
Learning Functional Dependency Networks based on Genetic Programming

Wing-Ho Shum, Kwong-Sak Leung
Dept. of Computer Science & Engineering

The Chinese University of Hong Kong
Hong Kong

{whshum, ksleung}@cse.cuhk.edu.hk

Man-Leung Wong
Dept. of Computing & Decision Sciences

Lingnan University
Hong Kong

mlwong@ln.edu.hk

Abstract

Bayesian Network (BN) is a powerful network model,
which represents a set of variables in the domain and pro-
vides the probabilistic relationships among them. But BN
can handle discrete values only; it cannot handle contin-
uous, interval and ordinal ones, which must be converted
to discrete values and the order information is lost. Thus,
BN tends to have higher network complexity and lower un-
derstandability. In this paper, we present a novel depen-
dency network which can handle discrete, continuous, in-
terval and ordinal values through functions; it has lower
network complexity and stronger expressive power; it can
represent any kind of relationships; and it can incorporate
a-priori knowledge though user-defined functions. We also
propose a novel Genetic Programming (GP) to learn depen-
dency networks. The novel GP does not use any knowledge-
guided nor application-oriented operator, thus it is robust
and easy to replicate. The experimental results demonstrate
that the novel GP can successfully discover the target novel
dependency networks, which have the highest accuracy and
the lowest network complexity.

1 Introduction

BN has been applied to different areas [8]. A good BN
should balance the accuracy and the network complexity,
which is defined in term of the total number of entries in the
conditional tables [9]. Variables can be classified into dis-
crete, continuous, interval and ordinal variables. Since BN
can only handle discrete values, continuous, interval and or-
dinal values must be discretized and thus the order informa-
tion is ignored [12]. The disability to handle continuous, in-
terval and ordinal values increases the network complexity
and the relationships represented by BN become less under-
standable.

Consider a university programme selection problem that
has two ordinal variables. Suppose a high school student

Figure 1. The Bayesian Network for the pro-
gramme selection problem.

would choose a science programme if he/she got a better
grade in biology; he/she would study an art programme if
he/she done better in history; otherwise, he/she would study
anyone randomly. Figure 1 shows the BN representing the
problem. Since BN cannot compare the course grades di-
rectly, it enumerates all instances of the combination of the
subject grades and calculates the corresponding probabili-
ties. Although there are only two subjects, the conditional
tables are large and have a lot of entries, i.e. the network
complexity is high and the meanings of the relationships
are unclear and incomprehensible. The BN shows there
are some relationships, but it cannot illustrate that the grade
comparison result affects the programme selection. The un-
derstandability of the relationships is reduced because there
are several entries in the conditional tables.

Continuous BN is proposed to handle continuous values

[5]. They rely on the assumption of parametric or semi-
parametric families, like Gaussian distributions. But contin-
uous BN cannot handle discrete values. Mixed BN tries to
handle both of them, but it cannot represent discrete nodes
with continuous parents [3].

We propose a novel dependency network, Functional De-
pendency Network (FDN) to incorporate functions into BN.
Besides of the relationships among variables, it can also
represent the ones among functions of variables. Any kind
of functions can be used and different relationships can be
represented. They can handle discrete, continuous, inter-
val and ordinal values, thus the order information is pre-
served. They could be simply a value comparison among
variables; they could be any kind of calculations among
variables; they could represent any kind of special rela-
tionships among variables; and they could incorporate a-
priori knowledge as user-defined functions. The functions
increase the network’s understandability and strengthen its
expressive power.

Figure 2 shows the FDN for the programme selection
problem. The FDN has a functional node, history >
biology. It represents the grade comparison between the
two subjects and its conditional table has only one entry
specifying the function >. > returns 1 if the first argu-
ment is greater than the second one; if the two arguments
are equal, it returns 0; otherwise, -1 is returned. With the
functional node, the FDN has reduced the number of en-
tries in the conditional tables from 6 + 6 + 62 ∗ 2, i.e. 84 to
6 + 6 + 3 ∗ 2 + 1, i.e. 19, the network complexity is signifi-
cantly reduced. By realizing the meaning of >, it is easy to
understand and interpret the meanings of the relationships;
if necessary, the relationships can be expressed in rule for-
mat easily. For instance, the rules could be merged into an
expert system and the number of rules is proportional to the
number of entries in the conditional tables.

Wong and Leung proposed an evolutionary program-
ming (EP) to learn BN [15]. Myers et al. used a genetic
algorithm (GA) to learn BN from incomplete data [11].
However, these methods are not flexible enough to repre-
sent functions and thus they cannot learn FDNs.

GP is a branch of evolutionary computation (EC). It has
greater representation power than EP and GA. GP has been
applied to different areas, like shortest path finding and clas-
sification [4]. Wong and Leung proposed a grammar-based
GP to handle the closure problem and incorporate a-priori
knowledge [14].

In this paper, we present a novel GP, MDL Genetic
Programming (MDLGP) to learn FDNs. Unlike other EC
algorithms for BN learning, MDLGP does not use any
knowledge-guided nor application-oriented operator, thus it
is robust and easy to replicate. The paper is organized as
follows. We introduce the FDN in next section, followed
by a description of the MDLGP. The experimental results

Figure 2. The Functional Dependency Net-
work for the programme selection problem.

are presented in Section 3. A conclusion is given in the last
section.

2 The Proposed Algorithm

2.1 The Functional Dependency Network

BN is a directed acyclic network. Figure 1 shows an ex-
ample of BN. A node denotes a variable in the domain and a
directed link, Ni → Nj represents the dependency relation-
ships between the child Nj and the parent Ni. Each vari-
able node has a conditional table specifying the probability
of each particular value of the variable node given an in-
stantiation of the parents. In other words, for each variable
node Ni with parents ΥNi

, there is a conditional table spec-
ifying the conditional probability distribution P (Ni|ΥNi

);
for each Ni with no parent, the conditional table specify-
ing the priori probability distribution P (Ni). BN encodes
the joint probability distribution of the domain variables,
U = {N1, ..., Nn}

P (N1, ..., Nn) =

∏

i

P (Ni|ΥNi
) (1)

The FDN is a directed acyclic network. Figure 2 shows
an example of the FDN. A new type of node is introduced,
functional node, it represents functions of variables. The
functions can have any number of arguments and any num-
ber of nesting levels. Their conditional tables have only one
entry, which specifies the functions producing the value of
the functional node given an instantiation of its parents.

Like GP, the function set is defined by the user. Different
types of functions operate on different types of variables.

For example, it is prohibited to apply the continuous func-
tion log to a discrete variable.

Similar to BN, a variable node can handle discrete values
only. If a continuous functional node has a variable node as
its child, discretization is needed.

A continuous variable node can either have another vari-
able node or a continuous functional node or both as its chil-
dren. If the child is a variable node, discretized values are
produced; if the child is a continuous functional node, con-
tinuous values are generated according to a Gaussian dis-
tribution function. Each entry in the conditional table rep-
resents an interval. To generate a continuous value, 1) se-
lect an entry according to the probability, 2) according to
Gaussian distribution function, pick up a continuous value
randomly given the mean and the standard deviation of the
interval.

Although the functions may slightly increase the com-
putation complexity, they could reduce the network com-
plexity and save the time in searching the large conditional
tables. In other words, the overall performance of the FDN
is similar to (or even smaller than) that of BN. Moreover,
the relationships described by the functions are also more
understandable than those represented by a number of en-
tries in the conditional tables.

2.2 The MDL Genetic Programming

2.2.1 The Population

We propose a novel GP, the MDLGP to learn the FDN.
It has a population of individuals and each individual
represents one FDN. Individuals are of the form, (<
parents >→< child >)1.....(< parents >→< child >
)y where y ∈ Z+. We call each of the (< parents >→<
child >) as a fragment, which represents the relation-
ships between the < parents > and the < child >.
< parents > and < child > are in the prefix form.
< parents > denotes one or more parents and a par-
ent can either be a variable node or a functional node.
< child > is a variable node. Different fragments can have
the same < child >. The fragments containing functional
nodes also represent the variables in the functions. For in-
stance, the individual representing the FDN in Figure 2 is
((> history biology) → art or science)

The MDLGP has great representation power. A
FDN can be represented by more than one instantia-
tions of individual. For example, both of the indi-
viduals (variable A, variable B → variable C) and
(variable A → variable C)(variable B → variable C)
represent the same FDN. Any number of nesting levels is
also possible.

The MDLGP uses a grammar to prevent the closure
problem, i.e. the type mismatching issue among functions
and variables. Table 1 shows the grammar.

Table 1. The grammar for the MDLGP.
network := link∗

link := (parents → child)
parents := parent∗

parent : = node ‖ functional node
child := any variable
node := any variable
functional node := discrete fnode ‖ continuous fnode ‖

ordinal fnode‖ interval fnode
discrete fnode := d comparison
continuous fnode := c comparison ‖ c operation
ordinal fnode := o comparison
interval fnode := i operation
d comparison := (> discrete variable discrete variable)
c comparison := (> continuous variable

continuous variable)‖
(> c operation
continuous variable)‖
(> c operation
c operation)

o comparison := (> ordinal variable ordinal variable)
c operation := (coperator continuous variable

continuous variable)
i operation := (ioperator interval variable interval variable)
coperator := + ‖ - ‖ * ‖ /
ioperator := + ‖ -

where > returns 1 if the first argument is larger than the
second one; it returns 0 if they are equal; else it returns -1
and ∗ denotes one or more occurrences

The MDLGP translates an individual into a network
fragment by fragment. Individuals may carry invalid frag-
ments, which would create cycles in the network. The
MDLGP validates them one by one, starting from the left-
most one. If the fragment is valid, it would be translated as
links and nodes into the network. If it would create cycle
in the network, it would be simply ignored. The advantages
of simply ignoring the invalid fragments, instead of repair-
ing or preventing them are, 1) a fragment may be invalid in
the current instantiation of individual, but may be valid and
contributive while it is replicated to the other through ge-
netic operators; 2) the crossover can be used. It is an impor-
tant genetic operator which can promote the convergence
of EC; 3) no repairing nor preventing heuristic is required.
Different applications may need different heuristics and it
is hard to define a good one. A bad heuristic would heavily
degrade the performance; 4) the diversity of the population
is promoted. If the invalid fragments are repaired or pre-
vented, it may reduce the diversity of the population, which
may in turn degrade the performance of the MDLGP.

The population has a fixed number of individuals and the
initial population is generated randomly.

2.2.2 Extended MDL Calculation

There are many different scoring schemes to evaluate BN.
They measure the fitness of BN, in terms of the accuracy
and the network complexity. They are either derived from
Bayesian statistics, information theory or MDL principle
[10].

The MDLGP uses MDL to evaluate the fitness of indi-
viduals. MDL balances between the network’s accuracy
and simplicity; and it is a combination of the network de-
scription length and the data description length. The smaller
MDL score is the better.

We extend MDL to incorporate the functional nodes. Let
G be a network, U = {N1, ..., Nn} be the variables in the
domain, V = {F1, ..., Ff} be the functional nodes in G, Υφ

be the parents of the variable node or the functional node φ,
sφ be the number of possible states of the variable node or
the functional node φ and d is the number of bits required
to store a numerical value. The MDL score of G is the sum
of the MDL scores of U and V .

MDL(G) =
∑

i

MDL(Ni, ΥNi
) +

∑

j

MDL(Fj , ΥFj
) (2)

a variable node or a functional node φ’s MDL score is
given by

MDL(φ, Υφ) = ND(φ, Υφ) + DD(φ, Υφ) (3)

where φ is either Ni or Fj

The network description length measures the number of
bits encoding the network. To represent a particular FDN,
the following information is necessary and sufficient:
• A list of the parents of each variable node and the number
of bits required is |ΥNi

|log2(n + f).
• The set of conditional probabilities associated with each
variable node and the number of bits required is d(sNi −
1)

∏
ϕ∈ΥNi

sϕ.
• The functional description associated with each functional
node. For instance, the functional description of the func-
tional node (> variable 1 variable 3) is > v1v3 and the
length is 5 ∗ 8, i.e. 40 bits.

The network description length of a node, ND(φ,Υφ)
is

ND(φ, Υφ) = {
fdl(φ) if φ is Fj

|Υφ|log2(n + f) + d(sφ − 1)
∏

ϕ∈Υφ
sϕ else

(4)

where fdl() is the length of the functional description and
is measured in term of bits

The data description length measures the number of bits
encoding the data set given the network, using Huffman
code and the probabilities of occurrences of each instanti-
ation in the data set. Closer the probabilities represented

by the network to the correct ones smaller the data descrip-
tion length, i.e. the data description length reflects the net-
work accuracy. Functional nodes’ data description lengths
are counted as 0, because 1) they simply apply the func-
tions on the parents’ instantiations and the relationships are
absolutely certain (according to the MDL principle, the data
description length would be calculated as 0 if the relation-
ship is certain); 2) the calculation results are not actually
encoded in the data set.

The data description length of a node, DD() is

DD(φ, Υφ) = {
0 if φ is Fj∑

φ,Υφ
M(φ, Υφ)log2

M(Υφ)

M(φ,Υφ) else if Υφ �= {}∑
φ,Υφ

M(φ)log2
e

M(φ) else

(5)

where M() is the number of data items that match a partic-
ular instantiation in the data set and e is the total number
of data items in the data set (the log2 function will be 0 if
M(Υφ) is 0).

Sine the MDL calculation is time consuming, the
MDLGP uses a multi-level hash table to store the calcu-
lation results, MDL(φ,Υφ). When it encounters the same
φ and Υφ, it simply retrieves the stored result, instead of
performing the calculation again.

2.2.3 Selection and Reproduction

The MDLGP selects individuals for reproduction through
tournament competition. Each individual competes with a
number of randomly chosen individuals. According to the
number of winning competitions, fitter individuals are se-
lected.

The MDLGP has four genetic operators, they are the mu-
tation, the crossover, the insertion and the deletion. The mu-
tation and the crossover are the canonical ones of GP. The
insertion and the deletion are novel genetic operators, the
insertion inserts a randomly generated fragment or a parent
into a random position of the selected individual; the dele-
tion deletes a randomly chosen fragment or a parent from
the selected individual.

After the reproduction, the total number of individuals
and offspring is double. To keep the population size remain
constant, the worst half of them are destroyed.

Then, the extinction is used to further promote the di-
versity of the population [6]. Fitter individuals have higher
chance to reproduce more offspring and their offspring also
have higher chance to survive. As the learning process goes
on, the individuals in the population become similar with
each other, i.e. the diversity is decreased. The extinction
promotes the diversity by replacing the worst portion of the
population with randomly generated individuals.

Once the maximum number of generations is met, the
learning process is stopped and the fittest individual in the
population is chosen as the final solution.

Table 2. The pseudocode used to generate
Data Set 1.

history test1 = random(1000);
history test2 = random(1000);
biology test1 = random(1000);
biology test2 = random(1000);
if (history test1+history test2>160)

history = A;
else if (history test1+history test2>120)

history = B;
else if (history test1+history test2>80)

history = C;
else if (history test1+history test2>40)

history = D;
else

history = E;
if (biology test1+biology test2>160)

biology = A;
else if (biology test1+biology test2>120)

biology = B;
else if (biology test1+biology test2>80)

biology = C;
else if (biology test1+biology test2>40)

biology = D;
else

biology = E;
if (history>biology)

art or science = art (p = 0.8);
art or science = science (p = 0.2);

else if (history<biology)
art or science = science (p = 0.8);
art or science = art (p = 0.2);

else
art or science = art (p = 0.5);
art or science = science (p = 0.5);

where random() returns a random real number
and p is the probability.

3 Experimental results

3.1 Data Sets

We have evaluated the MDLGP and the FDN on one
synthetic and two real-life data sets. Table 2 shows the
pseudocode used to generate the synthetic data set, Data
set 1, that consists of continuous, ordinal and discrete
variables. The data set has 7 variables (history test1,
history test2, biology test1, biology test2, history,
biology and art or science) and 1000 data items. It simu-
lates a real-life situation in a school. Suppose there are two
subjects, history and biology. Each subject has two tests
and the sum of the marks determines the course grade, from
A to F. The grade comparison result between the subjects

determines if the student would choose a science or an art
programme in university.

Data set 2 is a real-life data set that models the psycho-
logical experiments reported by Siegler [13]. It is available
from UCI machine learning repository [7]. It has 5 con-
tinuous variables and 625 data items. Each data item is
classified as having the balance scale tip to the right, tip
to the left, or be balanced. The variables are left distance,
left weight, right distance and right weight. The cor-
rect way to find the class is the greater of (left distance ∗
left weight) and (right distance∗right weight). If they
are equal, it is balanced.

Data set 3 is the Monk data set from UCI machine
learning repository [7]. It has 7 nominal variables and
556 data items. The variables are variable 0, variable 1,
variable 2, variable 3, variable 4, variable 5 and
variable 6. The relationships, variable 0 = variable 1
and variable 4 = 1 determine the values of variable 6.

3.2 Evaluation Methods

In the experiments, the MDLGP has learnt both of the
FDN and BN. They are compared with Belief Network
PowerConstructor (PC), WinMine (WM) and B-Course
(BC) [1, 2, 12]. The PC and the WM are deterministic algo-
rithms. The experimental results are evaluated in terms of,
• MDL, the average and the best MDL scores of the final
solutions, the smaller the better,
• EN, the average and the best total number of entries in
the conditional tables of the final solutions, the smaller the
lower network complexity,
• DDL, the average and the best data description length of
the final solutions, the smaller the more accurate,
• the average and the best structural differences of variable
nodes, which are measured in terms of the number of links
inserted (LI), the number of links omitted (LO) and the
number of links reversed (LR) between the original struc-
ture and the final solutions,
• the average and the best structural differences of func-
tional nodes, which are measured in terms of the number of
functional nodes inserted (FI) and the number of functional
nodes omitted (FO) between the original structure and the
final solutions.

The experimental results are obtained from 10 indepen-
dent runs.

3.3 Results for Data Set 1

The values of the maximum number of generations, the
tournament competition size, the number of individuals, the
extinction portion, the number of discretization levels, the
crossover rate, the mutation rate, the insertion rate and the

Table 3. Results for Data Set 1.
MDL EN DDL

MDLGP with FDN 10858.7 (10858.7) 79.0 (79.0) 10639.4 (10639.4)
MDLGP with BN 12076.7 (12076.7) 280.0 (280.0) 11143.3 (11143.3)
PC 12497.9 (12497.9) 440.0 (440.0) 11018.0 (11018.0)
WM 12114.0 (12114.0) 320.0 (320.0) 11088.2 (11088.2)
BC 12125.2 (12125.2) 290.0 (290.0) 11114.4 (11114.4)

Figure 3. The network learnt by the MDLGP
with the FDN for Data Set 1.

deletion rate are 1000, 7, 50, 0.33, 5, 0.3, 0.3, 0.3 and 0.1
respectively.

Table 3 shows the results for Data Set 1. The values in
parenthesis are the best results of the runs. Since the PC and
the WM are deterministic algorithms, they always got the
same results. The MDLGP with the FDN and the MDLGP
with BN always converged. Figures 3 and 4 show the net-
works learnt by the MDLGP with the FDN and the WM re-
spectively. The MDLGP with the FDN has got the smallest
values of MDL, EN and DDL. It has learnt the network cor-
rectly, which has the highest accuracy and the smallest num-
ber of entries in the conditional tables. Among the other al-
gorithms, the WM has learnt the most similar and accurate
network without functional nodes, but it has got much more
entries in the conditional tables. More entries reduce the un-

Figure 4. The network learnt by the WM for
Data Set 1.

Table 4. Results for Data Set 2.
MDL EN DDL

MDLGP with FDN 5923.9 (5850.2) 31.6 (30.0) 5870.5 (5804.8)
MDLGP with BN 6491.8 (6491.8) 65.0 (65.0) 6290.3 (6290.3)
PC 11038.4 (11038.4) 1895.0 (1895.0) 5804.8 (5804.8)
WM 6614.1 (6614.1) 105.0 (105.0) 6348.0 (6348.0)
BC 6491.8 (6491.8) 65.0 (65.0) 6290.3 (6290.3)

derstandability of the relationships. Although the WM has
found the dependency relationships, it cannot illustrate their
meanings. With the functional nodes, the MDLGP with the
FDN has reduced the number of entries from 320 to 79 and
the FDN provided the meanings of the relationships as well.

3.4 Results for Data Set 2

The values of the maximum number of generations, the
tournament competition size, the number of individuals, the
extinction portion, the number of discretization levels, the
crossover rate, the mutation rate, the insertion rate and the
deletion rate are 1000, 7, 50, 0.5, 5, 0.3, 0.1, 0.3 and 0.3
respectively.

Table 4 shows the results for Data Set 2. Figures 5 and 6
show the networks learnt by the MDLGP with the FDN and
the PC respectively. The best network from the MDLGP
with the FDN has got the smallest values of MDL and EN.
It represents Data set 2 accurately and has had the small-
est number of entries in the conditional tables. Among the
others, the PC has learnt the most similar network without
functional nodes, it has had the smallest value of DDL. Al-
though its network represents Data set 2 accurately, it has
got a lot of entries in the conditional tables, thus the mean-

Figure 5. The network learnt by the MDLGP
with the FDN for Data Set 2.

Table 5. Results for Data Set 3.
MDL EN DDL

MDLGP with FDN 4911.4 (4911.4) 34.0 (34.0) 4867.0 (4867.0)
MDLGP with BN 5037.2 (5037.2) 89.0 (89.0) 4881.0 (4881.0)
PC 5169.3 (5169.3) 66.0 (66.0) 4993.7 (4993.7)
WM 5272.3 (5272.3) 25.0 (25.0) 5253.0 (5253.0)
BC 5037.2 (5037.2) 89.0 (89.0) 4881.0 (4881.0)

ings of the relationships are unclear and incomprehensible.
In contrast, the MDLGP with the FDN has significantly re-
duced the number of entries from 1895 to 30 and the func-
tional node also illustrated the meanings of the relation-
ships.

3.5 Results for Data Set 3

The values of the maximum number of generations, the
tournament competition size, the number of individuals, the
extinction portion, the number of discretization levels, the
crossover rate, the mutation rate, the insertion rate and the
deletion rate are 1000, 7, 50, 0.5, 5, 0.2, 0.3, 0.2 and 0.2
respectively.

Table 5 shows the results for Data Set 3. Figures 7 and
8 show the networks learnt by the MDLGP with the FDN,
the MDLGP with BN and the BC respectively. Both of the
MDLGP with the FDN and the MDLGP with BN are always

Figure 6. The network learnt by the PC for
Data Set 2.

converged. The MDLGP with the FDN has got the small-
est values of MDL and DDL. It has learnt the correct net-
work which has the highest accuracy and the second small-
est number of entries in the conditional tables. The MDLGP
with BN and the BC have achieved the same result, they
have got the second smallest values of MDL and DDL, but
the worst in EN; they have learnt the most similar network
without functional node. Their networks infer the values
of variable 6 by enumerating the instances of the combi-
nation of variable 0, variable 1 and variable 4, thus the
conditional tables are large. In contrast, the MDLGP with
the FDN has produced a concise and understandable net-
work, which illustrated the values of variable 6 are deter-
mined by the relationships variable 0 = variable 1 and
variable 4. Although the WM has got the smallest value of
EN, it has had the worst result in MDL and DDL, i.e. it has
learnt the simplest but the most inaccurate network.

4 Conclusion

In this paper, we propose a novel dependency network
with functions, the FDN. It can handle discrete, continuous,
interval and ordinal values; it can represent any kind of rela-
tionships; and it can incorporate a-priori knowledge as user-
defined functions. The FDN has lower network complexity
and stronger expressive power than BN. We also present a
novel GP, the MDLGP to learn the FDN. The MDLGP with
the FDN is evaluated and compared with several algorithms.
The experimental results demonstrate that the MDLGP can
successfully discover the target FDNs, which have the high-
est accuracy and the lowest network complexity.

Figure 7. The network learnt by the MDLGP
with the FDN for Data Set 3.

Acknowledgment

This work is partially supported by the Earmarked Grant
LU 3012/01E of Hong Kong SAR.

References

[1] Jie Cheng. Belief network powerconstructor.
http://www.cs.ualberta.ca/ jcheng/bnpc.htm, 1998.

[2] David Maxwell Chickering. The winmine toolkit.
Technical Report MSR-TR-2002-103, Microsoft,
Redmond, WA, 2002.

[3] D.E. Edwards. Hierarchical interaction models. J.
Roy. Satist Soc. B, 52:3–20, 1990.

[4] Alex A. Freitas, editor. Data Mining and Knowledge
Discovery with Evolutionary Algorithms. Springer,
2002.

[5] N. Friedman and I. Nachman. Gaussian procces net-
works. In Proceedings of the 16th CUAI, pages 211–
219, 2000.

[6] G.W. Greewood, G.B. Fogel, and M. Ciobanu. Em-
phasizing extinction in evolutionary programming. In
Proceedings of the 1999 Congress on Evolutionary
Computation, pages 666–671, 1999.

[7] S. Hettich, C.L. Blake, and C.J. Merz. Uci repository
of machine learning databases, 1998.

Figure 8. The network learnt by the MDLGP
with BN and the BC for Data Set 3.

[8] Chrisman L. A roadmap to research on bayesian net-
works and other decomposable probabilistic models.
Technical report, School of Computer Science, 1996.

[9] Wai Lam. Bayesian network refinement via machine
learning approach. In IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 240–251,
1998.

[10] Wai Lam and Fahiem Bacchus. Learning bayesian be-
lief networks an approach based on the mdl principle.
In Computational Intelligence, pages 269–293, 1994.

[11] J.W. Myers, K.B. Laskey, and T.S. Levitt. Learning
bayesian networks fro incomplete data with stochas-
tic search algorithms. In Proceeding of 15th confer-
ence Uncertainty Artificial Intelligence, pages 476–
485, 1999.

[12] P. Myllymaki, T. Silander, H. Tirri, and P. Uronen.
B-course: a web service for bayesian data analysis.
In Proceedings of the 13th International Conference
on Tools with Artificial Intelligence, pages 247–256,
2001.

[13] R.S. Siegler. Three aspects of cognitive development.
In Cognitive Psychology, pages 481–520, 1976.

[14] Man-Leung Wong and Kwong-Sak Leung. Evolving
program induction directed by logic grammars. In
Evolutionary Computation, pages 143–180, 1997.

[15] Man Leung Wong and Kwong Sak Leung. An effi-
cient data mining method for learning bayesian net-
works using an evolutionary algorithm-based hybrid
approach. In IEEE Transactions on Evolutionary
Computation, pages 378–404, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

