
Fractional Genetic Programming for a More

Gradual Evolution�

Artur Rataj

Institute of Theoretical and Applied Computer Science,
Ba�ltycka 5, Gliwice, Poland
arataj@iitis.gliwice.pl

Abstract. We propose a softening of a genetic program by the so–called
fractional instructions. Thanks to their adjustable strengths, a new in-
struction can be gradually introduced to a program, and the other in-
structions may gradually adapt to the new member. In this way, a trans-
formation of one candidate into another can be continuous. Such an
approach makes it possible to take advantage of properties of real–coded
genetic algorithms, but in the realm of genetic programming. We show,
that the approach can be successfully applied to a precise generalisation
of functions, including those exhibiting periodicity.

Keywords: genetic programming, real–coded genetic algorithm, evolu-
tionary method, gradualism

1 Introduction

One of the basic concepts in genetics is quantitative inheritance, i.e. a gradual
regulation of the strength of a single genetic trait. Such an inheritance is realised
by e.g. encoding a single trait with several genes, which collaboratively add up
to strengthen the trait.

A quantitative inheritance enables an easy way for an effective exploitative
searching of the candidate space – an offspring, which is similar to its parents,
has a high chance of being viable in similar environmental conditions, and thus
to be a next step in walking the candidate space. The similarity might make it
more difficult to find a substantially different environment by the offspring, yet
a need to live in a radically different environment is often not the case. Consider
e.g. the formation of limbs in animals – they evolved from fins in the process
of a long, exploitative transition, that employed slight changes in expressions
of genes and a gradual appearance of new genes. Actually, it has been recently
shown, that just varying of the expression of certain genes in fish makes their
fins more limb–like [5]. Such a graduality enabled a progressive change of the
environment from sea to land, with children being able to live in an environment
similar to that of their parents, though.

� This work has been supported under the project An active creation of a model of
space using a 3d scanner and an autonomous robot, N N516 440738



372 A. Rataj

The concept of graduality or continuity of the candidate space is the basis of
real–coded genetic algorithms [6, 14], supporting a number of dedicated genetic
operators [7].

We propose genetic programs in a form that is halfway between a tree repre-
sentation [3] and a linear list [11]—a linear sequence of functions (instructions)
is communicating using a stack, as introduced by [12], The basic difference of
our approach, though, lies in the graduality of the stack operations, constructed
to support the discussed continuity of instructions. The continuity is similar to
that of [13]. There are two basic differences, though:

– No need for special continuous equivalents of common operations like addi-
tion or multiplication. Instead, the original functions can be used directly.
The graduality is provided elsewhere—by a specially constructed stack.

– A program does not strictly follow a tree structure, as a value of a node
can be reused by a number of other nodes, which promotes reusability of
an instruction result and in effect reduces redundancy. Like in the case of
instructions, the dependencies out of the tree hierarchy can also form grad-
ually.

The paper is constructed as follows: Sect. 2 describes fractional stack oper-
ations. On the basis of these definitions, fractional operations are discussed in
Sect. 3. These build a fractional program, described in Sect. 4. A method of
evolving such programs is introduced in Sect. 5. Section 6 presents some tests.
Finally, there is a discussion in Sect. 7.

2 A Fractional Stack

Let the stack, in order to be compatible with the fractional instructions, have
a continuous length, so that it can support a fractional pushing and popping.
Thanks to this, a weak operation, i.e. having a low strength, may interact with
the stack so that there is only a minimal change to the stack state.

Let each element on the stack have a real value x and also a real length.
The length is specified by the strength s of a push operation push(s, x), and
contributes to the total length of the stack, which is a different value than the
total number of elements in that stack, i.e. the stack size. A pop operation, in
turn, y = pop(s), having the strength s, shortens the stack length by s, by
removing 0 or more top elements from the stack, and also possibly shortening
the length of the element f , which is on the top after that removal. The value
popped y is a mean of values of the elements removed or shortened, weighted
by the respective lengths of each element removed, and also by the amount of
shortening of the length of f .

Let us consider an example. Two operations push(0.6, 10) and push(1.2, 20)
led to a stack whose top fragment is shown in Fig. 1(a). Then, a pop(1.5) oper-
ation, in order to shorten the stack by a proper value, needed to remove the top
element and shorten the neighbouring element by 0.3, as seen in Fig. 1(b). The



Fractional Genetic Programming for a More Gradual Evolution 373

0.6

1.2 20

10

15

<
1
.5

>
 P

O
P

0.3 10
15

(a) (b)
Fig. 1. An example of a fractional pop(s): (a) before, and (b) after the operation.

value returned by that operation would be a weighted average

1.2 · 20 + 0.3 · 10
1.2 + 0.3

= 18.

Let i be an index of an element in the stack, 0 for the bottommost element,
S − 1 for the topmost element, where S is the total number of elements in the
stack. Then let Li be the length of the ith element in the stack.

3 Fractional Instructions

Given the stack operations, definitions of the fractional instructions are trivial.
Possible arguments of such an instruction are always popped from the stack,
and a possible result of the instruction is pushed back to the stack. A length of
each of the stack operations is given by the instruction strength. A low–strength
instruction can only minimally modify the stack contents, fulfilling in this way
the graduality criterion. In particular, a zero–strength instruction does nothing.

Let the set of instructions be limited to several stack handling operations, and
also a handful of arithmetic operations. Each instruction’s mnemonic is preceded
by the instruction’s strength. Table 3 lists the definitions of all instructions.
Arguments of binary operators are evaluated from left to right. As seen, 〈s〉 POP
does not use the popped value, the whole role of the instruction is to modify
the stack state. We introduce 〈s〉 COPY n:x, that multiplies the length of n
elements at the stack top by x. The instruction is modelled after the instruction
DUP – an equivalent of COPY 1:2, used to simplify programs implemented in
stack–based languages, like FORTH, FIFTH [8] or Java bytecode [10]. In our case
of fractional instructions, COPY can act as an adapter of n argument passed
between operations of different strengths.

4 A Fractional Program

Before the program is executed, its Ni input values Xi, i = 0, 1, . . .Ni − 1, are
pushed to the stack with a sequence of operations 〈1 + p〉 PUSH Xi. The fixed



374 A. Rataj

Table 1. A list of basic instructions.

Mnemonic Stack operations

〈s〉 PUSH x push(s, x)

〈s〉 POP pop(s)

〈s〉 COPY n:x

l0 = LS−1, v0 = pop(l0),
l1 = LS−1, v1 = pop(l1),

...
ln−1 = LS−1, vn−1 = pop(ln−1),

push(xln−1, vn−1),
push(xln−2, vn−2),

...
push(xl0, v0)

〈s〉 ADD push
(
s,pop(s) + pop(s)

)

〈s〉 MUL push
(
s,pop(s)pop(s)

)

〈s〉 NEG push
(
s,−pop(s)

)

〈s〉 INV push
(
s,pop(s)−1

)

〈s〉 SIN push
(
s, sin

(
pop(s)

))

value p ≥ 0 is a padding, that decreases the probability of a stack underflow –
the program may instead have a chance of popping the input value or its part
again. This is the only case of an instruction, that has a strength greater than 1,
but such an instruction never occurs in a program itself. We will use a padding
of 1 in tests.

If it is unlikely that a program needs a very long stack to solve a given
problem, the stack size might have some constant limit imposed, so that stack
overflows become possible. This way, such programs, as likely too complex, are
deemed invalid, which favours simpler solutions and also saves time by preventing
a further exploitation of such programs.

A program, after finishing, yields a single output value Y , which is equal
to whatever is left in the stack, but excluding its possible bottommost part, if
any, never used by the program, as that part contains unprocessed input values.
Thus,

Y = pop

((
S−1∑
k=0

Lk

)
−min (Lu, Ni)

)
(1)

where Lu is the global minimum length of the stack across all pop(s) instructions
executed within the program, or ∞ if there were no such instructions.

See that if the first instruction of a program is 〈1〉 COPY Ni:z, and then all
of the following instructions are of a strength z, then for given Xi and any z > 0
the program yields exactly the same Y . This shows, that an instruction retains
its characteristics for any strength, beside a different level of interaction with the



Fractional Genetic Programming for a More Gradual Evolution 375

stack. What is important, though, is the ratio between strengths of instructions
that communicate using the same stack, and not the absolute values of these
strengths.

5 Evolutionary Method

We have developed an evolutionary method that dynamically adjusts the ex-
ploration/exploitation scheme like it is often practised in genetic programming
[1, 4, 9]. The exploitation employs a novel technique that emphasises the advan-
tage of gradual instructions. To keep this paper focused, we do not go into the
complexities of maintaining a population of candidates.

5.1 Exploration – a new candidate

A candidate program has a fixed length Pn and a fixed maximum stack size
Ps, both roughly accommodated to the function to fit to, so that too complex
solutions are impossible.

There are several types of instructions to randomly pick. A priority is given
to 〈s〉 PUSH x, as otherwise most candidates would turn out to be invalid due
to stack underflows. We have chosen in tests that this type will be chosen with
PPUSH = 0.3, while for the 7 other types P¬PUSH = 0.1. The pushed value
will be drawn using a uniform distribution, spanning reasonable limits 〈−10, 10〉.
Arguments of 〈s〉 COPY n:x will be chosen using an uniform distribution as well.
The ranges are n ∈ 〈1, 2〉 as it accommodates a typical number of values popped
by an instruction; x ∈ 〈0, 2〉 not getting too large, as sequences of 〈s〉 COPY n:x
may effectively enlarge the upper limit of multiplying lengths of stack elements.

5.2 Exploitation – tuning of a candidate

A gradual exploitation shows the flexibility of the fractional programs. An in-
struction may have its strength gradually reduced even until it disappears, or
another instruction may appear with its strength near 0. Both such a deletion
and such an insertion may have an arbitrarily small influence on the program,
as very small strengths translate to only a minimal interaction with the stack.

The exploitation is a random walk in the candidate space, beginning with
a new candidate created by exploration. A backtrack to the previous position
occurs, if the mean square error (MSE) of the new candidate generalised of
fitting to a function g(x) is not better than the respective MSE of the previous
candidate, or if the new candidate is invalid because of a stack underflow or
overflow, or because of an arithmetic error like a division by zero. Let a single
step be called a modification Δ.

We are unsure which Δ is the best one for a given problem. Thus, we choose
to introduce a variability of its parameters – they are picked using probability
distributions before each step. Let these parameters be as follows – a minimum
threshold Θmin and an instruction perturbance level Φ, both chosen from 〈0, 1〉



376 A. Rataj

using an uniform distribution. Θmin controls how many instructions are modified
on average within Δ. The idea is, that it would sometimes be enough to modify
only a single instruction within Δ, and it might even be advantageous to do
so, if exactly a single instruction needs to be modified, in order to get a better
candidate; parallel modifications of other instructions might create an unwanted
drift in the candidate space in such a case. Yet, sometimes more instructions
need to be modified at once, in order to omit the Hamming wall [2]. Also, a
computation time is obviously crucial in genetic programming, and the random
walk might be faster at times if more instructions are modified per Δ. We allow
each case by Θmin being variable. Φ stems from a similar reasoning – it translates
to how much an instruction is modified on average within Δ. Sometimes a fast
walk is needed when e.g. a candidate is far from the optimum point in the
candidate space. Yet, sometimes small, precise steps are needed instead, when
e.g. the exploited candidate oscillates very closely around the optimum point.

Let within a single Δ, each of the instructions I be modified as follows:

1. Pick Θ ∈ 〈0, 1〉 using an uniform distribution. If Θ < Θmin, then do not
modify I. Go to 2 only otherwise.

2. Let a strength perturbance Φs = δsΦ and a value perturbance Φv = δvΦ
control, respectively, how much an instruction strength and an instruction
argument can be perturbed. We picked in tests fixed δs = δv = 1/20 as a
trade–off between the exploitation speed and precision.

3. Let 〈s〉 be the current strength of I, and 〈s〉′ the modified one. Let

〈s〉′ = max

(
0,min

(
1, 〈s〉+ uni

(
− Φs

2
,
Φs

2

)))
, (2)

where uni(a, b) picks a random value in the range 〈a, b〉 using an uniform
distribution.

4. If 〈s〉′ = 0, then let I be removed. Go to 5 only otherwise.
5. If I is of the type 〈s〉 PUSH v, let the pushed value v be modified to become

v′:

v′ = max

(
−10,min

(
10, v + uni

(
− Φv

2
,
Φv

2

)))
. (3)

6. If I is of the type 〈s〉 COPY n:m, let the length multiplier m be modified to
become m′:

m′ = max

(
0,min

(
2,m+ uni

(
− Φv

2
,
Φv

2

)))
. (4)

Note that v and m are clipped to the same range as when a new instruction is
created during the exploration.

After the instructions are modified, and if there have been r > 0 instructions
removed during that process, then let r new instructions be picked, exactly
as during the exploration, but let these new instructions be randomly inserted
to the program, so that it retains the original number of instructions Pn. Let
the strength of each be Φs, that is, a small value related to a maximum single
modification of an instruction strength.



Fractional Genetic Programming for a More Gradual Evolution 377

5.3 Adapting the exploration/exploitation ratio

Let the fitting quality of a candidate C to g(x) be MSE(C). Let the best candidate
so far be B. If none, assume MSE(B) = ∞.

The search loop consists of two phases: explore by creating a new candidate
T, and then exploit T, with the extent related to the ratio of quality of T to B.
If, after the whole exploitation stage, MSE(T) < MSE(B), then let T become the
new B. The loop ends, if MSE(B) ≤ MSEmax, where MSEmax is a fixed value,
chosen depending on the minimum acceptable quality of the candidate which we
want to find.

The mentioned extent decides on the exploration/exploitation balance, and
also on the distribution of the computation time to the exploitations of candi-
dates T, given their relative quality. As MSE(T) may decrease during the ex-
ploitation, let the extent be dynamically updated using the current value of
MSE(T). The extent is represented by a maximum failure count (MFC). The
value expresses the maximum possible number of subsequent exploitation steps,
which do not result in finding a better candidate. Thus, if a new path to im-
prove T is found, then the path is given a chance, irrespective of the length
of exploitation of the candidate so far. If MFC is reached, the exploitation is
terminated, and the search loop returns to the exploration phase as described.
MFC is computed for a new T, and, to adapt it dynamically as discussed, also
whenever the exploitation of T results in a candidate with lower MSE(T).

Let us consider a formula for MFC. Let its minimum value be MFCmin, so
that any candidate is given a moderate chance to improve, irrespective of that
candidate’s quality. We want, though, to give a considerably greater MFC for
candidates whose initial quality is estimated to be decent. Let the formula have
a fixed parameter tr > 0 to reflect that:

MFC = �tr
(
tanh

(
ts
MSE(T)

MSE(B)
− 1

)
+ 1

)
+MFCmin +

1

2
	. (5)

We see a hyperbolic tangent that serves as a threshold function. It is centred

around MSE(T)

MSE(B)
= 1. The threshold steepness is regulated by ts = 10.

Let MFCmin and tr be adjusted in a test of a relatively complex function, in
order to tune the evolutionary method towards more advanced tasks. We will
use a set of samples gL(x), described in detail further in Sect. 6. The parameters
in question will be tuned to minimise the average computation time t of the
evolutionary method. To save on time, each test will be terminated whenever
t = 1000. Figure 2(a) shows, that MFCmin = 500 is approximately optimal. Let
us then, having that value, test a range of values tr – a respective diagram in
Fig. 2(b) shows a respective optimum value of about tr = 1500.

A diagram of (5), using the adjusted parameters, is shown in Fig. 3.

6 Tests

Let us take advantage of the property of the presented method, that it is not
limited to a polynomial approximation, and chose a function to generalise g(x)



378 A. Rataj

1 10 100 1000 10000

0
20

0
60

0
10

00

MFCmin

co
m

pu
ta

tio
n 

tim
e 

[s
]

0 500 1000 1500 2000

0
20

0
60

0
10

00

tr

co
m

pu
ta

tio
n 

tim
e 

[s
]

(a) (b)

Fig. 2. Diagrams of computation time against (a) different MFCmin; for each sample,
tr is randomly picked using uni(0, 2000); (b) different tr and MFCmin = 500. The solid
lines are smooth approximations.

MSE(T)

MSE(B)

M
F
C

543210

104

103

Fig. 3. A diagram of maximum failure count, given the ratio of MSE between the
exploited candidate and the best one.

that contains a periodic function. Let us also make g(x) relatively non–trivial for
an evolutionary approach, by making the diagrams of its sub–components not
resembling g(x) – this may make it less possible, that such a sub–component
alone would be considered interesting enough in the exploitation stage to be
gradually completed by other sub–components. We will also model g(x) so that
along a certain part of its domain it is very similar to a function y = x2. The
parabola will serve as a honey–pot, that will attempt to distract our evolutionary
method by a deep and, thanks to the symbolic simplicity of the honey pot, easily
reachable local minimum. Let g(x) be

y = 8
(
1 + sin(0.59x+ 4.6)

)
. (6)

The diagram in Fig. 4 confirms, that the sub–functions of g(x) are dissimilar to
g(x), fitting–wise.



Fractional Genetic Programming for a More Gradual Evolution 379

y = x2
y = sin(0.59x)
y = 0.59x+ 4.6

y = sin(x)
g(x)

x

y

302013.63.60

30

25

20

15

10

5

0

Fig. 4. A diagram of f(x), some of its sub-components, and the honey–pot parabola.

An ideal generalising program is shown in Fig. 5. There are 9 instructions in

0 <1> PUSH 0.59
1 <1> MUL
2 <1> PUSH 4.6
3 <1> ADD
4 <1> SIN
5 <1> PUSH 1.0
6 <1> ADD
7 <1> PUSH 8.0
8 <1> MUL

Fig. 5. A program representing exactly g(x).

the program, but we will allow a larger Pn = 15, as it is unlikely, that such a
compact candidate will be found, especially without any preceding intermediate
stages with a larger number of instructions. The program requires only two
elements in the stack, but let the stack size be Ps = 10 because of the reasons
similar to the above ones.

Let there be two sets of samples for the evolutionary method. A ‘short’ set
gS(x) contains 30 samples of g(x) only from within a domain fragment S =
〈0.1, 3.6〉, and a ‘long’ set gL(x) contains 30 samples from L = 〈0.1, 13.6〉. Both
fragments start from 0.1 and not from 0, so that a lesser percentage of candidates
become invalid because of a possible division by zero.

To convey the computational efficiency, any of the tests will be limited with
a maximum computation time of 1000 seconds, and a number of tests that
succeeded in fulfilling this criterion will be given.

6.1 Extrapolation of an inflection

We see that gS(x) is very similar to the honey–pot, and as the honey–pot lacks
any inflection point, the hint to the evolutionary method that g(x) has an inflec-
tion point within S would be rather subtle. Let us use the presented method to



380 A. Rataj

extrapolate g(x) outside S, to see if the method was sensitive to that subtle hint.
Let MSEmax = 1 · 10−5 be rather small, as gS(x) is easy to fit by the discussed
method.

Out of the 20 tests run, 6 met the 1000 seconds criterion. Their generalising
diagrams are illustrated in Fig. 6. Five of these could be described as reasonable

y = g(x)

x

y

103.60

30
25
20
15
10
5
0

Fig. 6. A diagram g(x), and of a set of 6 functions fitting to gS(x) at MSEmax = 1·10−5 .

extrapolations, given the limited domain fragment covered by gS(x) – various
interpretations of the slopes, of a stationary point and of a deflection point are
seen. We see that the evolutionary method was able to propose interpretations
very different from the honey–pot function. The sixth extrapolations contains
garbage to the left of gS(x).

6.2 Extrapolation of periodicity

The set gL(x) presents a strong hint of being periodical. We expect the genetic
programs to finely extrapolate that periodicity. Let MSEmax = 1 ·10−4 be larger
than the error threshold used in the previous test, as gL(x) turns out to be
relatively more difficult to fit. This time, out of 20 tests run, all met the 1000
seconds criterion. The generalising diagrams of the first 10 tests are illustrated in
Fig. 7. We see a visually almost perfect fit, despite the relaxed value of MSEmax.
A fitting error shows, though, that the generalising programs are not identical
to g(x), and that the fitting quality decreases on average as the extrapolation
distance increases. Browsing the code of some of the respective final programs,
depicted in Fig. 8, confirms, that g(x) appears to be simpler than the generalising
programs.

7 Discussion

If we look at the code of the final candidates, shown in Fig. 8, it is seen, that
they still contain instructions of very different strengths, even if the generalised
function could be defined only in terms of instructions having a binary strength of
0 or 1. The fractional property of the programs serves thus not only the purpose



Fractional Genetic Programming for a More Gradual Evolution 381

δy
y = g(x)

x

δyy

0.1

0

-0.1
2013.60

20

15

10

5

0

Fig. 7. A diagram g(x), a set of 10 functions fitting to gL(x) at MSEmax = 1 · 10−4,
and a fitting error δy of each.

of a continuous evolution, but also extends the expressivity of the candidates.
Consider e.g. the following program: 〈1〉 PUSH x; 〈0.5〉 MUL, which computes
x2, even that x is pushed only once, and no power instruction is present.

As the programs utilise common algebraic operators and common mathemat-
ical functions, a question might be raised, if elegant symbolic equations could
be extracted from them. If a generalising program appears to be closely fitting,
yet representing a much complex equation that the generalised function, like in
the case of the test in Sect. 6.2, then perhaps a decrease of MSEmax might re-
fine the programs up to the point of making some of the fractional instructions
effectively almost disappear, by making their strengths very close to zero. An
algorithm simplifying a symbolic equation might then be applied, which would
hypothesise, that such instructions are redundant, and would remove them com-
pletely before simplifying the rest of the program in order to extract a symbolic
equation.

References

1. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular
genetic algorithms. Evolutionary Computation, IEEE Transactions on 9(2), 126–
142 (2005)

2. Charbonneau, P.: Release notes for pikaia 1.2. Tech. rep., NCR/NT-451+ STR,
NCR Technical Note, Boulder, Colorado (2002)

3. Cramer, N.L.: A representation for the adaptive generation of simple sequential
programs. In: 1st International Conference on Genetic Algorithms. pp. 183–187.
Carnegie-Mellon University, Pittsburgh, PA, USA (1986)

4. Eiben, A., Schippers, C.: On evolutionary exploration and exploitation. Funda-
menta Informaticae 35(1-4) (1998)

5. Freitas, R., Gómez-Maŕın, C., Wilson, J.M., Casares, F., Gómez-Skarmeta, J.L.:
Hoxd13 Contribution to the Evolution of Vertebrate Appendages. Developmental
Cell 23(6), 1219–1229 (2012)

6. Goldberg, D.E.: Real-coded genetic algorithms, virtual alphabets, and blocking.
Complex Systems 5, 139–167 (1990)



382 A. Rataj

0 <0.5775> MUL 0 <0.3185> PUSH 7.1064
1 <0.3946> PUSH -6.7771 1 <0.2389> NEG
2 <0.9771> POP 2 <0.0788> PUSH -6.3361
3 <0.1400> PUSH 6.8841 3 <0.9691> SIN
4 <0.1872> NEG 4 <0.4833> ADD
5 <0.5722> SIN 5 <0.2392> ADD
6 <0.2324> PUSH 7.4358 6 <0.8587> COPY 1:1.1385
7 <0.5234> COPY 2:1.6608 7 <0.4592> PUSH 7.4412
8 <0.1365> PUSH 8.9045 8 <0.3479> MUL
9 <0.1909> PUSH 6.7019 9 <0.8930> PUSH 1.8314
10 <0.2116> PUSH -5.8994 10 <0.4190> POP
11 <0.2126> NEG 11 <0.8485> COPY 1:1.1542
12 <0.8238> MUL 12 <0.0793> COPY 1:1.1391
13 <0.2401> ADD 13 <0.0841> ADD
14 <0.1423> ADD 14 <0.0164> COPY 1:0.6350

0 <0.6323> ADD 0 <0.9452> PUSH -9.3873
1 <0.1373> NEG 1 <0.6560> PUSH -5.0818
2 <0.2402> PUSH -9.4909 2 <0.2104> PUSH -5.6119
3 <0.6012> NEG 3 <0.4147> INV
4 <0.8460> COPY 1:0.1593 4 <0.7736> COPY 1:1.3795
5 <0.1655> PUSH -4.3535 5 <0.6274> POP
6 <0.2287> COPY 2:1.2507 6 <0.3134> COPY 2:0.5906
7 <0.2647> PUSH 6.4488 7 <0.6651> COPY 1:0.9763
8 <0.8651> SIN 8 <0.6518> SIN
9 <0.1737> POP 9 <0.4214> POP
10 <0.3067> PUSH -4.2082 10 <0.8910> SIN
11 <0.6459> PUSH -7.4563 11 <0.4455> ADD
12 <0.8002> MUL 12 <0.2546> PUSH 7.0741
13 <0.1821> ADD 13 <0.4902> COPY 1:1.7485
14 <0.1140> ADD 14 <0.3605> MUL

Fig. 8. Example programs fitting to gL(x). To save space, digits only up to the 4th
decimal place are shown.

7. Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the crossover operator
for real-coded genetic algorithms: An experimental study. International Journal of
Intelligent Systems 18(3), 309–338 (2003)

8. Kenneth, H., Robbins, K.A., von Ronne, J.: FIFTH: A stack based GP language
for vector processing. In: EuroGP’07 Proceedings of the 10th European Conference
on Genetic Programming. vol. 1, pp. 102–113. Springer–Verlag Berlin, Heidelberg,
Valencia, Spain (2007)

9. Lin, L., Gen, M.: Auto-tuning strategy for evolutionary algorithms: balancing be-
tween exploration and exploitation. Soft Computing 13(2), 157–168 (2009)

10. Lindholm, T., Yellin, F.: Java virtual machine specification. Addison-Wesley Long-
man Publishing Co., Inc. (1999)

11. Oltean, M., Groşan, C., Dioşan, L., Mihăilă, C.: Genetic programming with lin-
ear representation: a survey. International Journal on Artificial Intelligence Tools
18(02), 197–238 (2009)

12. Perkis, T.: Stack-based genetic programming. In: Evolutionary Computation, 1994.
IEEE World Congress on Computational Intelligence., Proceedings of the First
IEEE Conference on. vol. 1, pp. 148–153. Orlando, FL, USA (1994)

13. Smart, W., Zhang, M.: Continuously evolving programs in genetic programming
using gradient descent. In: Mckay, R.I., Cho, S.B. (eds.) Proceedings of The Second
Asian-Pacific Workshop on Genetic Programming. Cairns, Australia (2004)

14. Wright, A.H., et al.: Genetic algorithms for real parameter optimization. In: Foun-
dations of Genetic Algorithms. pp. 205–218 (1990)


