
Multiobjective Genetic Programming of Agent
Decision Strategies

Martin Šlapák1 and Roman Neruda2

1 Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Czech Republic

2 Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague,
Czech Republic

Abstract. This work describes a method to control a behaviour of in-
telligent data mining agent. We developed an adaptive decision making
system that utilizes genetic programming technique to evolve an agent’s
decision strategy. The parameters of data mining task and current state
of an agent are taken into account by tree structures evolved by genetic
programming. Efficiency of decision strategies is compared from the per-
spectives of single and multi criteria optimization.

1 Introduction

The main motivation for this work is to explore the topic of adaptive evolution
of decision strategies for multi-agent systems. In a real world applications of
distributed computational system there is often one central unit whose role is
to divide problem and create a plan for optimal distribution to solving units.
The next but not the last role of such central unit is to collect solved parts and
join it to the final solution of the original problem. Therefore it may be difficult
to create this central unit. An intelligent division of a task set is sometimes a
difficult problem. And this is the main idea of the proposed article – to transfer
a problem of informed distribution of problem parts to solving agents.

An agent is a computer system situated in some environment that is capable
of autonomous action in this environment in order to meet its design objec-
tives [1]. This general definitions has to be specified to avoid misunderstanding.
The term autonomy means that an agent is able to perform its actions without
intervention of another system or humans.

Multi-agent systems (MAS) consist of one or more agents and they benefit
from adaptivity and collaboration of agents. Such systems are used to solve
distributed problems, simulations, or in many domains of computational in-
telligence. This work applies computational MAS in the data mining field to
distributed tasks solving.

An intelligent agent should do more than blindly follow its defined behaiviour.
It must be reactive (capable of response to changes), pro-active (executing goal-
directed behavior) and social which means that agents can interact with other
agents in a meaningful way.

2 Martin Šlapák and Roman Neruda

2 Computational MAS

A computational agent is a highly encapsulated object realizing a particular
computational method [2], such as a neural network, a genetic algorithm, or a
fuzzy logic controller. Our system is designed to perform distributed data mining
task solving. Worker agents encapsulate data mining models and their goal is
to solve tasks which were randomly picked instances of data sets and blindly
distributed by manager. Each worker has to make a decision whether to accept
or to reject offered task to optimize designed criteria. The architecture we present
can be easily modified or extended for application to different problems.

A worker agent should be able to make such decision which leads to accep-
tance of tasks which promise better results by solving by encapsulated model. It
is also important to recognize whether to discard a started task which must be
solved by another agent and take a new one instead of the discarded one with
perspective to be solved better. This brings new requirements for our agents: an
ability to compute tasks suitability for a model, case-based reasoning (see [3])
to remember task cases which agent computed in the past, handling task’s and
evaluation’s parameters (progress of task, elapsed time, system load, etc.).

We utilized a subset of data sets from the UCI Machine learning reposi-
tory [4]. The selected subset contains these data sets: car, breast–cancer, iris,
lung–cancer, tic-tac-toe, weather). All of them are relatively small to middle-size
classification data sets, where classic models usually achieve good results. For
the classification itself all available attributes of given dataset are used.

We use next attributes as indicators of agent state: solvedTasks – number of
tasks solved by an agent, expSolSteps – expected steps to finish an offered task,
stepsSolved – number of solved steps of currently processed task, and currentSuit
– agent–task compatibility of currently solved task. In our previous work [5] we
have utilized a buffer of waiting tasks for an agent and a limited number of
attributes. We added these new attributes: offeredSuit – agent–task compatibil-
ity of offered task, percentSSol – computed percentage of the current task, and
ticksToEnd – expected number of steps to finish actual task.

The evaluation of fitness function for each individual is very expensive in
terms of time. Calculation of each fitness needs to run the simulation and solving
of a whole set of tasks. Thus we decided to use precomputed results of each
considered pair of agent’s inner model and task type. This precomputed results
we took from our another project – Pikater [6] which is multi-agent data mining
system.

2.1 Control of Computational Agent

Two types of agents in our computational MAS are important when considering
the agent adaptive control task; the computational agent whose role, as a worker
is to accept or reject the offered tasks from the manager. Each accepted task
should be solved with regard to optimization criteria. The manager distributes
tasks to worker agents in a non-informed manner, i.e. it does not target specific

Multiobjective Genetic Programming of Agent Decision Strategies 3

task to specific agent, rather a random worker is selected from the pool of po-
tentially available agents. A computational agent can accept only one task. If
a worker has actually no currently processed task it simply starts to work on
the accepted task. On the other side, when it accepts a new task while solving
another, it has to discard the task which currently being solved. Such task is
returned to the manager to be redistributed and the newly accepted task goes
to processing.

The main goal of decision making is to accept such tasks that are suitable
for current working agent and to reject tasks which would this agent solve with
worse value of optimization criterion – eg. bigger error or greater elapsed time.

When a worker agent receives a new task and has to make a decision, all
attributes in the tree are substituted by current values and the tree is evaluated.
The value we obtain from root element is compared to the threshold and if it is
greater than threshold value an agent accepts offered task. Otherwise the offered
task is rejected and returned to the manager for next distribution.

3 Genetic Programming

A single criterion optimization is done by common genetic programming algo-
rithm as described in [7]. Further approach with multicriteria optimization uses
NSGA-II algorithm as presented in [8].

Fig. 1: An example of a small tree structure used in working agent for decision making.

An individual represents a tree structure for decision making. The sctructure
is a polynomial represented as a tree structure. The leaf elements of that tree
contain attributes of computational agent, the solved and also newly offered
task. All attributes are represented by numbers from integer to real domain.
Inner nodes of the tree represent binary operators such as addition, subtraction
and multiplication (ADD, SUB, MUL).

Trees in initial population are generated randomly. The depth of a tree de-
pends on number of attributes. The level immediately above the leaf nodes con-
tains only multiplications to express weigh of each attribute and such node is

4 Martin Šlapák and Roman Neruda

indifferent to mutation operator. An inner node operator (ADD, SUB, MUL) is
chosen randomly and weight coefficients comes from the 〈0, 1〉 with an uniform
distribution. Further we show enhanced approach with an if operator. Example
of a small tree with only one attribute is shown on Fig. 2.

The mutation operator has different behavior in the case of application to the
leaf node with real number value and in the case of inner node with a function.
Each node with numerical value has also momentum variable δ of same type.
The momentum variable is used to preserve tendency of changes. It is initialized
according to this formula:

δ = (−1)r · 1

3
v (1)

where r is chosen at random from set {0, 1} and v is initial node value. Thus
when mutation of numerical node is applied we modify δ:

δT+1 = δT ·
(

1.1− rnd()

5

)
(2)

where rnd() represents a random real number from interval 〈0, 1〉. This means
change by 10 % up or down. The new value δT+1 is simply added to the value of
mutated node. Mutation of inner nodes is more simple – we ony select another
operator which has the same arity as the old one.

MUL

attr10.78

MUL

attr21.42

ADD

MUL

attr10.75

MUL

attr21.42

SUB

Fig. 2: An example of mutation – in inner node and also in leaf node.

Multiobjective Genetic Programming of Agent Decision Strategies 5

The crossover operator switches subtrees for two randomly selected nodes
from two individuals – each of crossed nodes come from a different individual.
We tried to prevent bloating of the tree by selecting the most compatible subtrees
of the selected nodes. Compatibility of the subtree is measured by ratio of the
number of identical attributes in leaf nodes of selected subtrees to the sum of all
leaf nodes in these subtrees.

Fitness function expresses quality of each individual. Commonly maps en-
coded form of individual to a real number. In our both single and multi criteria
optimization experiments we want to maximize the fitness value. Therefore we
have used following fitness expressions – error criterion:

fe =
1

Emean
(3)

where Emean is model’s mean error and is computed and averaged over the whole
task set solved by working agents during one simulation run. Time criterion:

ft =
1

T
(4)

is computed in same way as above, but T is average time spent by a working
agent with given task. The last criterion simply combines normalized values of
both described criteria:

fcombined =
1

Emeannorm

+
1

Tnorm
(5)

where each particular criterion is normalized. The normalization is based on
averaged experimental results obtained for each of the criteria independently.
Therefore it is rarely possible to obtain value of fcombined higher then 2.0. At
first we performed experiments with single criterion (all of eq. 3–5). Naturaly,
the next step was multi criteria optimization and we taken into account criteria
eq. 3 and eq. 4 at once.

3.1 From polynomial to general expression

We followed concept of a binary tree structure which represents polynomial
connecting attributes and we generalized it. By adding a ternary operator if
(means condition) we left binary trees behind us and brought more expressive
power to our trees – see [9]. See Fig. 3. The if construct brings possibility to
make several ”smaller” decisions based only on some subset of attributes and
combine them to the main result whether to accept or to reject the task. The
clarity of the meaning of the operators in the inner nodes with arity more than
two requires to take care of the order of child elements during application of
evolutionary operators.

3.2 GP experimental parameters

We performed many experiments to tune parameters of the genetic program-
ming. After that we performed all the experiments described in chapter 4 with

6 Martin Šlapák and Roman Neruda

IF (%1 <= %2)

THEN %3

ELSE %4

#1

sub

tree

#4

sub

tree

#2

sub

tree

#3

sub

tree

Fig. 3: IF operator example.

following configuration. The evolution run trough 300 generations with popula-
tion of 30 individuals. Selection for crossover was done by tournament selection
and size of tournament was 7 individuals. The probability of mutation was set up
to 10 % and for crossover was 1 %. Simulation was done 5 times to obtain fitness
of one individual. We have applied elitism to prevent the best individual from
evolutionary operators. And also islands model [10] for faster convergence by
localized search with asynchronous combination of the best individuals among
islands.

4 Experiments

We focus on impact of each part of proposed approach: the influence of new at-
tributes, how if operator changes the evolution and its effect on decision making,
and the comparison between single versus multi criteria optimization.

Our experimental environment contains one manager agent and three worker
agents which encapsulate these data mining models: Multilayer perceptron, Naive
Bayes, and Radial–Basis Function. Their goal is to solve 30 tasks which were
randomly picked instances of data sets and blindly distributed by manager.

During this work we actualized our database of the precomputed results. The
actualization means that we imported lots of new precomputed results. At the
begining there were 50710 of agent–task results. The new results were filtered to
the same subset of pairs agent–task. This enlargement of the database provided
us 105121 precomputed results.

4.1 Single criterion optimization – Comparison of old and new
attributes

At first let us focus at influence of a new set of attributes.
As you can see on both figures 4 and 4, the addition three new attributes

(offeredSuit, percentSSol, ticksToEnd) lead to very low effect. The decision mak-
ing without buffer is harder and rejection of currently solved task is too costly.
But newly introduced difficulty is compensated by new attributes.

Multiobjective Genetic Programming of Agent Decision Strategies 7

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

F
it
n

e
s
s
 v

a
lu

e
 f

e
()

Generation

best individual
AVG individual

new attributes best individual
new attributes AVG individual

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 50 100 150 200 250 300

F
it
n

e
s
s
 v

a
lu

e
 f

t(
)

Generation

best individual
AVG individual

new attributes best individual
new attributes AVG individual

Fig. 4: a) The influence of new attributes – evolution using fitness function fe (see eq.
3). b) The influence of new attributes – evolution using fitness function ft (see eq. 4).

4.2 Single criterion optimization – The impact of if operator

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

F
it
n
e
s
s
 v

a
lu

e
 f

e
()

Generation

best individual
AVG individual

with IF best individual
with IF AVG individual

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 50 100 150 200 250 300

F
it
n
e
s
s
 v

a
lu

e
 f

t(
)

Generation

best individual
AVG individual

with IF best individual
with IF AVG individual

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

F
it
n
e
s
s
 v

a
lu

e
 f

t(
)

Generation

best individual
AVG individual

with IF best individual
with IF AVG individual

Fig. 5: a) The impact of the if operator – evolution using fitness function fe (see eq.
3). b) The impact of the if operator – evolution using fitness function ft (see eq. 4). c)
The impact of the if operator – evolution using fitness function fcombined (see eq. 5).

In the following experiments we always use complete set of attributes. On
the figure 5 progress of evolution with if operator (black lines) and without
(gray lines) operators is plotted. It can be stated that with error criterion it is
difficult task to evolve any better decision system then randomly generated one
– only thanks to elitism better solution was obtained. The average quality of
the population is the same as at the beginning. This fact can be demonstrated
also in the case of the time criterion (Fig. 5) where it is shown that the average
quality of the population grows virtually during all 300 generations. It can be
expected that during 1000 generations long evolution the average fitness value
over the population will be greater than in the case of the tree structure without
if operator. On the other hand, with complex criterion fcombined – see Fig. 5
– the if operator has smaller improvement in the first 75 generations and later
it produces better average values of fitness function and also better elitist was
found.

8 Martin Šlapák and Roman Neruda

4.3 Multi criteria optimization (MCO) approach

The last section of experiments compares single and multi criteria optimization.
The new attributes are present in this experiments; if operator is in the set of
used inner node functions.

individuals
MAX(fe())
AVG(fe())
MAX(ft())

AVG(ft())
MAX(fcombined())
AVG(fcombined())

 0 10 20 30 40 50 60 70 80

Crit. #2: 1/time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
ri
t.
 #

1
:
1
/e

rr

individuals
MAX(fe())
AVG(fe())
MAX(ft())

AVG(ft())
MAX(fcombined())
AVG(fcombined())

 0 10 20 30 40 50 60 70 80

Crit. #2: 1/time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
ri
t.
 #

1
:
1
/e

rr

Fig. 6: a) The population after 300 generations of multi criteria optimization with
original time parameter. b) The population after 300 generations of multi criteria
optimization with meta parameter logTime applied instead of original time value.

: IF ($1 >= $2) {$3} e l se {$4}

: IF ($1 >= $2) {$3} e l se {$4} : IF ($1 >= $2) {$3} e l se {$4} : 0 . 5 7 1 : -0 .193

:MUL :MUL :MUL :MUL

: 9 . 7 3 4 offeredSuit :0 : 7 . 3 6 9 solvedTasks:11 : 1 . 2 9 7 ticksToEnd:0 : 2 . 6 2 6 percentSSol :0

:MUL :MUL :MUL : 0 . 7 3 3

: 8 . 9 5 7 expSolSteps:440 : 6 . 5 5 4 curren tSui t :0 .066 : 2 . 9 6 6 stepsSolved:440

Fig. 7: The best evolved tree from multi criteria optimization with meta parameter
logTime applied instead of the original time value.

The first results of MCO are plotted on the figure 6. The vertical and hor-
izontal lines are average and maximal values of each criteria obtained from a
single criterion optimization. For error criterion (see eq. 3) the average is 2.26
and the maximum is 3.71. For time criterion (see eq. 4) is the average is 15.46
and the maximum is 42.40. These values are distinct from those depicted on
previous figures. This is caused by the fact that our precomputed database was
expanded with many new results during our work on MCO experiments.

The whole population is concentrated in the left part of the graph even below
the average value of time criterion. For the error criterion we can state that we
have achieved the same results as in the single criterion evolution. The reason of
failure in time domain comes from the fact that mainly the Multilayer perceptron
is quite slow and results in the precomputed database have great variance. Thus

Multiobjective Genetic Programming of Agent Decision Strategies 9

the extremely distinct values (eg. ”1” and ”1500”) are too big deal for evolution
to connect them through attributes derived from the time of task solving.

We solved the problem of very distinct values of time by creating a new meta
parameter logTime. The value of this parameter is computed by application of
natural logarithm to the value of elapsed time from precomputed DB and a small
shift:

pt = ln t+ 1

where pt is a new meta parameter and t is the original time. This transformation
maps values of original parameter from 〈1, 1500〉 to 〈1, 8.31〉 which are better for
connecting them by decision making tree structure. The result is shown on figure
6. It can be concluded that population expanded over the average value of time
criterion and even that we found several better individuals in the terms of time
criterion than in the single criterion optimization. The best evolved tree from
multi criteria optimization with meta parameter logTime applied instead of the
original task parameter time is shown on Fig. 7.

Table 1: The summary of the best results of each experiment

experiment mean squared error time [ticks]

SCO old attributes 0.3118 1.0120

SCO new attributes 0.3267 1.0117

SCO if operator 0.3272 1.0127

MCO all from 1st front 0.3175 1.0215
0.4273 1.0143
0.4935 1.0095

The table 1 shows the best evolved individuals from each experiment. The
error criterion was transformed to the original value of mean squared error. The
same process was applied on the time criterion. The repeated measurements of
the best individuals and averaging of results caused the fact that ticks are real
numbers not integers.

5 Conclusion

This work deals with evolution of the decision making system for autonomous
computational data mining agents. The evolved tree structures connect agent’s
and task’s attributes and serve as a control mechanism for worker agents. The
optimization criteria concern error and time domain.

The new set of attributes preserves quality of the population in both criteria.
Moreover, we added if operator to the set of available inner node operations.
In the case of single criterion optimization this change caused slightly worse
performance for experiments which used fitness function expressions as described
by Eq. 3 and Eq. 4. On the other hand with the more complex fitness function

10 Martin Šlapák and Roman Neruda

defined by Eq. 5 the results of individuals with if operator achieved better
results.

The multi criteria optimization provided comparable results in the error cri-
terion; however, in the time criterion the results were below the average. The
problem was caused by very distinct values of the time attribute. The task dura-
tion varies with different parameter settings in the orders of magnitude, therefore
the logarithmic transformation was natural choice. The results were improved
after addition of new meta parameter which is derived from original time by the
application of logarithm function. The improvement is manifested on the case
of the time criterion where the best individuals overcame the elitist from single
criterion optimization.

6 Acknowledgments

Martin Šlapák has been partially supported by the Grant Agency of the Czech
Technical University in Prague, grant No. SGS14/102/OHK3/1T/18 (New Meth-
ods of Preprocessing and Data Mining). Roman Neruda has been partially sup-
ported by the The Ministry of Education of the Czech Republic project COST
LD 13002.

References

1. Weiss, G., ed.: Multiagent Systems. MIT Press (1999)
2. Neruda, R., Krušina, P., Petrova, Z.: Towards soft computing agents. Neural

Network World 10(5) (2000) 859–868
3. Aamodt, A.: Explanation-driven case-based reasoning. In: Topics in case-based

reasoning. Springer-Verlag (1994) 274–288
4. Bache, K., Lichman, M.: UCI machine learning repository (2013)
5. Neruda, R., Šlapák, M.: Evolving decision strategies for computational intelligence

agents. In: Proceedings of ICIC 2012 - Lecture Notes in Artificial Inteligence. (2012)
6. Kaźık, O., Pešková, K., Pilát, M., Neruda, R.: Meta learning in multi-agent

systems for data mining. Web Intelligence and Intelligent Agent Technology,
IEEE/WIC/ACM International Conference on 2 (2011) 433–434

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Complex Adaptive Systems). The MIT Press (1992)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on
6(2) (2002) 182–197

9. Felleisen, M.: On the expressive power of programming languages. In: Science of
Computer Programming, Springer-Verlag (1990) 134–151

10. Whitley, D.: A genetic algorithm tutorial. Statistics and Computing 4 (1994)
65–85 10.1007/BF00175354.

	Multiobjective Genetic Programming of Agent Decision Strategies

