Skip to main content

Penalty Functions for Genetic Programming Algorithms

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6782))

Abstract

Very often symbolic regression, as addressed in Genetic Programming (GP), is equivalent to approximate interpolation. This means that, in general, GP algorithms try to fit the sample as better as possible but no notion of generalization error is considered. As a consequence, overfitting, code-bloat and noisy data are problems which are not satisfactorily solved under this approach. Motivated by this situation we review the problem of Symbolic Regression under the perspective of Machine Learning, a well founded mathematical toolbox for predictive learning. We perform empirical comparisons between classical statistical methods (AIC and BIC) and methods based on Vapnik-Chrevonenkis (VC) theory for regression problems under genetic training. Empirical comparisons of the different methods suggest practical advantages of VC-based model selection. We conclude that VC theory provides methodological framework for complexity control in Genetic Programming even when its technical results seems not be directly applicable. As main practical advantage, precise penalty functions founded on the notion of generalization error are proposed for evolving GP-trees.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H.: Statistical prediction information. Ann. Inst. Statistic. Math. 22, 203–217 (1970)

    Article  MATH  Google Scholar 

  2. Amil, N.M., Bredeche, N., Gagné, C., Gelly, S., Schoenauer, M., Teytaud, O.: A statistical learning perspective of genetic programming. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 327–338. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bernardo, J., Smith, A.: Bayesian theory. John Wiley & Sons, Chichester (1994)

    Book  MATH  Google Scholar 

  4. Cherkassky, V., Yunkian, M.: Comparison of Model Selection for Regression. Neural Computation 15, 1691–1714 (2003)

    Article  MATH  Google Scholar 

  5. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  6. Montaña, J.L.: Vcd bounds for some gp genotypes. In: ECAI, pp. 167–171 (2008)

    Google Scholar 

  7. Montaña, J.L., Alonso, C.L., Borges, C.E., Crespo, J.L.: Adaptation, performance and vapnik-chervonenkis dimension of straight line programs. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 315–326. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Shao, X., Cherkassky, V., Li, W.: Measuring the VC-dimension using optimized experimental design. Neural Computation 12, 1969–1986 (2000)

    Article  Google Scholar 

  9. Teytaud, O., Gelly, S., Bredeche, N., Schoenauer, M.: Statistical Learning Theory Approach of Bloat. In: Proceedings of the 2005 conference on Genetic and Evolutionary Computation, pp. 1784–1785 (2005)

    Google Scholar 

  10. Vapnik, V.: Statistical learning theory. John Wiley & Sons, Chichester (1998)

    MATH  Google Scholar 

  11. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16, 264–280 (1971)

    Article  MATH  Google Scholar 

  12. Vapnik, V., Chervonenkis, A.: Ordered risk minimization. Automation and Remote Control 34, 1226–1235 (1974)

    MathSciNet  MATH  Google Scholar 

  13. Vapnik, V., Levin, E., Cun, Y.: Measuring the VC-dimension of a learning machine. Neural Computation 6, 851–876 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montaña, J.L., Alonso, C.L., Borges, C.E., de la Dehesa, J. (2011). Penalty Functions for Genetic Programming Algorithms. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21928-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21928-3_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21927-6

  • Online ISBN: 978-3-642-21928-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics