Skip to main content

Cartesian Genetic Programming in an Open-Ended Evolution Environment

  • Conference paper
  • First Online:
Book cover Progress in Artificial Intelligence (EPIA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10423))

Included in the following conference series:

  • 2725 Accesses

Abstract

In this paper we describe and analyze the use of the Cartesian Genetic Programming method to evolve Artificial Neural Networks (CGPANN) in an open-ended evolution scenario. The issue of open-ended evolution has for some time been considered one of the open problems in the field of Artificial Life. In this paper we analyze the capabilities of CGPANN to evolve behaviors in a scenario without artificial selection, more specifically, without the use of explicit fitness functions. We use the BitBang framework and one of its example scenarios as a proof of concept. The results obtained in these first experiments show that it is indeed possible to evolve CGPANN brains, in an open-ended environment, without any explicit fitness function. We also present an analysis of different parameter configurations for the CGPANN when used in this type of scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Banzhaf, W., Baumgaertner, B., Beslon, G., Doursat, R., Foster, J.A., McMullin, B., de Melo, V.V., Miconi, T., Spector, L., Stepney, S., White, R.: Defining and simulating open-ended novelty: requirements, guidelines, and challenges. Theory Biosci. 135(3), 1–31 (2016)

    Article  Google Scholar 

  2. Baptista, T.: Complexity and emergence in societies of agents. Ph.D. thesis, University of Coimbra, Coimbra, July 2012

    Google Scholar 

  3. Baptista, T., Menezes, T., Costa, E.: Bitbang: a model and framework for complexity research. In: Proceedings of the European Conference on Complex Systems 2006, Oxford, UK, p. 73, September 2006

    Google Scholar 

  4. Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S., Adami, C., Green, D.G., Ikegami, T., Kaneko, K., Ray, T.S.: Open problems in artificial life. Artif. Life 6(4), 363–376 (2000)

    Article  Google Scholar 

  5. Channon, A.: Three evolvability requirements for open-ended evolution. In: Maley, C.C., Boudreau, E. (eds.) Artificial Life VII Workshop Proceedings, Portland, USA, pp. 39–40 (2000)

    Google Scholar 

  6. Channon, A.: Unbounded evolutionary dynamics in a system of agents that actively process and transform their environment. Genet. Program. Evolvable Mach. 7(3), 253–281 (2006)

    Article  Google Scholar 

  7. Floreano, D., Durr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intell. 1, 47–62 (2008)

    Article  Google Scholar 

  8. Khan, M.M., Khan, G.M., Miller, J.F.: Evolution of neural networks using Cartesian genetic programming. In: IEEE Congress on Evolutionary Computation, pp. 1–8, July 2010

    Google Scholar 

  9. McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 5(3), 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  10. Miller, J.F. (ed.): Cartesian Genetic Programming. Natural Computing Series, 1st edn. Springer, Heidelberg (2011)

    Google Scholar 

  11. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. Genet. Program. 10802(3), 121–132 (2000)

    Google Scholar 

  12. Standish, R.K.: Open-ended artificial evolution. Int. J. Comput. Intell. Appl. 3(2), 167–175 (2003)

    Article  Google Scholar 

  13. Stanley, K.O.: Efficient evolution of neural networks through complexification. Ph.D. thesis, The University of Texas at Austin, November 2004

    Google Scholar 

  14. Stanley, K.O., Miikkulainen, R.: Efficient reinforcement learning through evolving neural network topologies. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002), San Francisco, US, p. 9 (2002)

    Google Scholar 

  15. Taylor, T., Bedau, M.A., Channon, A., Ackley, D., Banzhaf, W., Beslon, G., Dolson, E., Froese, T., Hickinbotham, S., Ikegami, T., McMullin, B., Packard, N., Rasmussen, S., Virgo, N., Agmon, E., Clark, E., McGregor, S., Ofria, C., Ropella, G., Spector, L., Stanley, K.O., Stanton, A., Timperley, C., Vostinar, A., Wiser, M.: Open-ended evolution: perspectives from the OEE workshop in York. Artif. Life 22(3), 408–423 (2016)

    Article  Google Scholar 

  16. Turner, A.: Evolving artificial neural networks using Cartesian genetic programming. Ph.D. thesis, University of York, York, September 2015

    Google Scholar 

  17. Turner, A., Miller, J.F.: Cartesian genetic programming: why no bloat? In: 2013 Proceedings of the Thirty-third SGAI International Conference on Artificial Intelligence, pp. 193–204 (2014)

    Google Scholar 

  18. Turner, A., Miller, J.F.: Introducing a cross platform open source Cartesian genetic programming library. Genet. Program. Evolvable Mach. 16, 83–91 (2015)

    Article  Google Scholar 

  19. Turner, A.J., Miller, J.F.: Cartesian genetic programming encoded artificial neural networks: a comparison using three benchmarks. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO 2013, NY, USA, pp. 1005–1012 (2013). http://doi.acm.org/10.1145/2463372.2463484

  20. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Smoothness, ruggedness and neutrality of fitness landscapes: from theory to application. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing. Natural Computing Series, pp. 3–44. Springer, Berlin (2003). doi:10.1007/978-3-642-18965-4_1

    Google Scholar 

  21. Vassilev, V.K., Miller, J.F.: The advantages of landscape neutrality in digital circuit evolution. In: Miller, J., Thompson, A., Thomson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 252–263. Springer, Heidelberg (2000). doi:10.1007/3-540-46406-9_25

    Chapter  Google Scholar 

  22. Yao, X.: Evolving artificial neural networks. In: Proceedings of the IEEE, pp. 1423–1447, February 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Baptista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Simões, A., Baptista, T., Costa, E. (2017). Cartesian Genetic Programming in an Open-Ended Evolution Environment. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds) Progress in Artificial Intelligence. EPIA 2017. Lecture Notes in Computer Science(), vol 10423. Springer, Cham. https://doi.org/10.1007/978-3-319-65340-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65340-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65339-6

  • Online ISBN: 978-3-319-65340-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics