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Abstract. We apply multiple machine learning methods to obtain con-
cise rules that are highly predictive of scientifically meaningful classes in
hydrating plaster over multiple time periods. We use three dimensional
data obtained through X-ray microtomography at greater than one mi-
cron resolution per voxel at five times in the hydration process: powder,
after 4 hours, 7 hours, 15.5 hours, and after 6 days of hydration. Using
statistics based on locality, we create vectors containing eight attributes
for subsets of size 1003 of the data and use the autoclass unsupervised
classification system to label the attribute vectors into three separate
classes. Following this, we use the C5 decision tree software to separate
the three classes into two parts: class 0 and 1, and class 0 and 2. We use
our locally developed procedural genetic programming system, GPP, to
create simple rules for these. The resulting collection of simple rules are
tested on a separate 1003 subset of the plaster datasets that had been
labeled with their autoclass predictions. The rules were found to have
both high sensitivity and high positive predictive value. Using multiple
machine learning methods we were able to go from unlabeled data to
simple rules in a very straightforward manner.

1 Introduction

Plaster of paris is a widely used material of economic importance [1]. For exam-
ple, the porcelain industry maintains large numbers of molds whose strength,
durability, and ability to absorb water impact the industry’s costs [2]. Plaster
powder is formed by calcining gypsum (calcium sulfate dihydrate, CaSO4·2H2O)
to form calcium sulfate hemihydrate (CaSO4 ·

1

2
H2O). The solid plaster is then

formed by adding water (hydration) to the powder and allowing the mixture to
set. The equations are [1]:

Calcination: CaSO4 · 2H2O = CaSO4 ·
1

2
H2O + 3

2
H2O

Hydration: CaSO4 ·
1

2
2H2O + 3

2
H2O = CaSO4 · 2H2O

During hydration, an interlocking network of gypsum crystals forms. See Figure 1
for a scanning electron micrograph (900X) [3] of precipitated gypsum crystals
(CaSO4 ·2H2O). This crystalline network is the foundation of the strength, dura-
bility, and absorptivity of the plaster [1]. However, the final properties of the set
plaster are dependent on many things such as the water-solid ratio in hydration,
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impurities in the plaster, additives, temperature, and production conditions [3].
Moreover, these interact. For example, as the water solid-ratio in hydrating the
plaster increases, the volume fraction of porosity increases, absorptivity of the
plaster increases, but the strength and durability decrease [1]. There is much to
learn about plaster; even the form of the kinetic equations (fraction of plaster
reacted versus time) is not agreed upon [4][5][6]. Understanding the process of
setting plaster as well as being able to predict its final properties is of scientific
as well as economic interest.

Fig. 1. A scanning electron micrograph (900X) [3] of precipitated gypsum crystals
(CaSO4 · 2H2O).

2 Methodology

Recently, X-ray microtomography has been used to obtain the unprecedented
resolution of 0.95µ per voxel in three dimensional images of hydrating plaster.
Commercial grade plaster of paris was mixed with a water-to-solids mass ratio
of 1.0 and viewed with X-ray microtomography after 4, 7, 15.5 hours and 6
days. Additionally, a sample of plaster powered was imaged. This resulted in five
images of plaster of size 10243. This is gray scale data with each pixel varying
from 0 to 255 [7][8].

We seek simple rules to describe and predict states in hydrating plaster. We
use multiple methods from machine learning to obtain the rules. We use a com-
bination of unsupervised classification, decision trees, and genetic programming
to obtain these rules. The rules are developed on a 1003 subset of the data taken
at the same place in each dataset. The rules are tested on a completely separate
1003 subset of the data taken at the same place in each dataset.
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2.1 Unsupervised Classification

Since the data is unlabeled, we start the discovery process with an unsuper-
vised classifier. We use autoclass [9][10][11] which has been used successfully
for discovery. In the creation of attributes for input to autoclass, we follow the
Principle of locality [12], wherein natural laws are viewed as the consequence
of small-scale regularities. Since the particle sizes may be as small as a few
microns [8], we choose as our scale a 33 cube centered on each pixel in the
image. Using simple statistics on these small cubes, we create eight attributes
for each pixel as input vectors to autoclass, as described in the following table.

Attribute Name Attribute Definition
A0 gray level value of pixel itself
A1 neighborhood midrange
A2 neighborhood variance about midrange
A3 neighborhood range
A4 neighborhood minimum
A5 neighborhood maximum
A6 neighborhood median
A7 neighborhood mean

Hence, for the 1003 training subcube, this results in 1, 000, 000 vectors. Since
we are interested in the science and materials scientists are interested in three
classes [13], we constrain autoclass to seek three classes. Classification runs were
performed for each training subcube for powder, 4 hours, 7 hours, 15.5 hours,
and 6 days. Since this data is at a new resolution, we do not have pre-labeled data
to compare it with, or experts who can label it. We validate the classification
through a visual comparison with the classes obtained. The 1003 dataset used
for training is small enough to look at all one hundred 1002 images in the dataset
and in the classification. A hundred 1002 images can be printed on an 8 1

2
by 11

page in a ten by ten array making comparisons straightforward. Due to space
considerations, we reproduce three images from each array here. Each image is
taken at z = 0, 30, 60 in the image array. Figure 2 shows the data and classes for
the plaster powder. The data is on the left, with z = 0 at the bottom, z = 30
in the middle, and z = 60 at the top. The corresponding classification for each
plane is to the right of the data. Class 0 is black, class 1 is gray, and class 2 is
white. It is immediately obvious that autoclass has picked up the basic structure
of the data. The plaster particles are class 1. Figure 3 shows the equivalent
images for 4, 7, 15,5 hours and 6 days of hydration. Again the structure in
the data matches the structure of the classification. Class 1 is the crystalline
network and unhydrated plaster. Class 2 is the porosity (voids), and class 0 is
the boundary region. Figure 4 shows this difference clearly in renderings of the
individual classes in their three dimensional configuration. Plaster hardens with
little change in external volume, but since the volume of the hydration products
is smaller than the original material plus water, voids occur inside [14].
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Fig. 2. Comparison of three 1002 slices of original data with corresponding classification
for powder. The data is in the left column, with z = 0 at the bottom, z = 30 in the
middle, and z = 60 at the top. The corresponding classification for each plane is to the
right of the data.

2.2 Decision Tree

In order to gain better insight into the classifications for each time period, we
seek comprehensible representations of the classification algorithms. That is, we
wanted to find relatively simple rules to determine each element’s class based on
its eight attributes.

Autoclass operates in a “black-box” fashion. The algorithm by which it clas-
sifies and predicts elements is opaque to the user. To derive more transparent
statements of the classification schemes, we used a decision tree, C5 [15]1. C5
is the commercial successor to C4.5 [16], which has been used extensively for
learning.

Runs of C5 on the autoclass labeled attributes produced incomprehensible
trees with thousands of nodes. However, the component classes in the brightness
histograms in Figure 5 indicated that class 2 and class 1 might be easily separa-
ble. Ten fold cross validation on the combined class 1 and 2 showed that this was
the case in four of the five datasets. Three of the datasets yielded single node
decision stumps with less than five misclassifications over hundreds of thousands
of cases for powder, 4 hours, and 15.5 hours. All of these branched on attribute
A1. The fourth simple classification was for the 7 hour dataset. This also yielded
a single node decision stump; however, this branched on A7. For uniformity in

1 The identification of any commercial product or trade name does not imply en-
dorsement or recommendation by either the National Institute of Standards and
Technology.
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Fig. 3. Comparisons of original data with classification for 4 hours (top left), 7 hours
(top right), 15.5 hours (bottom left), and 6 days (bottom right). For each time, three
1002 slices of original data are in the left column, with z = 0 at the bottom, z = 30 in
the middle, and z = 60 at the top. The corresponding classification for each plane is
to the right of the data.

the final rules across the hydration times, the 7 hour case was rerun requiring
C5 to use only A1 to get a single best split on this attribute. The six day dataset
did not yield a simple decision tree for the combined class 1 and 2. So it was also
run with A1 as the only attribute to get the best split for input into the next
phase, which was genetic programming to obtain complete and simple rules.

The attribute A1 is the local midrange. The midrange is a robust estimator
of the center of a short tailed distribution [17]. Since the range is limited for
each neighborhood to 0− 255, this is the situation here. So all the rules are now
of the form: if the center of the local distribution is ≤ x ....

2.3 Genetic Programming

Genetic Programming [18][19][20] is a technique that derives a sequence of oper-
ations (chosen from a user defined set) that have high fitness (as defined by the
user) using techniques inspired by evolution. We use GPP (Genetic Program-



6

Fig. 4. Three dimensional renderings of individual classes (class 0 is on the left, class1
is in the middle, and class 2 is on the right) at 4 hours of hydration.

ming - Procedural) [21][22], a procedural genetic programming system that we
have developed.

GPP was used to derive simple, understandable formulae that closely match
the original classifications provided by autoclass. Before GPP is used, the class
1/2 decision algorithm is determined by C5 as described above. GPP is then
used to derive the class 0/1 and the class 0/2 decision algorithms. The method
for using GPP in this problem followed the following steps for each desired clas-
sification:
- Prepare training data sets from the classified data sets.
- Select parameters, such as the operator set, for the GPP runs.
- Construct a fitness function to measure algorithm effectiveness.
- Execute a set of GPP runs.
- Select the run with results that most closely match the original classification.
- Simplify the GPP-produced algorithm to a succinct form.
Training Data Set Preparation: The decision algorithms to be derived by
GPP are be used as a second-tier decision after the application of the class 1/2
decision algorithm derived by C5. The class 1/2 decision algorithm classifies
elements from classes 1 and 2 very accurately, but the algorithm also assigns
elements from class 0 to either class 1 or 2. We create training sets for the GPP
runs based on the actual input that the decision algorithms will receive. For
example, to create the training data set for the class 0/1 decision algorithm we
follow these steps:
- Apply the class 1/2 decision algorithm to class 0.
- Select a subset of class 0 elements classified as class 1 for inclusion in the train-
ing set.
- Select a subset of all class 1 elements for inclusion in the training set.
We follow the corresponding procedure for the class 0/2 training sets. For all
runs the training sets have 200 elements: 100 elements from each of the two
classes being considered.
GPP Run Parameters and Fitness Function: A variety of operating pa-
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Fig. 5. Brightness histograms for whole datasets as well as component classes for pow-
der, 4 hours, 7 hours, 15.5 hours, and 6 days.

rameters must be selected for the GPP runs. All runs were done with the same
set of parameters. The parameters were selected based on knowledge of the prob-
lem to be solved, prior experience with GPP, and a few preliminary test runs.
The primary parameters that were used for all runs are:
- Operators allowed in the programs: +,−,∗,/,<,negate,mod, conditional assign-
ment,and,or,not
- Population size: 500
- Maximum number of generations: 50
- Rates for genetic operations: (crossover : 10%), (mutation : 60%), (prune :
10%), (repair : 10%), (survival : 5%), (new individual : 5%)
The fitness function is based on the correlation between the algorithm’s clas-
sifications with the actual classifications. The fact that this is a two-valued
problem simplifies the calculation of the correlation. We use the formulation
by Matthews[23], which has been used in the context of genetic programming
by Koza[19]. The correlation is given by:

TpTn − FnFp
√

(Tn + Fn)(Tn + Fp)(Tp + Fn)(Tp + Fp)

where: Tp is the number of true positives, Tn is the number of true negatives,
Fp is the number of false positives, Fn is the number of false negatives
In this context, a positive determination refers to the classification of an element
as class 1 or 2 depending on whether the run is for the class 0/1 decision or the
class 0/2 decision. The correlation is evaluated based on the execution of an
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algorithm on the appropriate training set. This correlation value varies from -1
to 1, where 1 indicates perfect performance on the training set and -1 indicated
a perfectly incorrect performance on the training set. Because these decision
algorithms are binary in nature, we can turn a very bad algorithm into a very
good algorithm simply by inverting each decision. In terms of the correlation
value, this means that we can regard a decision algorithm with a correlation
of -0.6 to be just as good as an algorithm with correlation +0.6. So our fitness
function is the absolute value of the correlation value given above. Each GPP
run seeks to evolve an algorithm that maximizes this fitness value.
Execution of the GPP Runs and Selection of the Best Run: For each
decision algorithm to be derived, five hundred GPP runs were made. Each of
these five hundred runs differed only in the seed to the random number generator.
On a single processor a set of five hundred runs would typically complete in
approximately 5 hours. Given the resources available to us, we easily ran all
12 sets of runs over a single night. After completing a set of five hundred runs
we then have to select the best run for further consideration. Each of the runs
produces an output file that contains the evolved decision algorithm in C++
form (although C++ is not the internal representation of the evolved programs).
We implemented a post-processing procedure to aid us in finding the GPP run
that produces the best result. For each of the five hundred runs, the procedure
executes these steps:
- Extract the C++ version of the algorithm from the output file.
- Compile the C++.
- Run the program on the appropriate full data sets.
- Write out brief performance statistics for that program.
The performance statistics are then easily scanned to select the best run.
Simplification of the GPP Algorithms:

Once the best GPP run has been selected, we would like to express the evolved
algorithm in a simple form. The GPP produced programs can be a bit obscure
and often include elements that do not contribute to the final decision. For
this reason, we seek to simplify the GPP evolved algorithms. This simplification
process is, in part, a manual procedure, but it is aided greatly by the use of
Maple [24], a symbolic computation system. Maple has many capabilities, but
we use it in this project to help reduce algebraic expressions to simpler forms.
As mentioned above, each GPP run produces an output file that contains a
representation of the evolved program in C++ form. In addition to this C++
representation, GPP also writes out the algorithm in a Maple representation.
Maple can operate on this representation of the algorithm and simplify to a
single compact formula. There are some issues in this scenario because some
of our internal program representations cannot be easily expressed in Maple’s
representation. In these cases, some manual intervention is required to complete
the simplification. But this is not overly burdensome and Maple has proven to
be invaluable in understanding and simplifying the GPP-evolved programs.
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3 Results

Rules: The final classification rule are:

Powder: if A1 ≤ 42.
then (class is either 2 or 0)

if b.518494A3 + .019318A6c = 2
then class = 0
else class = 2

else (class is either 1 or 0)
if (7235./A7) ≤ (A7 + A4 + A1)

then class = 1
else class = 0

4 hours: if A1 ≤ 27.
then (class is either 2 or 0)

if A6 = 0
then if b0.5 + .06145A1c = 2

then class = 0
else class = 2

then if b0.5 + .06145A1 + .003373A3c = 2
then class = 0
else class = 2

else (class is either 1 or 0)
if (6323.0/A1) < (A0 + A4 + 0.692129A6 + A7)

then class = 1
else class = 0

7 hours:if A1 ≤ 42.5
then (class is either 2 or 0)

if b.527467A1 + .027467A7c = 2
then class = 0
else class = 2

else (class is either 1 or 0)
if b0.5 + 0.008515A7c = 1

then class = 1
else class = 0

15.5 hours: if A1 ≤ 30.
then (class is either 2 or 0)

if b.525849(A6 + A3)c = 2
then class = 0
else class = 2

else (class is either 1 or 0)
if A0 6= 0

then if A4 < (5321.0/A7) − (a0 + a7)
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then class = 0
else class = 1

else if A4 < (5321.0/A7) − a3
then class = 0
else class = 1

6 days: if A1 ≤ 28.
then class = 2
else (class is either 1 or 0)

if A0 + (A1 − (4643/A7)) > 0
then class = 0
else class = 1

Evaluation of the Rules: We use sensitivity and positive predictive value [25]
as metrics to evaluate our rules. A rule can be optimal with respect to a particular
classification in two ways. The rule can be very successful at seeing a class when
it is there. This is called its sensitivity. And the rule can be very successful at
identifying the class in the presence of other classes. This is called its positive

predictive value. Let Tp be the true positives. Let Fp be the false positives. Let
Fn be the false negatives. Then:

Sensitivity =
Tp

Tp+Fn

Positive-Predictive-Value =
Tp

Tp+Fp

In a confusion matrix, sensitivity is accuracy across a row; positive predictive

value is accuracy down a column.

We test our classification rules with a completely different 1003 subcube
of data from each of the five time periods. To test the rules we first compute
the same attribute vectors for the new dataset. Then we use the prediction
capability of autoclass to label the vectors. Finally, we use the above rules to
create confusion matrices of the predictions for each of the time periods. We
derive the sensitivity and positive predictive values for class and time period.
We also do a prediction for the rules derived for the split on A1 and on A7 for
7 hours of hydration for comparison purposes. The derived rules are all highly
predictive as shown in the following table.

Dataset Sensitivity Positive-Predictive-Value
class 0 class 1 class 2 class 0 class 1 class 2

Powder 0.94 0.88 0.97 0.86 0.97 0.95
4 hours 0.97 0.96 0.97 0.93 0.98 0.997
7 hours 0.95 0.95 0.99 0.95 0.95 0.99

15.5 hours 0.96 0.93 0.98 0.93 0.96 0.996
6 days 0.97 0.96 0.996 0.99 0.95 0.98
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4 Conclusions and Future Work

We have taken unclassified data and created a set of simple rules that accurately
predict the class of unseen data for plaster powder, and plaster after 4, 7, 15.5
hours, and 6 days of hydration. Combining multiple machine learning methods
enabled us to go from unlabeled data to simple rules in a very straightforward
manner. Every learning algorithm has its strengths. By using them for different
tasks, the end result can be achieved more easily.

The work on this data set has just begun, however. We would like rules to
separate the unhydrated plaster from the gypsum crystals. Our plan is to use our
genetic programming system to accomplish this. Then our next task is get an
expert to label small subsets of our data. We would like to compare these labels
to our classifications. This may result in some refinement of our rules. Next we
would like to develop equations that accurately predict the class regardless of the
time of hydration, i.e. that work over the whole hydration period. We will need
additional data to include variations with respect to the parameters that can
influence the setting process and the resultant properties of plaster. Finally, we
would like to predict physical characteristics of classes with equations, instead
of predicting classes. Plaster is an interesting and exciting topic for automated
discovery methods. We look forward to extending our study.
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