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Abstract

This work presents a novel Genetic Fuzzy Sys-
tem (GFS), called Genetic Programming Fuzzy In-
ference System for Regression problems (GPFIS-
Regress). It makes use of Multi-Gene Genetic Pro-
gramming to build the premises of fuzzy rules, in-
cluding t-norms, negation and linguistic hedge op-
erators. GPFIS-Regress also defines a consequent
term that is more compatible with a given premise
and makes use of aggregation operators to weigh
fuzzy rules in accordance with their influence on
the problem. The system has been applied to a set
of benchmarks and has also been compared to other
GFSs, showing competitive results in terms of ac-
curacy and interpretability.

Keywords: Genetic Fuzzy System, Genetic Pro-
gramming, Regression.

1. Introduction

Regression problems are widely reported in the lit-
erature [1–3]. Generalized Linear Models, Neural
Networks and Genetic Programming tend to pro-
vide solutions with high accuracy. However, high
precision is not always associated to a reasonable
linguistic comprehension, that is, it may be difficult
to identify, in linguistic terms, the relation between
the output and input variables. Fuzzy Inference
Systems (FIS) are especially useful when reasonable
accuracy and interpretability are desired [4].
As in regression problems a dataset is commonly

available, supervised learning can be used to find
the FIS parameters (rule base, granularity and
membership functions shape, etc.). Genetic Fuzzy
Systems (GFSs) [5,6] are capable of doing that in an
efficient way. As a GFS integrates a Fuzzy Inference
System (FIS) and a Genetic Based Meta-Heuristic
(GBMH), it provides fair accuracy and linguistic
interpretability (FIS component) through the auto-
matic learning of its parameters/rules (GBMH com-
ponent). Works on GFSs applied to regression prob-
lems are mostly based on improving the Genetic
Based Meta-Heuristic counterpart of GFSs by using
Multi-Objective Evolutionary Algorithms [3, 7–10].
In general most of these works do not explore lin-
guistic hedges and negation operators. Procedures
for the selection of consequent terms have not been
reported and few works weigh fuzzy rules. In ad-

dition GFSs based on Genetic Programming have
never been applied to regression problems.

This work presents a novel GFS called Genetic
Programming Fuzzy Inference System for Regres-
sion problems (GPFIS-Regress). The main char-
acteristics of this model are:(i) it makes use of
Multi-Gene Genetic Programming [2, 11], a Ge-
netic Programming generalization that works on
a single-objective framework, which in some situ-
ations can be more reliable computationally than
multi-objective approaches; (ii) it employs aggre-
gation, negation and linguistic hedge operators in
a simplified manner; (iii) it applies some heuristics
to define the consequent term best suited to a given
antecedent term.

This paper is organized as follows: section 2
presents the main concepts of Multi-Gene Ge-
netic Programming; section 3 presents the GPFIS-
Regress model; case studies are dealt with in section
4 an section 5 concludes the work.

2. Multi-Gene Genetic Programming

Genetic Programming (GP) [1,12] employs a popu-
lation of individuals, each of them denoted by a tree
structure that codifies a mathematical equation,
which describes the relationship between the out-
put Y and a set of input variables Xj (j = 1, ..., J).
Based on these ideas, Multi-Gene Genetic Program-
ming (MGGP) [2,11] generalizes GP as it denotes an
individual as a structure of trees, also called genes,
that similarly receives Xj and tries to predict Y
(Figure 1).

Figure 1: Example of multi-gene individual.

Each individual is composed of D trees or func-
tions (d = 1, ..., D) that relate Xj to Y through
user-defined mathematical operations. It is easy
to verify that MGGP generates solutions similar
to those of GP when D = 1. In GP terminology,
the Xj input variables are included in the Termi-
nal Set, while the mathematical operations (plus,
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minus, etc.) are part of the Function Set (or Math-
ematical Operations Set).
With respect to genetic operators, mutation in

MGGP is similar to that in GP. As for crossover,
the level at which the operation is performed must
be specified: it is possible to apply crossover at high
and low levels. Figure 2a presents a multi-gene in-
dividual with five equations (D = 5) accomplish-
ing a mutation, while Figure 2b shows the low level
crossover operation.

Figure 2: Application example of MGGP operators:
(a) mutation; (b) low level crossover; and (c) high
level crossover.

The low level is the space where it is possible to
manipulate structures (Terminals and Mathemati-
cal Operations) of equations present in an individ-
ual. In this case, both operations are similar to
those performed in GP. The high level, on the other
hand, is the space where expressions can be manip-
ulated in a macro way. An example of high level
crossover is shown in Figure 2c. By observing the
dashed lines it can be seen that the equations were
switched from an individual to the other. The cut-
ting point can be symmetric – the same number
of equations is exchanged between individuals –, or
asymmetric. Intuitively, high level crossover has a
deeper effect on the output than low level crossover
and mutation have.

In general, the evolutionary process in MGGP dif-
fers from that in GP due to the addition of two
parameters: maximum number of trees per individ-
ual and high level crossover rate. A high value is
normally used for the first parameter to assure a
smooth evolutionary process. On the other hand,
the high level crossover rate, similarly to other ge-
netic operators rates, needs to be adjusted.

3. GPFIS-Regress model

GPFIS-Regress is a typical Pittsburgh-type GFS
[5]. Its development begins with the mapping of

crisp values into membership degrees to fuzzy sets
(Fuzzification). Then, the fuzzy inference process
is divided into three subsections: (i) generation of
fuzzy rule premises (Formulation); (ii) assignment
of a consequent term to each premise (Premises
Splitting) and (iii) aggregation of each activated
fuzzy rule (Aggregation). Finally, Defuzzification
and Evaluation are performed.

3.1. Fuzzification

In regression problems, the main information for
predicting the behavior of an output yi ∈ Y (i =
1, ..., n) consists of its J attributes or features xij ∈
Xj (j = 1, ..., J). A total of L fuzzy sets are asso-
ciated to each j-th feature and are given by Alj =
{(xij , µAlj (xij))|xij ∈ Xj}, where µAlj : Xj → [0, 1]
is a membership function that assigns to each obser-
vation xij a membership degree µAlj (xij) to a fuzzy
set Alj . Similarly, for Y (output variable), K fuzzy
sets Bk (k = 1, ...,K) are associated.
Three aspects are taken into account when defin-

ing membership functions: (i) form (triangular,
trapezoidal, etc.); (ii) support set of µAlj (xij); (iii)
an appropriate linguistic term, qualifying the sub-
space constituted by µAlj (xij) with a context-driven
adjective. Ideally, these tasks should be carried out
by an expert, whose knowledge would improve com-
prehensibility. In practice, it is not always easy to
find a suitable expert. Therefore it is very com-
mon [5,13] to define membership functions as shown
in Figure 3.

Figure 3: Membership functions for xij ∈ Xj vari-
ables. For Y read Alj as Bk.

3.2. Fuzzy Inference

3.2.1. Formulation

A fuzzy rule premise is commonly defined by:

“If X1 is Al1 and ... and Xj is Alj and ... and XJ

is XlJ"

or, in mathematical terms:

µAd(xi) = µAl1(xi1) ∗ ... ∗ µAlJ (xiJ) (1)

where µAd(xi) = µAd(xi1, ..., xiJ) is the joint mem-
bership degree of the i-th pattern xi = [xi1, ..., xiJ ]

743



with respect to the d-th premise (d = 1, ..., D), com-
puted by using a t-norm ∗. A premise can be elabo-
rated by using t-norms, t-conorms, linguistic hedges
and negation operators to combine the µAlj (xij).
As a consequence, the number of possible combina-
tions grows as the number of variables, operators
and fuzzy sets increase. Therefore, GPFIS-Regress
employs MGGP to search for the most promising
combinations, i.e., fuzzy rule premises. Figure 4 ex-
emplifies a typical solution provided by MGGP.
For example, premise 1 represents: µA1(xi) =

µA21(xi1) ∗ µA32(xi2) and, in linguistic terms, “If
X1 is A21 and X2 is A32". Let µAd(xi) be the d-
th premise codified in the d-th tree of an MGGP
individual. Table 1 presents the components used
for reaching the solutions shown in Figure 4.

Table 1: Input Fuzzy Sets and Operators to gener-
ate solution in Figure 4.

Input Fuzzy Sets Fuzzy Operators Set
(Terminals Set) (Functions Set)

µA11 (xi1), ..., µAL1 (xi1),
..., µAlj (xij), ...,
µALJ (xiJ )

t-norm (∗), linguistic
hedge (dilatation operator
– √) and classical negation

operator

In GPFIS-Regress, the set of µAlj (xij) represents
the Input Fuzzy Sets or, in GP terminology, the
Terminal Set, while the Functions Set is replaced by
the Fuzzy Operators Set. Thus MGGP is used for
obtaining a set of fuzzy rules premises µAd(xi). In
order to fully develop a fuzzy rule base, it is nec-
essary to find the consequent term (expressed in
a MGGP individual) best suited to each µAd(xi).
This is performed in the premises splitting stage.
It should be mentioned that the steps presented be-
low – premises splitting, aggregation and evaluation
– are repeated for every individual of the MGGP
population.

3.2.2. Premises Splitting

There are two ways to define which consequent term
is best suited to a fuzzy rule premise: (i) allow a
GBMH to perform this search (a common proce-
dure in several works); or (ii) employ methods that
directly draw information from the dataset so as to
connect a premise to a consequent term. In GPFIS-
Regress the second option has been adopted in or-
der to prevent a premise with a large coverage in
the dataset, or able to predict a certain region of
the output, to be associated to an unsuitable conse-
quent term. Instead of searching for all elements of
a fuzzy rule, as a GBMH does, GPFIS-Regress mea-
sures the compatibility between µAd(xi) and the
consequent terms. This also promotes reduction of
the search space.
In this sense, the Similarity Degree (SDk) be-

tween the µAd(xi) and the consequent terms is em-

ployed:

SDk = min(1−
∑n

i=1 |µAd(xi)− µBk(yi)|
n

, I{0,1})
(2)

where
∑n

i=1 |µAd(xi) − µBk(yi)| is the manhattan
distance between the d-th premise and the k-th con-
sequent term, while I{0,1} is an indicator variable,
which takes value 0 when µAd(xi) = 0, ∀i, and 1
otherwise. When µAd(xi) = µBk(yi) for all t, then
FCDk = 1, i.e., premise and consequent term are
totally similar. A consequent term for µAd(xi) is se-
lected as the k-th consequent which maximize SDk.
A premise with SDk = 0, for all k, is not associated
to any consequent term (and not considered as a
fuzzy rule).

3.2.3. Aggregation

A premise associated to the k-th consequent term
(i.e., a fuzzy rule) is denoted by µA

d(k) (xi), which,
in linguistic terms, means: “If X1 is Al1, and ...,
and XJ is AlJ , then Y is Bk". Therefore, the whole
fuzzy rule base is given by µA1(k) (xi), ..., µA

D(k) (xi),
∀k = 1, ...,K. A new pattern x∗i may have a non
zero membership degree to several premises, asso-
ciated either to the same or to different consequent
terms. In order to generate a consensual value, the
aggregation step tries to combine the activation de-
grees of all fuzzy rules associated to the same con-
sequent term.

Consider D(k) as the number of fuzzy rules
associated to k-th consequent term (d(k) =
1(k), 2(k)..., D(k)). Given an aggregation operator
g : [0, 1]D(k) → [0, 1] (see [14]), the predicted mem-
bership degree of x∗i to each k-th consequent term
– µ̂Bk(y∗i ) – is computed by:

µ̂B1(y∗i ) = g[µA1(1) (x∗i ), ..., µA
D(1) (x∗i )] (3)

µ̂B2(y∗i ) = g[µA1(2) (x∗i ), ..., µA
D(2) (x∗i )] (4)

...

µ̂BK (y∗i ) = g[µA1(K) (x∗i ), ..., µA
D(K) (x∗i )] (5)

There are many aggregation operators available
(e.g., see [14]), the Maximum being the most widely
used [4]. Nevertheless other operators such as arith-
metic and weighted averages may also be used. As
for weighted arithmetic mean, it is necessary to
solve a Restricted Least Squares problem (RLS) in
order to establish the weights:

min :
n∑

i=1
(µ̂Bk(yi)−

D(k)∑
d(k)=1

wd(k)µA
d(k) (xi))2 (6)

s.t. :
D(k)∑

d(k)=1

wd(k) = 1 and wd(k) ≥ 0

where wd(k) is the weight or the influence degree
of µA

d(k) (xi) in the prediction of elements related
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Figure 4: Example of fuzzy rule premises codified in an MGGP individual.

to the k-th consequent term. This is a typical
Quadratic Programming problem, the solution of
which is easily computed by using algorithms dis-
cussed in [15]. This aggregation procedure is called
by Weighted Average by Restricted Least Squares
(WARLS).

3.3. Defuzzification

Proposition 1 Consider yi ∈ Y , with a ≤ yi ≤ b
where a, b ∈ R, and, associated to Y , K triangular
membership functions, normal, 2-overlapped1 and
strongly partitioned (identical to Figure 3). Then yi

can be rewritten as:

yi = c1µB1(yi) + c2µB2(yi) + ...+ cJµBK (yi) (7)

where c1, ..., cK is the “center" – µBk(ck) = 1 – of
each k-th membership function.

The proof can be found in [16]. This linear combi-
nation, which is a defuzzification procedure, is usu-
ally known as the Height Method. From this propo-
sition, the following conclusions can be drawn:

1. If µBk(yi) is known, then yi is also known.

2. If only a prediction µ̂Bk(yi) of µBk(yi) is
known, such that supyt |µBk(yi)− µ̂Bk(yi)| ≤ ε,
when ε → 0 the defuzzification output ŷi that
approximates yi is given by:

ŷi = c1µ̂B1(yi) + c2µ̂B2(yi) + ...+ cK µ̂BK (yt)
(8)

When µ̂Bk(yi) ≈ µBk(yi) is not verified, the Mean
of Maximum or the Center of Gravity [17] defuzzifi-
cation methods may provide a better performance.
However, due to the widespread use of strongly par-
titioned fuzzy sets in the experiments with GPFIS-
Regress, a normalized version of the Height Method
(8) has been employed:

ŷi = c1µ̂B1(yi) + ...+ cK µ̂BK (yi)
µ̂B1(yi) + ...+ µ̂BK (yi)

(9)

1a fuzzy set is normal if it has some element with max-
imum membership equal to 1. Also, fuzzy sets are 2-
overlapped if min(µBu (yi), µBz (yi), µBv (yi)) = 0,∀u, v, z ∈
k = 1, ...,K

It is now possible to evaluate an individual of
GPFIS-Regress by using ŷi.

3.4. Evaluation

The Evaluation procedure in GPFIS-Regress is de-
fined by a primary objective – error minimization –
and a secondary objective – complexity reduction.
The primary objective is responsible for ranking in-
dividuals in the population, while the secondary one
is used as a tiebreaker criteria.

A simple fitness function for regression problems
is the Mean Squared Error (MSE):

MSE =
∑n

i=1(yi − ŷi)2

2 ∗ n (10)

The best individual in the population is the so-
lution which minimizes equation (10). GPFIS-
Regress tries to reduce the complexity of the rule
base by employing a simple heuristic: Lexicographic
Parsimony Pressure [18]. This technique is only
used in the selection phase: given two individuals
with the same fitness, the best one is that with
fewer nodes. Fewer nodes indicate rules with fewer
antecedent elements, linguistic hedges and negation
operators, as well as few premises (µAd(xi)), and,
therefore, a small fuzzy rule set. After evaluation,
a set of individuals is selected (through a tourna-
ment procedure) and recombined. This process is
repeated until a stopping criteria is met. When this
occurs, the final population is returned.

4. Case Studies

4.1. Experiments Description

Among the SFGs designed for solving regression
problems, the Fast and Scalable Multi-Objective
Genetic Fuzzy System (FS-MOGFS) [3] has been
used in the experiments. In contrast to other works
[7–10,19], FS-MOGFS has been chosen because:

1. it makes use of 17 datasets; five of them are
highly scalable and high-dimensional;

2. it presents a comparison between three differ-
ent GFSs;
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3. it describes in detail the parameters used for
each model and the number of evaluations.
Furthermore, results show accuracy (training
and test sets) and rule base compactness (av-
erage number of rules and of antecedents ele-
ments per rule).

In its basic version, FS-MOGFS consists of:

• Each chromosome (C) has two parts (C = C1 ∪
C2): C1 represents the number of triangular and
uniformly distributed membership functions and
C2 = [α1, α2, ..., αJ ], where each αj is a degree
of displacement of the j-th variable [19]. To ob-
tain the best possible values for C, the model in-
corporates a Multi-Objective Genetic Algorithm
(MOGA) based on SPEA2 [3]. The two objec-
tives are: minimize the Mean Squared Error and
the number of rules.

• In order to build the complete knowledge base
(rules and membership functions), rule extraction
via Wang & Mendel’s algorithm is performed for
each chromosome. [20]. The Mamdani-type SIF
employs the minimum for t-norm and implica-
tion, and center of gravity for defuzzification.

Extensions of FS-MOGFS have resulted in two
other models: (i) FS-MOGFSe– identical to FS-
MOGFS, but with fast error computation by leav-
ing aside a portion of the database; (ii) FS-
MOGFS+TUN: similar to the previous one, but
with fine tuning of membership functions param-
eters [21]. This model provided the best results
and was therefore used for comparison with GPFIS-
Regress. Databases shown in Table 2 [3] have been
considered in case studies.

Table 2: Databases considered in experiments.
Database Acronym J n

Electrical Maintenance ELE 4 1056
Auto MPG6 MPG6 5 398
Auto MPG8 MPG8 7 398
Analcat ANA 7 4052
Abalone ABA 8 4177
Stock STP 9 950

Weather Izmir WIZ 9 1461
Weather Ankara WAN 9 1609

Forest Fires FOR 12 51
Mortgage MOR 15 1049
Treasury TRE 15 1049
Baseball BAS 16 337

MV Artificial Domain MV 10 40768
Elevators ELV 18 16559

Computer-Activity CA 21 8192
Ailerons AIL 40 13750

The Insurance Company TIC 85 9822

Five of the 17 databases are of high dimension-
ality: ELV, AIL, MV, CA e TIC; they have been
obtained from the KEEL repository [3]. Similarly
to the procedure adopted in Alcalá et al. [3], 100,000
evaluations (population size = 100 and number of
generations = 1000) have been carried out in each
execution. The remaining parameters are shown in
Table 3. With 6 repeats of 5-fold cross-validation,
the GPFIS-Regress was executed 30 times. The

metrics shown for each database are the average for
the 30 trained models. The Mean Squared Error
has been used as the fitness function [3].

Table 3: GPFIS-Regress main configuration.
Parameter Value

Population Size 100
Number of Generations 1000
Tree Maximum Depth 5

Tournament Size 2
High Level Crossover Rate 50%
Low Level Crossover Rate 85%

Mutation Rate 15%
Elitism Rate 1%

Input Fuzzy Sets 5 fuzzy sets, displayed
like Figure 3

Fuzzy Operators
Product, Classical

Negation and
Square-Root

Partitioning Method SD
Aggregation Operator WARLS

Defuzzification Height Method

It should be noted that preliminary tests consid-
ered three, five and seven fuzzy sets. As the results
did not show any relevant difference in terms of ac-
curacy, five strongly partitioned fuzzy sets (Figure
3) have been used throughout the experiments, as
stated in Table 3. In addition to FS-MOGFS+TUN
[3], three other SFGs have been used for compari-
son: GR-MF [22],GA-WM [23] and GLD-WM [19].

Statistical analysis have followed recommenda-
tions from [3] and have been performed in the KEEL
software [24], with a significance level of 0.1.

4.2. Results and Discussion

Table 4 shows the results for all GFSs for each
database in terms of MSE, average number of rules
and of antecedent elements per rule. Results for
models other than GPFIS-Regress have been taken
from [3]. In general GPFIS-Regress has provided
better results in 58% of cases, followed by FS-
MOGFS+TUN with 23%. GLD-WM has per-
formed better for one single database; the remain-
ing SFGs performed below those three. In high-
dimensional problems, GPFIS-Regress has attained
better results for three of the five databases.

Table 5 presents results for the Friedman test and
Holm method for low-dimensional databases, given
a significance level of 10% [3]. As GPFIS-Regress
presented the lowest rank (1.5417), it was chosen
as the reference model. It can be observed that
GPFIS-Regress achieved higher accuracy than GR-
MF, GA-WM and GLD-WM have (p-value < 0.05).
This has not been verified for GPFIS-Regress and
FS-MOGFS+TUN (p-value > 0.10).

As far as GPFIS-Regress and FS-MOGFS+TUN
are concerned, the former has achieved better re-
sults for 10 of the 17 databases, with two ties. The
signal test has shown that the differences in results
were not significant (S = 10, p-value= 0.3018).
This may be due to the ties and to the small number
of databases considered. As for rule base complex-
ity, it can be noted that GPFIS-Regress obtained
the most compact one in 53% of cases.
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Table 4: Results for GPFIS-Regress and other GFSs in termos of EQM. σ = standard deviation of EQM.
Results for Tr./Ts. (Training/Test) must be multiplied by 105, 10−5 and 10−8 for BAS, ELV and AIL
respectively. R/A - Averages of Rules and Antecedent Elements per Rule.

Data GR-MF GA-WM GLD-WM FS-MOGFS+TUN GPFIS-Regress
Set R/A Tr. Ts. R/A Tr. Ts. R/A Tr. Ts. R/A Tr. Ts. R/A Tr. Ts.

ELE 97/4 16645 18637 47/4 17230 18977 33/4 11483 13384 9/2 8803 9842 16/3 14695 16818
σ 2319 3386 2501 3195 1085 1978 739 1391 815 493

MPG6 243/5 1.423 28.933 186/5 1.879 8.824 82/5 2.294 4.387 22/3 2.778 4.548 18/3 2.890 4.003
σ 0.073 8.633 0.235 6.079 0.249 0.899 0.220 1.047 0.066 0.336

MPG8 262/7 1.356 49.36 214/7 1.563 15.216 135/7 1.709 4.782 24/3 2.725 4.381 18/3 2.780 4.087
σ 0.104 16.2 0.183 9.13 0.170 1.445 0.294 0.909 0.091 0.116

ANA 148/7 0.005 0.017 150/7 0.003 0.008 92/7 0.006 0.008 17/3 0.003 0.003 8/3 0.002 0.003
σ 0.001 0.008 0.001 0.005 0.001 0.004 0.000 0.001 0.000 0.000

ABA 498/8 2.358 2.885 143/8 2.433 2.549 31/8 2.487 2.545 10/3 2.393 2.454 16/3 2.370 2.425
σ 0.052 0.263 0.052 0.163 0.078 0.170 0.092 0.163 0.068 0.154

STP 343/9 0.4 1.543 344/9 0.389 2.192 217/9 0.299 0.435 25/3 0.724 0.892 17/3 1.143 1.283
σ 0.019 2.484 0.017 3.168 0.025 0.067 0.112 0.154 0.173 0.256

WIZ 331/9 1.176 9.602 218/9 1.233 3.529 107/9 0.926 1.150 15/3 0.867 1.011 17/3 0.811 0.878
σ 0.077 8.879 0.065 4.023 0.041 0.123 0.040 0.177 0.046 0.040

WAN 397/9 1.406 7.381 279/9 1.522 2.82 133/9 1.111 2.075 11/2 1.313 1.581 15/2 1.307 1.367
σ 0.067 5.404 0.065 2.825 0.077 1.407 0.174 0.580 0.079 0.092

FOR 396/12 113 3300 395/12 47 3693 377/12 49 3847 33/3 1593 2406 8/3 1476 2446
σ 17 2207 24 2787 18 2714 570 2161 868 2456

MOR 209/15 0.03 0.176 160/15 0.02 0.093 78/15 0.016 0.022 9/3 0.015 0.018 15/3 0.013 0.015
σ 0.002 0.28 0.003 0.147 0.002 0.005 0.004 0.012 0.001 0.002

TRE 189/15 0.066 0.144 136/15 0.045 0.064 70/15 0.033 0.045 11/3 0.030 0.040 15/3 0.031 0.037
σ 0.011 0.191 0.007 0.046 0.005 0.015 0.004 0.012 0.002 0.002

BAS 262/16 0.255 12.439 262/16 0.202 11.706 244/16 0.138 3.610 21/6 1.305 2.699 16/3 1.469 3.037
0.02 2.177 0.031 2.562 0.014 0.621 0.172 0.620 0.067 0.246

MV - - - - - - - - - 16/3 0.159 0.160 10/3 2.607 2.599
σ - - - - - - - - - 0.031 0.032 1.499 1.490

ELV - - - - - - - - - 8/3 0.900 0.900 12/3 0.875 0.886
σ - - - - - - - - - 0.200 0.200 0.106 0.108

CA - - - - - - - - - 15/5 4.763 5.063 15/4 4.885 5.060
σ - - - - - - - - - 0.404 0.760 0.729 0.739

AIL - - - - - - - - - 20/4 1.864 1.905 17/3 1.829 1.858
σ - - - - - - - - - 0.221 0.233 0.003 0.003

TIC - - - - - - - - - 25/7 0.026 0.027 11/4 0.026 0.027
σ - - - - - - - - - 0.000 0.002 0.000 0.001

Regarding interpretability and implementa-
tion, GPFIS-Regress has an advantage over
FS-MOGFS+TUN in aspects such as: (i) makes
no change to membership functions parameters;
(ii) employs a genetic-based meta-heuristic with a
single objective, while FS-MOGFS+TUN does a
multi-objective search.

Table 5: Results for Friedman test and Holm
method.

i Model Rank
4 GR-MF 4.6667
3 GA-WM 4.1250
2 GLD-WM 2.8750

1
FS-

MOGFS+TUN 1.7917

0
GPFIS-
Regress 1.5417

Test p-value
Friedman < 0.0001

Method z =
(R0 −Ri)/SE

p-value Holm

GR-MF 4.8412 < 0.0001 0.0250
GA-WM 4.0020 < 0.0001 0.0333
GLD-WM 2.0655 0.0388 0.0500

FS-MOGFS+TUN 0.3872 0.6985 0.1000

5. Conclusion

This work has presented a novel Genetic Fuzzy Sys-
tem for solving regression problems, called GPFIS-
Regress, which makes use of Multi-Gene Genetic
Programming and a novel way to formulate the
Fuzzy Reasoning Method (Formulation-Splitting-
Aggregation). GPFIS-Regress has been compared
to four other Genetic Fuzzy Systems for 17 datasets
of low and high dimensionality. Results have shown

the potentialities of the proposed approach.
Further developments and experiments shall in-

clude: (i) evaluation of other t-norm, negation and
linguistic hedges operators, as well as the use of t-
conorms in rules premises; (ii) new splitting meth-
ods (through other similarity measures) and appli-
cation of the Restricted Least Squares procedure
with some adaptation to associate a more suitable
consequent term to a given premise; (iii) evalua-
tion of other aggregation operators, such as nonlin-
ear ones (weighted geometric mean, etc.); this may
provide better results mostly in terms of accuracy.
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