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Abstract. In well-defined domains there exist well-accépiteria for detecting good and
bad student solutions. Many ITS implement these criteréaatterize solutions and to give
immediate feedback. While this has been shown to promoteites it is not always possi-
ble in ill-defined domains that typically lack well-accegriteria. In this paper we report
on the induction of classification rules for student solagiin an ill-defined domairt. We
compare the viability of classifications using statisticeasures with classification trees
induced via C4.5 and Genetic Programming.

1 Introduction

Much of the success of Intelligent Tutoring Systems sterosiftheir ability to give on-line as-
sessment and feedback. This assessment is usually basedhgpimnplementation o&-priori
domain or tutoring knowledge. Such implementation worka well-defined domain where there
is widespread agreement about the structure of domain laagel relevant solution characteristics
and acceptable solution processes.

In ill-defined domains [9], while it is possible to identifgdividual characteristics that are en-
dorsed or proscribed by some domain experts, it is diffieufind widespread agreement about
atomic solution actions let alone whole solutions or probbolving behaviors. This is a funda-
mental challenge for automating effective instructionliaefined domains.

In recent years the Educational Data-Mining (EDM) commyh#s sought to augment the
priori knowledge in existing tutoring systems with more autonaiycderived knowledge. Work
by Baker et al. on gaming detection [1], Cen et al. on ovening [3], and Feng et al. on student
modeling [5] has shown the utility of EDM to induce new pedgigal information. However,
this work has been based upon statistical learning methdushywwhile they yield successful
predictors, do not permit detailed examination of theieinal logic to induce domain knowledge.
In a word, they are not easily “inspectable”.

Work by Harrer et al. [6] and Miksatko and McLaren [11] haswhdhe utility of user-guided
extraction of inspectable solution patterns. This works fecused on a manual approach or
a model-driven “guided-discovery” approach where usecifigel patterns are explored in the
dataset to highlight interactions.

1This research is supported by NSF Award 1S-0412830.



2 2. BACKGROUND

In this paper we describe our work on the automatic extracfonformative behavior patterns
from student solutions in the ill-defined domain of legaliargentation. This work is based upon
our existing tutoring system for law and legal argumentatialled LARGO. As described in the
next section, LARGO guides students through the processalyang and annotating Supreme
Court oral arguments using-priori structural hints. While these hints have been shown to be
beneficial, they are restricted to relatively small-scaletson characteristics and, due to the limits
of our domain knowledge, do not enable us to efficiently ctt@rize the student solutions as a
whole.

Our goal in this work is to induce inspectable classifiersatég of predicting a student’s post-
test performance based upon their solution characteyistMe will then analyze these classifiers
comparing them to our domain model, checking our expectatad good student behavior and
identifying similar groups of poor performers. For the netswe chose to induce binary decision
trees via C4.5 and Genetic Programming. We felt that thesetstes were expressive enough
to cover a range of student behaviors while inspectablegmtabe analyzed by domain experts
and rendered into instructional explanations. We begin foyiding the necessary background
on LARGO, C4.5. and Genetic Programming. We follow this vatbiscussion of the rules that
were induced and their relative successes and failureshévedonclude with a discussion of the
suitability of these techniques for future work.

2 Background

LARGO, an Intelligent Tutoring System for legal argumentatioB][Isupports students in the
reading, annotation, and analysis of oral argument trgstsdaken from the U.S. Supreme Court.
These transcripts cover cases argued before the court atelcoomplex real-world examples of
legal argument as performed by practicing experts.

These arguments are characterized by the use of propossateshypothetical cases. Ad-
vocates before the court propose a test or legal rule abouth® case should be decided. Not
coincidentally the outcome of this rule favors their cliedtidges in turn probe the test by posing
hypothetical cases, variations on the specific facts of #se ¢hat stress one part of the test or
another to probe for weaknesses. The advocates respondobsnuéating the test to take into
account the hypotheticals or distinguishing the hypotia¢from the case at hand, citing relevant
facts and legal principles with which to justify their argemn.

LARGO is designed to facilitate students’ understandintha form of argument by support-
ing their analysis of the examples. Students using LARGOpagsented with a series of case
problems comprising oral arguments to annotate using angrapmarkup language. This markup
is composed of test, hypothetical and fact nodes, as wellascannecting them. Students may
add descriptive labels to any of the nodes and arcs, and miayhle Test and Hypo nodes to se-
lected portions of the argument transcript. The same fasmadnd the characteristics described
below can also be used for the production of novel argumardsnanner similar to [4]. A sample
diagram is shown in Figure 1.

LARGO analyzes the student diagrams for structural, cangdxand content-related “charac-
teristics” which we use as the basic features of our curnealyais. Each characteristic is defined
by a particular graphical pattern that, if it matches someiqo of a student’s diagram, identifies
a possible structural weakness or opportunity for reflectibhe characteristics were developed
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Figurel. Sample LARGO Graph

with the help of an experienced legal instructor. For exatNLINKED TESTa context char-
acteristic is active when the student has formed a test btheigraph but has not linked that box

to the transcript. Such linking is a necessary part of godd-teking as it enables the students
to reconnect their diagrams to the relevant parts of theraegls. The structural characteristic
FACTS_ISOLATED_FROM_HYPG@sSactive when the student has produced a fact node but not
linked it to the relevant hypothetical nodes.

These diagram characteristics are associated with phageaph production (1=orientation,
2=transcript markup, 3=diagram creation, 4=analysis,5éflection). Characteristics of phases
1-3 can be thought of as indicating basic “weaknesses” ohgrdm (e.g.UNLINKED_TESY,
while characteristics of phases 4 and 5 stand for opporggifidr reflection contained in a diagram.
The system provides feedback on diagrams in the form ofesgdfanation prompts triggered by
the characteristics. In the earlier phases these promfasrirthe student about how to fix up
the diagrams. In the later phases, the prompts encourageti@fi on the diagram and argument
representation. These hints are provided upon request.

LARGO also contains a facility focollaborative feedbackFor each case in the system we
have identified twdargettest statements in the transcript. These are test statertiattour do-
main expert considered to be particularly crucial for thalgsis process. Students who link a
test node to one of these statements are given the opp@rtomiate other students’ statements
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of the same test and to reconsider their own. Students whairgagh the process and whose
tests are rated poorly by their peers are given the oppaytt;mchange their own test in response.
This characteristic i$EST_REVISION_SUGGESTHDS active for students whose test has been
rated poorly but have not changed the test statement. Sg®[lamore detailed analysis of the
help system and an argument example.

We have completed three studies of the LARGO system. In tHe@fF2006 we conducted a
study with paid volunteers taken from the first year clas®atniversity of Pittsburgh’s School
of Law (Novice-2008. Students were randomly assigned to analyze a pair of caseg LARGO
or a text-based notepad tool with no feedback. We compastdteres between the groups and
analyzed student interactions with the system. We foundwvaorialing difference between the
conditions, and close examination of the questions showatldome were too easy causing a
ceiling effect. However on other question types lower apitstudents, as measured by their Law
School Admission Test (LSAT) score (a frequently used mtedifor success at law schools) in
the LARGO condition, showed higher learning gains on sonestion types than their low-LSAT
text peers. Also, the use of the help features was strongigleded with learning [15].

In the Fall of 2007 we performed a follow-up study as part effibst year legal process course
(Novice-2007. The study was mandatory for all 85 class members. As beftudgents were
assigned randomly to text or graph conditions. However thdysincluded one additional case
and students answered case-specific essay questionsadtesession. We also replaced some
guestions from the pre- and post-tests that had producedirgeeffect with more challenging
alternatives. We again found no significant differencesvben conditions. A post-hoc analysis
revealed that the students in the first study made far morelutee advice functions than the
students in the second study, which may explain the diffsxdretween the study outcomes.

We are presently conducting a follow-up study with LARGO amadhird-year law students
(Expert-2008. All participants in this study used LARGO and performed #ame set of tasks
as those irexpert-2007 The purpose of this study is to examine novice-expert iiffees in the
context of LARGO. At the time of this paper a total of 17 thidar students have completed the
study and their data, along with data from the Novice-200dytare employed below.

C4.5is a decision tree induction algorithm [16]. When presentéd data it induces an n-ary
decision tree that acts as a functional classifier. Eachianteode of the tree represents a logical
test that branches to one child or another based upon theroatof the test. Leaf nodes represent
predictions or decisions made. Decision trees are traddrem root to leaf. Each decision path
p from the root to a leaf node defines a class of cases based hpaelevant features and a
classification tag to be assigned to those cases. Each &edfdte represents a hypothesis or test
for carving up the space of diagrams according to the fadtedved in each.

One such decision tree, and its representation in pseuda@dshown in Figure 2. As we
shall discuss below this tree predicts student scores aatav the mean (0) or above the mean
(1) where the inner nodes represent tests for the preseratesence of graph characteristics and
the leaves, classifications. Each unique path from rootabitea decision tree defines a distinct
class of objects. For our purposes these denote uniqueslasstudent solutions.

Intriguingly TEST_REVISION_SUGGESTHEDtaken as a sign of high performance. As we
noted above, this is a later phase characteristic and wilbeoactive unless the students have
successfully marked up a target region of the diagram witsairtode, and then made use of the
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Figure 2. Sample Decision Treewith Pseudocode.

collaborative feedback with their test summary having bgieen a poor rating by their peers.

Genetic Programming (GP) is a type of Evolutionary Computation (EC) [12, 2]. In EC
algorithms a population of candidate problem solutions@ved over time via selection mutation,
multiple-parent crossover and other operations inspigetliblogical reproduction. The field of
EC arose initially out of work in artificial life [13] and hasnse been applied in a number of
domains including design and decision making.

EC is a stepwise algorithm that starts with a population aficamly generated or externally
defined candidate solutions. The fitness of each individiaksessed either by comparison to
a gold standard or a competitive “tournament” selectionsddaupon this fithess individuals are
then permitted to pass their genetic code to the next by mefaziening, combination of genetic
material with other fit members, or random mutation. The @ilgm as a whole continues until an
absolute fitness threshold is reached or a maximum numbemnargtions has passed.

In genetic programming the individual members of the pojaiheare interpreted as function
code with their performance compared against a targetibmor task. For the purposes of our
experiments the target function was the mappmgf — by, of graph featured to the mean-
score binby, we discussed above. In this case the raw fitness is definedelnatio of correct
classifications to total classifications in the set.

One disadvantage of GP is the tendency of systems using stnaored representations (like
ours) to select for code that is not just successful but geailstrobust Such code is characterized
by intronsor redundant code elements that protect the core funcion dlestructive crossover and
slow the discovery of new solutions. This necessitates feeafiparsimony pressur& control
code growth. In this project we applied a scaled penaltydbapen size. Higher performing trees
were assessed a larger penalty than lower performers.

In this experiment we made use of two reproduction operatotgation and crossover. Under
mutation an individual is copied directly into the next get®n with a sub-tree being replaced
by a new, randomly generated sub-tree. Under crossovepavemts exchange randomly selected
sub-trees with the children being passed to the next geoerat

Members of the population at tinteare selected for reproduction based upon their fitness.
Some forms of GP select individuals proportionally accoegdio their absolute fithess. However
this often results in extreme genetic drift toward initydit individuals and reduces the selection
pressure as thes  goes down. We therefore employed sigma scaling to assidniedividual a
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reproductive fitness value of:

fi—ﬂ .
Exm,o:{“ B g;jg (1)

We then select individuals using Stochastic Universal Sangpl2] which ensures that each
individual reproduces at leaSExp(i,t) | but no more thafExp(i,t)] times. Taken together these
measures prevent genetic drift by ensuring that selectiesspre is still high even as the absolute
fitness increases. As a machine learning algorithm, GP hasber of advantages. Itis well suited
to the evolution of arbitrary structures ranging from néuetworks to object-oriented programs.
This makes it attractive for our present purposes. How&/eralso has a number of disadvantages.
As a non-deterministic algorithm it makes fewer guarantdmsut its performance than a more
bounded, biased and specialized algorithm such as C4.5.v#ntk the statistical behavior of the
system and use of proper tuning work to prevent random drdgnnot be completely eliminated.

It is also computationally costly; each of our runs requit@cours of operation on a modern PC.

3 Resaultsand Analysis

As stated in the introduction, our goal in this study is torakee the prospects for automatically
inducing higher-order pedagogical knowledge from subgeaphs. By analyzing subject graphs
using machine learning methods we seek to identify potetatiget rules for the classification of
successful and unsuccessful learners and to explore #radation of the graph characteristics.

For purposes of this analysis we made use of the final grahgast-test scores taken from the
Novice-2007 and Expert-2008 studies. In both studies thgests followed the same procedure
and took the same tests. The graphs we analyzed were profiudes competing arguments in
the Burnham v. Superior Court (495 U.S. 604) case, each afhwivas represented as a single
unified set of graph characteristics as interpreted by LARG@ post-test score was a single value
representing their overall score in the absolute range. Mé&tesl to use the final graph students
generated in the course of the study as it was created as lthenation of the students’ training
and thus, was most likely to be correlated with their finafgenance.

We were forced to remove some of the Novice-2007 subjeats énar analysis as they took too
little time on the post-test or too little time to read theesmfoth indicating a lack of serious effort)
or, in the case of four, because they candidly informed usttiey were not trying to answer the
guestions. This left us with 34 students from the Novice228@idy and 17 from the Expert-2008
study giving us a total of 51 graph/test pairs.

We binned the graph/test pairs according to their poststaste. We then binned the subjects
by mean score (0.63) into two groups, those above the medrthase at or below it. Of the 51
students 22 were below the mean while 29 were above it. TwheEipert-2008 subjects fell
below the mean score. Oy#, C4.5 and GP analyses below are based upon this grouping.

Statistical Comparisons:. As we report in [10], simple statistical analyses of the gréga-
tures such as the number of nodes or relations do not careighly with the students’ learning
outcomes. This was true both for the full set of 51 subjectselbas the study subgroups. While
some of the measure® correlate with group membership (i.e., expert studentdyore more in-
terconnected graphs than non-experts) they do not careilt students’ ultimate performance.



Our analysis showed no overall correlation between thegpbamips and student performance.
Again while there was some difference between the studypgrthose differences were not signif-
icant. However, once we binned the full set of graph resyltsiban score a distinction emerged.
In particular two of the characteristics were significardtyrelated with bin membershigJN-
LINKED_HYPOwas significantly correlated with having a less than avesagee ¢?(16.16,N =
51) = 1.00, p < 0.001) as wasJNLINKED TEST(c?(18.27,N = 51) = 1.00, p < 0.001). This
highlights the importance of students’ linking of tests &ygos in their diagrams to the argument
transcript. In additionTEST_REVISION_SUGGESTEEas marginally significantly correlated
with high performancec®(4.07,N = 51) = 1.00, p < 0.05). As the reader will recall this is a
'late phase’ characteristic and requires some successiblgm solving steps to occur before it
is active. This strong correlation of the linking featuregwstudent performance fits our domain
model. The connection of diagram elements to the argumansdript enables students to retain
the context for each note and helps them to develop a “re$petite text” that is a goal of legal
instruction.

The significance oTEST_REVISION_SUGGESTPpBbmpted us to examine the student help
behavior more closely. As you will recall this charactecigg activated when a student has marked
up the target region, completed collaborative feedbacknbtichanged his test. From that we
determined that very few of the students modified their tegements in response to this char-
acteristic. Thus students who reached this point are nfitmurtly differentiated. This led us to
conclude that additional effort must be made to motivatdesttis help usage, particularly in the
later “reflective” phases of work.

C4.5: We split the individual datapoints evenly into a 90/10 Teatn split with 45 Training
cases (19 at or below the mean and 26 above) and 6 test cagesr (Bedow and 3 above). We
did not perform an iterative cross-validation as our goas wainduce information from known
algorithms, not to validate the algorithms on existing d&4.5 produces the pruned tree that is
shown in Figure 2. This tree successfully classifies 82.2%h@training cases and 100% of the
test cases. Interestingly the only graph features employtdn it are UNLINKED _TESTand
TEST_REVISION_SUGGESTED

In many respects the tree supports gfeanalysis in highlighting the importance of the tran-
script linking, particularly for test nodes. Students whnk ltheir nodes to the transcripts do well
while those who do not are split between students who reeeNeeST_REVISION_SUGGESTED
and are above the mean and those who are not. Thus studenpevibion well in other respects
by highlighting the key transcript region, summarizingahd partially completing collaborative
filtering have been able to avoid linking all of their test red

GP: For the Genetic Programming experiments we employed the sast/train split over
all as with C4.5. On both the Mean classification task thewiahary algorithm showed early
successes. As of generation 93 the system produced the Nsaification tree shown in Figure 3.
This tree correctly classified 87% of training cases sudaigand 100% of test cases. Subsequent
generations showed some improvements with the systemvapi®@9% correct classification of
training instances as of generation 659. However the iaguitees were quite large suggesting
a problem of overfitting the data. Introns were already preaegeneration 93 as shown by the
useless appearancesM®_ ELEMENTSNdISOLATED_HYPO_DISCUSShd the frequency of
such code only increased as the process went on. Note atdoatiictheUNLINKED TESTand
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IDISTINGUISH_WITHOUT_TEXT]

No Yes
UNLINKED_TEST FACTS_RELATIONS
No Yes No Yes
Above TEST_FACTS_RELATION_SPECIFICI ITEST_REVISION_SUGGESTEDl [NO_ELEMENTSl
Mean
N/ \es No / \Yes No/ \Yes
IISOLATED_HYPO_DISCUSS' Above Below Above Below Below
Mean Mean Mean Mean Mean
No Yes
Below Below
Mean Mean

Figure 3. GP Mean Decision Tree.

TEST_REVISION_SUGGESTIHDes are present in this tree but idfiILINKED_HYPO

In analyzing the tree shown in Figure 3 we will focus on theséhclasses of poor perform-
ing students that it defines. The root node of the trd@IBTINGUISH_WITHOUT_TEXTThis
characteristic is active when a student has noted that amhe isalistinguished from another (irre-
spective of node type) without giving a justification. As weted above distinctions, according to
our model, are always motivated by some principled or fdgustification with which the student
should annotate the arc.

As with the C4.5 tree students who exhibit this characiersbne are rated low unless they
also exhibifTEST_REVISION_SUGGESTETIhe significance of this characteristics prompted us
to examine the student help behavior more closely. Recatllliis characteristic is activated when
a student has marked up the target region, completed cadditib® feedback, but not changed
his test. From that we determined that very few of the stugderddified their test statements in
response to this characteristic.

Students who exhibit botDISTINGUISH_WITHOUT_TEX®&nd theFACTS_RELATIONS
characteristic are classified as below the mean. This lalteracteristic indicates that the stu-
dents added arcs relating fact nodes to one another. Agairsth violation of our model. Taken
together these characteristics indicate a misunderstgrdithe role of facts in the domain model
both in terms of how distinctions are drawn using facts and hodes may be interrelated.

The third class is the set of students who do not exREBTINGUISH_WITHOUT _TEXT1but
do exhibitUNLINKED TESTandTEST_FACTS RELATION_SPECIFis latter characteris-
tic is active when the student has constructed a specifitarl@.g., “Modified To”) to the facts of
the case. This is an example of the system’s providing movelp@dagogical information. While
our domain model endorses the use of general relationskipgebn the test and fact nodes, it is
clear that some good students, who leave tests unlinkeal chlsose to use specific relations for
test and fact nodes. This may signal a valid alternative tovadel that bears further exploration.



4 Conclusions

In this paper we assessed the potential of inspectable matdarning methods to induce useful
domain information from student work. Our goal was to den@s the potential of these meth-
ods to yield useful insights into the quality of student $iolus, the tutoring system’s behavior,
and the domain itself. The results we describe above haved¢d conclude that these methods
do hold potential for domain exploration but not without someasure of guidance.

Our statistical analysis highlighted three salient grapharacteristics one of which demon-
strated how the use of the system by well-performing stisdeat at odds with our desires. How-
ever apart from that it validated our domain model. The uséb further confirmed the above
results and helped to validate some of our domain assungpiioihotherwise did not yield much
in the way of new information. GP by contrast yielded a setla¢sification trees one of which
we presented here. Examination of this tree yielded usefotination both about student miscon-
ceptions and student divergence from our domain model. iffosmation has led us to consider
alterations to the advice system and a reconsiderationoé sspects of our domain model.

These results lead us to conclude that the use of GP to indaspettable” classifiers is a
fruitful method of data extraction both for behavioral amdipgogical information. We believe that
this process is especially useful in ill-defined domainsmshe relationship among individually
detectable solution characteristics is not clear and thenséor assessing them, open for debate.
In cases such as these the use of inspectable post-hodictdssi has been shown to reveal useful
insights.

We plan to expand upon this work by moving from the presentagel graph classification
into the induction of both lower level graph characterstnd student classifiers that track per-
formance over the course of the study, again with the goaderitifying useful pedagogical and
performance information. At the same time we plan to combiese automatic insights with ex-
pert human grading. This summer we will engage the servit&swoschool instructors to grade
the student graphs. We will then use this data to comparesa@asament of good and poor stu-
dents with theirs and make use of their data to train furtlesstfiers. This will enable us to check
the value of our present grading mechanism and to providerelgvel analysis to augment our
existing classifications.
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