Skip to main content

Adaptive Bi-objective Genetic Programming for Data-Driven System Modeling

  • Conference paper
  • First Online:
Book cover Intelligent Computing Methodologies (ICIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9773))

Included in the following conference series:

Abstract

We propose in this paper a modification of one of the modern state-of-the-art genetic programming algorithms used for data-driven modeling, namely the Bi-objective Genetic Programming (BioGP). The original method is based on a concurrent minimization of both the training error and complexity of multiple candidate models encoded as Genetic Programming trees. Also, BioGP is empowered by a predator-prey co-evolutionary model where virtual predators are used to suppress solutions (preys) characterized by a poor trade-off error vs complexity. In this work, we incorporate in the original BioGP an adaptive mechanism that automatically tunes the mutation rate, based on a characterization of the current population (in terms of entropy) and on the information that can be extracted from it. We show through numerical experiments on two different datasets from the energy domain that the proposed method, named BioAGP (where “A” stands for “Adaptive”), performs better than the original BioGP, allowing the search to maintain a good diversity level in the population, without affecting the convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We should observe, however, that the main drawback of data-driven modeling methods is that they depend entirely on experimental data. Therefore, such methods can only be applied after the actual building is built and measurements are available.

  2. 2.

    In the rest of the paper, we will consider problems with p = 1 output variable. Nonetheless multiple output variables can be approximated by multiple GP trees, one per variable. An extension of the analysis for p > 1 is also possible and will be considered in future studies.

  3. 3.

    http://commons.apache.org.

  4. 4.

    We should remark that among all the Pareto-optimal solutions returned by BioAGP, we report here the ones characterized by the lowest training error, following the approach suggested in [11]. However other choices e.g. based on information criteria can also be made.

References

  1. Behbahani, S., De Silva, C.W.: Mechatronic design evolution using bond graphs and hybrid genetic algorithm with genetic programming. IEEE/ASME Trans. Mechatron. 18(1), 190–199 (2013)

    Article  Google Scholar 

  2. Bevilacqua, V., Cassano, F., Mininno, E., Iacca, G.: Optimizing feed-forward neural network topology by multi-objective evolutionary algorithms: a comparative study on biomedical datasets. In: Rossi, F., Mavelli, F., Stano, P., Caivano, D. (eds.) WIVACE 2015. CCIS, vol. 587, pp. 53–64. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32695-5_5

    Chapter  Google Scholar 

  3. Caraffini, F., Neri, F., Iacca, G., Mol, A.: Parallel memetic structures. Inf. Sci. 227, 60–82 (2013)

    Article  MathSciNet  Google Scholar 

  4. Caraffini, F., Neri, F., Passow, B.N., Iacca, G.: Re-sampled inheritance search: high performance despite the simplicity. Soft. Comput. 17(12), 2235–2256 (2013)

    Article  Google Scholar 

  5. Coello, C.A.C.: Multi-objective evolutionary algorithms in real-world applications: some recent results and current challenges. In: Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences, pp. 3–18. Springer (2015)

    Google Scholar 

  6. Dasgupta, D., Michalewicz, Z.: Evolutionary Algorithms in Engineering Applications. Springer Science & Business Media (2013)

    Google Scholar 

  7. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, Chichester (2001)

    MATH  Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Ferreira, P., Ruano, A., Silva, S., Conceio, E.: Neural networks based predictive control for thermal comfort and energy savings in public buildings. Energy Build. 55, 238–251 (2012)

    Article  Google Scholar 

  10. Garg, A., Tai, K.: Comparison of regression analysis, artificial neural network and genetic programming in handling the multicollinearity problem. In: International Conference on Modelling, Identification & Control (ICMIC), pp. 353–358. IEEE (2012)

    Google Scholar 

  11. Giri, B.K., Hakanen, J., Miettinen, K., Chakraborti, N.: Genetic programming through bi-objective genetic algorithms with a study of a simulated moving bed process involving multiple objectives. Appl. Soft Comput. 13(5), 2613–2623 (2013)

    Article  Google Scholar 

  12. Heaton, J.: Programming Neural Networks with Encog 2 in Java (2010)

    Google Scholar 

  13. Iacca, G.: Distributed optimization in wireless sensor networks: an island-model framework. Soft. Comput. 17(12), 2257–2277 (2013)

    Article  Google Scholar 

  14. Iacca, G., Caraffini, F., Neri, F.: Memory-saving memetic computing for path-following mobile robots. Appl. Soft Comput. 13(4), 2003–2016 (2013)

    Article  Google Scholar 

  15. Iacca, G., Caraffini, F., Neri, F.: Multi-strategy coevolving aging particle optimization. Int. J. Neural Syst. 24(01), 1450008 (2014)

    Article  Google Scholar 

  16. Iacca, G., Mininno, E.: Introducing Kimeme, a novel platform for multi-disciplinary multi-objective optimization. In: Rossi, F., Mavelli, F., Stano, P., Caivano, D. (eds.) WIVACE 2015. CCIS, vol. 587, pp. 40–52. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32695-5_4

    Chapter  Google Scholar 

  17. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  18. Lichman, M.: UCI Machine Learning Repository (2013). http://archive.ics.uci.edu/ml

  19. Menolascina, F., Tommasi, S., Paradiso, A., Cortellino, M., Bevilacqua, V., Mastronardi, G.: Novel data mining techniques in aCGH based breast cancer subtypes profiling: the biological perspective. In: IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology (CIBCB), pp. 9–16, April 2007

    Google Scholar 

  20. Menolascina, F., Bellomo, D., Maiwald, T., Bevilacqua, V., Ciminelli, C., Paradiso, A., Tommasi, S.: Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering. BMC Bioinform. 10(12), 1 (2009)

    Google Scholar 

  21. Onwubolu, G.C., Babu, B.: New optimization techniques in engineering, 141 (2013). Springer

    Google Scholar 

  22. Parmee, I.C.: Evolutionary and Adaptive Computing in Engineering Design. Springer Science & Business Media, London (2012)

    Google Scholar 

  23. Rennard, J.P.: Handbook of research on nature-inspired computing for economics and management. IGI Global (2006)

    Google Scholar 

  24. Riedmiller, M., Braun, H.: RPROP-a fast adaptive learning algorithm. In: Proceedings of ISCIS VII, Universitat (1992)

    Google Scholar 

  25. Costa e Silva, M.A., Coelho, L.d.S., Lebensztajn, L.: Multiobjective biogeography-based optimization based on predator-prey approach. IEEE Trans. Magn. 48(2), 951–954 (2012)

    Google Scholar 

  26. Stadler, W.: Multicriteria Optimization in Engineering and in the Sciences, vol. 37. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  27. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  28. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 49, 560–567 (2012)

    Article  Google Scholar 

  29. Crepinsek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3), 35:1–35:33 (2013)

    Article  MATH  Google Scholar 

  30. Vrieze, S.I.: Model selection and psychological theory: a discussion of the differences between the Akaike Information Criterion (AIC) and the Bayesian information criterion (BIC). Psychol. Methods 17(2), 228 (2012)

    Article  Google Scholar 

  31. Zamora-Martnez, F., Romeu, P., Botella-Rocamora, P., Pardo, J.: On-line learning of indoor temperature forecasting models towards energy efficiency. Energy Build. 83, 162–172 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitoantonio Bevilacqua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bevilacqua, V., Nuzzolese, N., Mininno, E., Iacca, G. (2016). Adaptive Bi-objective Genetic Programming for Data-Driven System Modeling. In: Huang, DS., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2016. Lecture Notes in Computer Science(), vol 9773. Springer, Cham. https://doi.org/10.1007/978-3-319-42297-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42297-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42296-1

  • Online ISBN: 978-3-319-42297-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics