and any others that are supported by
the tree primitives.

With genetic algorithms the evolution/learning is used to
determine the best query with respect to a rigid “DNA”
representation. By contrast, a GP system can evolve both a
query and a unique query representation for each context.

The parse tree allows the maximum amount of flexibility
enabling the agent to evolve a good (hybrid)
representation. This is a generalisation of earlier fixed
representation systems, and thus results in a substantially
richer representation.

4.2 Feedback for a Long-Lived Agent
Feedback is necessary for adaptation, and for long lived
agents is crucial. An adaptive agent uses feedback to
change the filter profile over time, driven by the user's
changing and developing interests. Thus, in addition to the
initial period of training, long-lived agents use feedback for
repeated top-up learning.1

Feedback for the agent is possible through both explicit and
implicit user actions. For example, the user may press
buttons for the purpose of giving feedback, or the system
may monitor the user's routine actions and infer feedback
(described later).

Long term feedback requires the occasional archival of
whole populations of agents, even though from each
generation only the best agent is used. If entire populations
of agents were not archived (analogous to keeping the gene
pool “in cold store”) then subsequent top-up learning would
have to start the evolution from scratch, a very costly
process.

Thus, a necessary expense of longevity is the storage
requirement of keeping entire populations of agents
archived, ready for top-up learning. For example, if each
agent initiated by a user requires a supporting population
of several hundred for the evolution process, then several
distinct agents would require tens of thousands of agents to
be maintained; this is not unlikely for a large institution like
FOE. By today's standards of disk and memory hungry
applications this is quite a modest requirement, growing in
a linear relationship with the number of active agents.

Additional training of an individual agent takes place when
user feedback reaches a pre-determined threshold. Top-up
training is then scheduled to occur when the user is absent
(usually at night), thus masking entirely any associated
processing costs.

4.3 Natural Feedback
The process of collecting feedback should not impinge on
the user too much, since the agents are there to support, not
hinder, the user. (Imagine an employee who required you
to give graded feedback on every action they took!). By
observing the user's routine actions it is possible to infer

1Drawing an evolutionary analogy, Darwin is often
misquoted with "survival of the fittest". Rather, he refers to
survival of species most able to adapt.

feedback (Farringdon 1996b), for example the agent can
monitor the user's interaction with documents and based
upon those actions make assumptions as to the quality of
the service it is providing. A simple example is to compare
the predicted classification with the (mail) folder into which
the document was refiled. Other examples of natural
feedback include monitoring how frequently a document is
accessed and whether it is sent on to other recipients.

Of course, some documents will fall through the natural
feedback net, where no inference may be made. For
example, a user might immediately delete a document
because a) it was junk, or b) privacy was very important.

Such natural feedback is unobtrusive and effort-free for the
user, thus a tremendously valuable technique. Additionally
some accommodation should be made for users to initiate
explicit feedback when they deem it necessary.

5. Information Routing Agent
The overall design of the Information Routing System is
given in Figure 1. Each agent is a program which interprets
a genetically-evolved parse tree in order to give a
confidence value to a document.

Document

Agent Agent

Agent

Agent

Agent

User
User

User

User

User

File
File

File

File

File

Feedback

Feedback

Feedback

Feedback Feedback

Figure 1. Design of the Routing Agent Environment

Documents may arrive at the Information Routing Agent
from various sources. These can include inbound email,
Usenet feeds, documents found by other searching agents,
and so forth. In a large organisation like FOE individual
research groups would also offer their internally generated
documents or documents they had found during the course
of their work to the routing agent for redistribution.

The routing/filtering agents can monitor any central
document repository. A special case of the routing agent is
the case where the agent monitors the mail spool of one
user; effectively the router becomes an email assistant. This
mechanism is discussed in detail in (Clack et al 1996).

5.1 Parse Tree representation
In this system a parse tree is a program that can be
evaluated through the use of an interpreter which matches
nodes of the tree to aspects of a document. During
evaluation against a document the tree ultimately reduces to
a single numerical value - the classification or “confidence
value”. The method used here has operators at each branch
of the tree, all of which produce a number. Leaves of the
tree (terminals) are nodes containing word operators and
arguments (words) or numerical-constant terminals. Thus
any part of a tree can be interchanged with another part and
the tree remains valid - perfect for flexible evolution and
mutations. An example parse tree is shown in Figure 2.

Exists
“Java”

50

Exists
“Agent”

Adjacent-exists
“sun” “microsystems”

+

25 30

*

+*

*

Figure 2. A Parse Tree Representation

One drawback to this method is that word operator nodes of
the tree are strongly bound to their arguments, so that
evolution operators can not easily (in this numeric based
approach) manipulate the words in a tree independently of
the word operator. For example, a leaf of the parse tree may
evaluate to the frequency of "complaint". During evolution
it is not a simple matter to exchange the word "complaint"
for another word, rather the node frequency-of-"complaint"
is exchanged in its entirety. This ridged approach is useful
because an evolutionary exchange of a word operator may
not be for another leaf - but for a complete sub-tree.

The parse tree operators all reduce to a single (real)
number. Thus a tree of these operators reduces to one
numerical value also. The available operators are listed
below. It should be noted that while the following

operators are made available to the system there is no
requirement for any particular one to be used.

Feature Detectors: Word Operators

• frequency {word}.

Relative frequency (absolute-frequency / document-length)
gives a comparable measure between documents.

• exists {word}(== frequency > 0).

Returns 0 for false and 1 for true. Testing for the existence
of an individual word gives the same power as many other
systems which use key-word-search and match for
classification. Thus the evolved parse tree can be at least as
powerful as a key word search.

• pair-distance {word , word}.

Mean distance between words in the document. The order
that the words are used in the document should not matter,
for example "search space" and "space to search" would
both figure in the result of pair-distance(search, space).

• adjacent-exists {word , word}.

Returns 0 for false and 1 for true. Adjacent words exist in
the document. Pairs of words are often their own units, for
example {search space, world wide}.

• adjacent-frequency {word , word}.

Mean adjacent-words frequency. Pairs of adjacent words
are important discriminators (more complex than single
word discriminators).

Binding Groups of Features: Numeric Operators

• AND, OR, NOT.

Boolean operators. Interpret zero as false, non-zero as true.
Return 0 for false and 1 for true.

• {+, -, *, /, =, <>, <, >=, Max, Min}.

Standard numerical and relational operators. The relational
operators return 0 for false and 1 for true. The relational
operators might be thought of as being used to compare the
current document with learnt discriminators. The numerical
operators bias the importance of branches of the tree and
combinations thereof.

5.2. GP Evolution
In this section we briefly review the method by which we
evolve the parse tree which the agent uses to effect the
document classification.

We use standard GP evolution, starting with a random
population of parse trees. All parse trees are run against all
documents in the training set, with a fitness function
selecting the best fraction of the population; the next
generation is made up of these parse trees plus a certain
number of parse trees generated using mutation and/or
crossover. This standard method roughly approximates
natural genetics except that in natural genetics mutation
does not necessarily occur during breeding but may also
occur during an organism's lifetime.

The fitness function takes the confidence value produced by
a parse tree when given a certain document as input; the
resulting confidence value is then compared with the
expected value for that training document. The parse tree is
then given a score for that document which is the square of
the difference between the expected and actual confidence
values. This process is repeated for all documents in the
training set. The fitness score given to that parse tree is then
the sum of all the scores obtained for all the documents in
the training set. Thus, a parse tree giving perfect
classification would have an overall score of zero. As a
parse tree gets increasingly worse at classification (in some
way) the overall score increases.

5.3 A Worked Example
This section illustrates how an information routing system
would work in practice at Friends of the Earth.

Upon being installed, the first task undertaken by an agent
is to generate an initial population to produce a stable first
solution classifier (parse tree).

1. An existing store of pre-classified documents is required

as a training set, commonly existing training sets include
e-mail folders, web bookmark lists, and specific
document directories. From these documents a set of
key words is required to seed the initial populations.
One method capable of generating such a set is to
compare the relative frequencies of words (from the
entire training set, or from individual documents) with
their frequency in common usage (Quinlan 1992).
Distinguished words will have maximum or significant
deviation from common usage.

2. With a set of distinguished words prepared for seeding

the first population, a significant period of learning is
undertaken. This is exactly the same evolutionary
learning process that takes place for top up learning
(step 8) but is ab abnito. It is possible this process could

 take many days of background (low priority) processing.

Impatient users could curtail this at any time, and allow
top up learning to bring the agent up to satisfactory
performance levels.

At this point the agent is ready for normal operation, the
rest of this example considers the chain of events triggered
by one particular document coming to the attention of the
pool of similar agents situated at Friends of the Earth
(FOE).

3. Tina e-mails a copy of this paper to FOE, where Peter

has 3 agents on the lookout for articles pertaining to (i)
autonomous agents, (ii) text filtering, and (iii)
environmental issues.

4. The document is pre-processed, removing noise and

reducing the search space. This is a typical first step in
classification, and the precise actions of this agent are
described in (Clack et al 1996).

5. Each agent takes the document as data, and using its

parse tree returns a confidence score.

6. Peter is informed that his agents have an interesting

candidate document, with the classifications {Text
Filter: 90, Agents: 70, Environmental: 60}.

7. His curiosity aroused, Peter reads the paper and files it

under "agents". The act of filing is sufficient natural
feedback for the system to queue some top-up learning.
Top-up learning is carried out to improve upon sub-
optimal performance when enough new exemplars are
available. If Peter had enough time to give explicit
feedback, he could have hit a few buttons on an agents
GUI to let it know that the environmental classification
was way off the mark.

8. Hidden from any user, usually during the night, the

agent can continue its evolutionary learning upon the
parse trees, triggered by the feedback 7. using the new
documents as additional training data.

6. Results and Further Work

A simple prototype has been tested on small test
documents, taking about 6.5 minutes to learn to distinguish
with 95% accuracy between test cases, and less than a
second to provide a confidence score when applied to a
larger file of about 6 kilobytes (all timings were carried out
on a modest Sun Sparcstation IPC). These initial results are
very encouraging and we are therefore pursuing the
technique further; in particular, we need to pay attention to
reducing the internal complexity of the algorithms
(Farringdon 1996a, Clack & Yu 1996) in order to deal with

the extremely high numbers of large documents used every
day at FOE. Our final aim is for a system that may take
many days for the initial learning process but that will
thereafter characterise any given document in a matter of
seconds.

We recognise that there are some problems that are very
hard to overcome. Documents can contain text which will
confuse any automated classification system; for example,
post-scripts added at the end of email messages are often
irrelevant and can be totally misleading. An obvious area
of further work is to apply heuristics to protect the agent
from such misleading information.

Our prototype currently uses many agents for each research
group. In future we might extend this to provide multiple
agents per research group, thereby enabling
sub-classification.

A specific area of interest for us is a quantitative
comparison of this adaptive genetic programming method
against more traditional methods such as vector space
analysis.

7. Conclusion

We have produced a first prototype Information Routing
Agent which learns to classify documents by giving them a
percentage “confidence score” according to the presence or
absence of words and other word relationships such as
inter-word proximity. We have taken a novel approach to
information retrieval, using Genetic Programming as a
means to provide more flexible and powerful query
representation.

The need for an adaptive text classification agent grows
every day (in proportion to the size of the Internet and the
increased use of on-line documents). Our early results show
the viability of implementing such an agent using genetic
programming methods. An agent capable of initial and
continued long term top-up learning would be of great
benefit to a considerable population of computer users, and
is within the bounds of current machine learning
technology.

Acknowledgments

This work has been partially funded by a Teaching
Company Scheme grant from the Department of Trade and
Industry (DTI) in conjunction with Friends of the Earth
(FOE). We wish to thank both the DTI and FOE for their
generous support.

References

Belkin, N., Croft, W. 1992. Information Filtering and
Information Retrieval: Two Sides of the Same Coin?
Communications of the ACM, Vol. 35 No. 12, 29-38.

Clack, C., Farringdon, J., Lidwell, P., Yu, T. 1996. An
Adaptive Document Classification Agent, Research note,
RN/96/45, Dept. of Computer Science, University College
London.

Clack, C., Yu, T. 1996. Performance-Enhanced Genetic
Programming, Research note, RN/96/116, Dept. Computer
Science, University College London.

Deerwester, S.,Dumais, S.T., Furnas, G.W., Landaver, J.K.,
Harshman R. 1990. Indexing by Latent Semantic Analysis.
Journal of the American Society for Information Science,
Vol. 41, No 6, 391-407.

Farringdon, J. 1996a. Genetic Programming Science,
Internal note, IN/96/05, Dept. of Computer Science,
University College London.

Farringdon, J. 1996b. Natural Feedback for Autonomous
Agents, Internal note, IN/96/07, Dept. of Computer
Science, University College London.

Gauch, S., Smith, J.B. 1989. An Expert System for
Searching Full Text. Information Processing and
Management, 25(3), 253-263.

General Magic, 1996. URL: http://www.genmagic.com/

Koza, J.R., Rice, J.P.. 1992. Genetic Programming - The
Movie. MIT Press.

Lang, K. 1995. NewsWeeder, Learning to Filter Netnews.
In Proceedings of the 12th International Machine Learning
Conference (ML95), pp. 331-339, San Francisco,
CA:Morgan Kaufman.

Marcus, R.S. 1991. Computer and Human Understanding in
Intelligent Retrieval Assistance. Proceedings of the 54th
American Society for Information Science meeting, Vol. 28,
October, pp. 49-59.

Metral, M. 1993. Design of a Generic Learning Interface
Agent. BSc Thesis, Department of Electrical Engineering &
Computer Science, MIT.

Payne, T. 1994. Learning E-mail Filtering Rules with Magi,
A Mail Agent Interface. MSc Thesis, Department of
Computing Science, University of Aberdeen Scotland.

Quinlan, P.T. 1992. Oxford Psycholinguistic Database.

Salton, G., McGill, M. 1983. Introduction to Modern
Information Retrieval. McGraw-Hill.

Sheth, B. 1994. A learning Approach to Personalised
Information Filtering. Masters Thesis, Department of
Electrical Engineering & Computer Science, MIT.

