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Abstract. In well-defined domains there exist well-accepted criteria for detecting good and
bad student solutions. Many ITS implement these criteria characterize solutions and to give
immediate feedback. While this has been shown to promote learning, it is not always possi-
ble in ill-defined domains that typically lack well-accepted criteria. In this paper we report
on the induction of classification rules for student solutions in an ill-defined domain.1 We
compare the viability of classifications using statisticalmeasures with classification trees
induced via C4.5 and Genetic Programming.

1 Introduction

Much of the success of Intelligent Tutoring Systems stems from their ability to give on-line as-
sessment and feedback. This assessment is usually based upon the implementation ofa-priori
domain or tutoring knowledge. Such implementation works ina well-defined domain where there
is widespread agreement about the structure of domain knowledge, relevant solution characteristics
and acceptable solution processes.

In ill-defined domains [9], while it is possible to identify individual characteristics that are en-
dorsed or proscribed by some domain experts, it is difficult to find widespread agreement about
atomic solution actions let alone whole solutions or problem solving behaviors. This is a funda-
mental challenge for automating effective instruction in ill-defined domains.

In recent years the Educational Data-Mining (EDM) community has sought to augment thea-
priori knowledge in existing tutoring systems with more automatically derived knowledge. Work
by Baker et al. on gaming detection [1], Cen et al. on over-training [3], and Feng et al. on student
modeling [5] has shown the utility of EDM to induce new pedagogical information. However,
this work has been based upon statistical learning methods which, while they yield successful
predictors, do not permit detailed examination of their internal logic to induce domain knowledge.
In a word, they are not easily “inspectable”.

Work by Harrer et al. [6] and Miksatko and McLaren [11] has shown the utility of user-guided
extraction of inspectable solution patterns. This work, has focused on a manual approach or
a model-driven “guided-discovery” approach where user specified patterns are explored in the
dataset to highlight interactions.

1This research is supported by NSF Award IIS-0412830.
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In this paper we describe our work on the automatic extraction of informative behavior patterns
from student solutions in the ill-defined domain of legal argumentation. This work is based upon
our existing tutoring system for law and legal argumentation called LARGO. As described in the
next section, LARGO guides students through the process of analyzing and annotating Supreme
Court oral arguments usinga-priori structural hints. While these hints have been shown to be
beneficial, they are restricted to relatively small-scale solution characteristics and, due to the limits
of our domain knowledge, do not enable us to efficiently characterize the student solutions as a
whole.

Our goal in this work is to induce inspectable classifiers capable of predicting a student’s post-
test performance based upon their solution characteristics. We will then analyze these classifiers
comparing them to our domain model, checking our expectations of good student behavior and
identifying similar groups of poor performers. For the present we chose to induce binary decision
trees via C4.5 and Genetic Programming. We felt that these structures were expressive enough
to cover a range of student behaviors while inspectable enough to be analyzed by domain experts
and rendered into instructional explanations. We begin by providing the necessary background
on LARGO, C4.5. and Genetic Programming. We follow this witha discussion of the rules that
were induced and their relative successes and failures. We then conclude with a discussion of the
suitability of these techniques for future work.

2 Background

LARGO, an Intelligent Tutoring System for legal argumentation [15], supports students in the
reading, annotation, and analysis of oral argument transcripts taken from the U.S. Supreme Court.
These transcripts cover cases argued before the court and contain complex real-world examples of
legal argument as performed by practicing experts.

These arguments are characterized by the use of proposed tests and hypothetical cases. Ad-
vocates before the court propose a test or legal rule about how the case should be decided. Not
coincidentally the outcome of this rule favors their client. Judges in turn probe the test by posing
hypothetical cases, variations on the specific facts of the case that stress one part of the test or
another to probe for weaknesses. The advocates respond by reformulating the test to take into
account the hypotheticals or distinguishing the hypothetical from the case at hand, citing relevant
facts and legal principles with which to justify their argument.

LARGO is designed to facilitate students’ understanding ofthis form of argument by support-
ing their analysis of the examples. Students using LARGO arepresented with a series of case
problems comprising oral arguments to annotate using a graphical markup language. This markup
is composed of test, hypothetical and fact nodes, as well as arcs connecting them. Students may
add descriptive labels to any of the nodes and arcs, and may link the Test and Hypo nodes to se-
lected portions of the argument transcript. The same formalism and the characteristics described
below can also be used for the production of novel arguments in a manner similar to [4]. A sample
diagram is shown in Figure 1.

LARGO analyzes the student diagrams for structural, contextual and content-related “charac-
teristics” which we use as the basic features of our current analysis. Each characteristic is defined
by a particular graphical pattern that, if it matches some portion of a student’s diagram, identifies
a possible structural weakness or opportunity for reflection. The characteristics were developed
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Figure 1. Sample LARGO Graph

with the help of an experienced legal instructor. For example UNLINKED_TEST, a context char-
acteristic is active when the student has formed a test box inthe graph but has not linked that box
to the transcript. Such linking is a necessary part of good note-taking as it enables the students
to reconnect their diagrams to the relevant parts of the arguments. The structural characteristic
FACTS_ISOLATED_FROM_HYPOSis active when the student has produced a fact node but not
linked it to the relevant hypothetical nodes.

These diagram characteristics are associated with phases of graph production (1=orientation,
2=transcript markup, 3=diagram creation, 4=analysis, and5=reflection). Characteristics of phases
1-3 can be thought of as indicating basic “weaknesses” of a diagram (e.g.UNLINKED_TEST),
while characteristics of phases 4 and 5 stand for opportunities for reflection contained in a diagram.
The system provides feedback on diagrams in the form of self-explanation prompts triggered by
the characteristics. In the earlier phases these prompts inform the student about how to fix up
the diagrams. In the later phases, the prompts encourage reflection on the diagram and argument
representation. These hints are provided upon request.

LARGO also contains a facility forcollaborative feedback. For each case in the system we
have identified twotarget test statements in the transcript. These are test statements that our do-
main expert considered to be particularly crucial for the analysis process. Students who link a
test node to one of these statements are given the opportunity to rate other students’ statements



4 2. BACKGROUND

of the same test and to reconsider their own. Students who go through the process and whose
tests are rated poorly by their peers are given the opportunity to change their own test in response.
This characteristic isTEST_REVISION_SUGGESTED. It is active for students whose test has been
rated poorly but have not changed the test statement. See [14] for a more detailed analysis of the
help system and an argument example.

We have completed three studies of the LARGO system. In the Fall of 2006 we conducted a
study with paid volunteers taken from the first year class at the University of Pittsburgh’s School
of Law (Novice-2006). Students were randomly assigned to analyze a pair of casesusing LARGO
or a text-based notepad tool with no feedback. We compared test scores between the groups and
analyzed student interactions with the system. We found no overriding difference between the
conditions, and close examination of the questions showed that some were too easy causing a
ceiling effect. However on other question types lower aptitude students, as measured by their Law
School Admission Test (LSAT) score (a frequently used predictor for success at law schools) in
the LARGO condition, showed higher learning gains on some question types than their low-LSAT
text peers. Also, the use of the help features was strongly correlated with learning [15].

In the Fall of 2007 we performed a follow-up study as part of the first year legal process course
(Novice-2007). The study was mandatory for all 85 class members. As beforestudents were
assigned randomly to text or graph conditions. However the study included one additional case
and students answered case-specific essay questions after each session. We also replaced some
questions from the pre- and post-tests that had produced a ceiling effect with more challenging
alternatives. We again found no significant differences between conditions. A post-hoc analysis
revealed that the students in the first study made far more useof the advice functions than the
students in the second study, which may explain the difference between the study outcomes.

We are presently conducting a follow-up study with LARGO among third-year law students
(Expert-2008). All participants in this study used LARGO and performed the same set of tasks
as those inExpert-2007. The purpose of this study is to examine novice-expert differences in the
context of LARGO. At the time of this paper a total of 17 third-year students have completed the
study and their data, along with data from the Novice-2007 study, are employed below.

C4.5 is a decision tree induction algorithm [16]. When presentedwith data it induces an n-ary
decision tree that acts as a functional classifier. Each interior node of the tree represents a logical
test that branches to one child or another based upon the outcome of the test. Leaf nodes represent
predictions or decisions made. Decision trees are traversed from root to leaf. Each decision path
p from the root to a leaf node defines a class of cases based upon the relevant features and a
classification tag to be assigned to those cases. Each tree therefore represents a hypothesis or test
for carving up the space of diagrams according to the factorsinvolved in each.

One such decision tree, and its representation in pseudocode are shown in Figure 2. As we
shall discuss below this tree predicts student scores as at or below the mean (0) or above the mean
(1) where the inner nodes represent tests for the presence orabsence of graph characteristics and
the leaves, classifications. Each unique path from root to leaf in a decision tree defines a distinct
class of objects. For our purposes these denote unique classes of student solutions.

Intriguingly TEST_REVISION_SUGGESTEDis taken as a sign of high performance. As we
noted above, this is a later phase characteristic and will not be active unless the students have
successfully marked up a target region of the diagram with a test node, and then made use of the
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UNLINKED_TEST 

No Yes 

No Yes 

Below
Mean

Above
Mean

Above
Mean

TEST_REVISION_SUGGESTED 

if (Arg0 has UNLINKED_TEST):

  then: 

    if (Arg0 has TEST_REVISION_SUGGESTED):

    then:   return Below_Mean

    else:   return Above_Mean

  else:

     return Above_Mean

Figure 2. Sample Decision Tree with Pseudocode.

collaborative feedback with their test summary having beengiven a poor rating by their peers.

Genetic Programming (GP) is a type of Evolutionary Computation (EC) [12, 2]. In EC
algorithms a population of candidate problem solutions is evolved over time via selection mutation,
multiple-parent crossover and other operations inspired by biological reproduction. The field of
EC arose initially out of work in artificial life [13] and has since been applied in a number of
domains including design and decision making.

EC is a stepwise algorithm that starts with a population of randomly generated or externally
defined candidate solutions. The fitness of each individual is assessed either by comparison to
a gold standard or a competitive “tournament” selection. Based upon this fitness individuals are
then permitted to pass their genetic code to the next by meansof cloning, combination of genetic
material with other fit members, or random mutation. The algorithm as a whole continues until an
absolute fitness threshold is reached or a maximum number of generations has passed.

In genetic programming the individual members of the population are interpreted as function
code with their performance compared against a target function or task. For the purposes of our
experiments the target function was the mappingφ : f → bm of graph featuresf to the mean-
score binbm we discussed above. In this case the raw fitness is defined by the ratio of correct
classifications to total classifications in the set.

One disadvantage of GP is the tendency of systems using unconstrained representations (like
ours) to select for code that is not just successful but genetically robust. Such code is characterized
by intronsor redundant code elements that protect the core function from destructive crossover and
slow the discovery of new solutions. This necessitates the use ofparsimony pressureto control
code growth. In this project we applied a scaled penalty based upon size. Higher performing trees
were assessed a larger penalty than lower performers.

In this experiment we made use of two reproduction operators: mutation and crossover. Under
mutation an individual is copied directly into the next generation with a sub-tree being replaced
by a new, randomly generated sub-tree. Under crossover, twoparents exchange randomly selected
sub-trees with the children being passed to the next generation.

Members of the population at timet are selected for reproduction based upon their fitness.
Some forms of GP select individuals proportionally according to their absolute fitness. However
this often results in extreme genetic drift toward initially fit individuals and reduces the selection
pressure as theσ f ,t goes down. We therefore employed sigma scaling to assign each individual a
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reproductive fitness value of:

Exp(i, t) =

{

1+ fi− f̄t
2σt

: σt 6= 0
1.0 : σt = 0

(1)

We then select individuals using Stochastic Universal Sampling [12] which ensures that each
individual reproduces at least⌊Exp(i, t)⌋ but no more than⌈Exp(i, t)⌉ times. Taken together these
measures prevent genetic drift by ensuring that selection pressure is still high even as the absolute
fitness increases. As a machine learning algorithm, GP has a number of advantages. It is well suited
to the evolution of arbitrary structures ranging from neural networks to object-oriented programs.
This makes it attractive for our present purposes. However,GP also has a number of disadvantages.
As a non-deterministic algorithm it makes fewer guaranteesabout its performance than a more
bounded, biased and specialized algorithm such as C4.5. And, while the statistical behavior of the
system and use of proper tuning work to prevent random drift,it cannot be completely eliminated.
It is also computationally costly; each of our runs required12 hours of operation on a modern PC.

3 Results and Analysis

As stated in the introduction, our goal in this study is to examine the prospects for automatically
inducing higher-order pedagogical knowledge from subjectgraphs. By analyzing subject graphs
using machine learning methods we seek to identify potential target rules for the classification of
successful and unsuccessful learners and to explore the interaction of the graph characteristics.

For purposes of this analysis we made use of the final graphs and post-test scores taken from the
Novice-2007 and Expert-2008 studies. In both studies the subjects followed the same procedure
and took the same tests. The graphs we analyzed were producedfor two competing arguments in
the Burnham v. Superior Court (495 U.S. 604) case, each of which was represented as a single
unified set of graph characteristics as interpreted by LARGO. The post-test score was a single value
representing their overall score in the absolute range. We elected to use the final graph students
generated in the course of the study as it was created as the culmination of the students’ training
and thus, was most likely to be correlated with their final performance.

We were forced to remove some of the Novice-2007 subjects from our analysis as they took too
little time on the post-test or too little time to read the cases (both indicating a lack of serious effort)
or, in the case of four, because they candidly informed us that they were not trying to answer the
questions. This left us with 34 students from the Novice-2007 study and 17 from the Expert-2008
study giving us a total of 51 graph/test pairs.

We binned the graph/test pairs according to their post-testscore. We then binned the subjects
by mean score (0.63) into two groups, those above the mean, and those at or below it. Of the 51
students 22 were below the mean while 29 were above it. Two of the Expert-2008 subjects fell
below the mean score. Ourχ2, C4.5 and GP analyses below are based upon this grouping.

Statistical Comparisons: As we report in [10], simple statistical analyses of the graph fea-
tures such as the number of nodes or relations do not correlate highly with the students’ learning
outcomes. This was true both for the full set of 51 subjects aswell as the study subgroups. While
some of the measuresdo correlate with group membership (i.e., expert students produce more in-
terconnected graphs than non-experts) they do not correlate with students’ ultimate performance.



7

Our analysis showed no overall correlation between the phase groups and student performance.
Again while there was some difference between the study groups those differences were not signif-
icant. However, once we binned the full set of graph results by mean score a distinction emerged.
In particular two of the characteristics were significantlycorrelated with bin membership.UN-
LINKED_HYPOwas significantly correlated with having a less than averagescore (c2(16.16,N =
51) = 1.00, p < 0.001) as wasUNLINKED_TEST(c2(18.27,N = 51) = 1.00, p < 0.001). This
highlights the importance of students’ linking of tests andhypos in their diagrams to the argument
transcript. In addition,TEST_REVISION_SUGGESTEDwas marginally significantly correlated
with high performance (c2(4.07,N = 51) = 1.00, p < 0.05). As the reader will recall this is a
’late phase’ characteristic and requires some successful problem solving steps to occur before it
is active. This strong correlation of the linking features with student performance fits our domain
model. The connection of diagram elements to the argument transcript enables students to retain
the context for each note and helps them to develop a “respectfor the text” that is a goal of legal
instruction.

The significance ofTEST_REVISION_SUGGESTEDprompted us to examine the student help
behavior more closely. As you will recall this characteristic is activated when a student has marked
up the target region, completed collaborative feedback, but not changed his test. From that we
determined that very few of the students modified their test statements in response to this char-
acteristic. Thus students who reached this point are not sufficiently differentiated. This led us to
conclude that additional effort must be made to motivate student’s help usage, particularly in the
later “reflective” phases of work.

C4.5: We split the individual datapoints evenly into a 90/10 Test-train split with 45 Training
cases (19 at or below the mean and 26 above) and 6 test cases (3 at or below and 3 above). We
did not perform an iterative cross-validation as our goal was to induce information from known
algorithms, not to validate the algorithms on existing data. C4.5 produces the pruned tree that is
shown in Figure 2. This tree successfully classifies 82.2% ofthe training cases and 100% of the
test cases. Interestingly the only graph features employedwithin it are UNLINKED_TESTand
TEST_REVISION_SUGGESTED.

In many respects the tree supports theχ2 analysis in highlighting the importance of the tran-
script linking, particularly for test nodes. Students who link their nodes to the transcripts do well
while those who do not are split between students who receiveaTEST_REVISION_SUGGESTED
and are above the mean and those who are not. Thus students whoperform well in other respects
by highlighting the key transcript region, summarizing it,and partially completing collaborative
filtering have been able to avoid linking all of their test nodes.

GP: For the Genetic Programming experiments we employed the same test/train split over
all as with C4.5. On both the Mean classification task the evolutionary algorithm showed early
successes. As of generation 93 the system produced the Mean classification tree shown in Figure 3.
This tree correctly classified 87% of training cases successfully and 100% of test cases. Subsequent
generations showed some improvements with the system achieving 89% correct classification of
training instances as of generation 659. However the resulting trees were quite large suggesting
a problem of overfitting the data. Introns were already present at generation 93 as shown by the
useless appearances ofNO_ELEMENTSandISOLATED_HYPO_DISCUSSand the frequency of
such code only increased as the process went on. Note also that both theUNLINKED_TESTand
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UNLINKED_TEST

DISTINGUISH_WITHOUT_TEXT

FACTS_RELATIONS

NO_ELEMENTSTEST_REVISION_SUGGESTED
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No Yes 

No Yes 
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Figure 3. GP Mean Decision Tree.

TEST_REVISION_SUGGESTEDrules are present in this tree but notUNLINKED_HYPO.

In analyzing the tree shown in Figure 3 we will focus on the three classes of poor perform-
ing students that it defines. The root node of the tree isDISTINGUISH_WITHOUT_TEXT. This
characteristic is active when a student has noted that one node is distinguished from another (irre-
spective of node type) without giving a justification. As we noted above distinctions, according to
our model, are always motivated by some principled or factual justification with which the student
should annotate the arc.

As with the C4.5 tree students who exhibit this characteristic alone are rated low unless they
also exhibitTEST_REVISION_SUGGESTED. The significance of this characteristics prompted us
to examine the student help behavior more closely. Recall that this characteristic is activated when
a student has marked up the target region, completed collaborative feedback, but not changed
his test. From that we determined that very few of the students modified their test statements in
response to this characteristic.

Students who exhibit bothDISTINGUISH_WITHOUT_TEXTand theFACTS_RELATIONS
characteristic are classified as below the mean. This lattercharacteristic indicates that the stu-
dents added arcs relating fact nodes to one another. Again this is a violation of our model. Taken
together these characteristics indicate a misunderstanding of the role of facts in the domain model
both in terms of how distinctions are drawn using facts and how nodes may be interrelated.

The third class is the set of students who do not exhibitDISTINGUISH_WITHOUT_TEXTbut
do exhibitUNLINKED_TESTandTEST_FACTS_RELATION_SPECIFIC. This latter characteris-
tic is active when the student has constructed a specific relation (e.g., “Modified To”) to the facts of
the case. This is an example of the system’s providing more novel pedagogical information. While
our domain model endorses the use of general relationships between the test and fact nodes, it is
clear that some good students, who leave tests unlinked, also choose to use specific relations for
test and fact nodes. This may signal a valid alternative to our model that bears further exploration.
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4 Conclusions

In this paper we assessed the potential of inspectable machine learning methods to induce useful
domain information from student work. Our goal was to demonstrate the potential of these meth-
ods to yield useful insights into the quality of student solutions, the tutoring system’s behavior,
and the domain itself. The results we describe above have ledus to conclude that these methods
do hold potential for domain exploration but not without some measure of guidance.

Our statistical analysis highlighted three salient graph characteristics one of which demon-
strated how the use of the system by well-performing students was at odds with our desires. How-
ever apart from that it validated our domain model. The use ofC4.5 further confirmed the above
results and helped to validate some of our domain assumptions but otherwise did not yield much
in the way of new information. GP by contrast yielded a set of classification trees one of which
we presented here. Examination of this tree yielded useful information both about student miscon-
ceptions and student divergence from our domain model. Thisinformation has led us to consider
alterations to the advice system and a reconsideration of some aspects of our domain model.

These results lead us to conclude that the use of GP to induce “inspectable” classifiers is a
fruitful method of data extraction both for behavioral and pedagogical information. We believe that
this process is especially useful in ill-defined domains where the relationship among individually
detectable solution characteristics is not clear and the means for assessing them, open for debate.
In cases such as these the use of inspectable post-hoc classification has been shown to reveal useful
insights.

We plan to expand upon this work by moving from the present high-level graph classification
into the induction of both lower level graph characteristics and student classifiers that track per-
formance over the course of the study, again with the goal of identifying useful pedagogical and
performance information. At the same time we plan to combinethese automatic insights with ex-
pert human grading. This summer we will engage the services of law school instructors to grade
the student graphs. We will then use this data to compare our assessment of good and poor stu-
dents with theirs and make use of their data to train further classifiers. This will enable us to check
the value of our present grading mechanism and to provide expert-level analysis to augment our
existing classifications.
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