Skip to main content

Solving the Unknown Complexity Formula Problem with Genetic Programming

  • Conference paper
Advances in Computational Intelligence (IWANN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7902))

Included in the following conference series:

  • 2634 Accesses

Abstract

The Unknown Complexity Formula Problem (ucfp) is a particular case of the symbolic regression problem in which an analytical complexity formula that fits with data obtained by multiple executions of certain algorithm must be given. In this work, a set of modifications has been added to the standard Genetic Programming (gp) algorithm to deal with the ucfp. This algorithm has been applied to a set of well-known benchmark functions of the symbolic regression problem. Moreover, a real case of the ucfp has been tackled. Experimental evaluation has demonstrated the good behaviour of the proposed approach in obtaining high quality solutions, even for a real instance of the ucfp. Finally, it is worth pointing out that the best published results for the majority of benchmark functions have been improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing (Natural Computing Series). Springer (2008)

    Google Scholar 

  2. Burke, E.K., Newall, J.P., Weare, R.F.: Initialization strategies and diversity in evolutionary timetabling. Evol. Comput. 6(1), 81–103 (1998)

    Article  Google Scholar 

  3. Keane, A., Brown, S.: The design of a satellite boom with enhanced vibration performance using genetic algorithm techniques. In: Proceedings of Acedc 1996 PEDC, pp. 107–113 (1996)

    Google Scholar 

  4. Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer-Verlag New York, Inc., Secaucus (2002)

    Book  MATH  Google Scholar 

  5. Cerny, B.M., Nelson, P.C., Zhou, C.: Using differential evolution for symbolic regression and numerical constant creation. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO 2008, pp. 1195–1202. ACM, New York (2008)

    Google Scholar 

  6. Johnson, C.: Artificial immune system programming for symbolic regression. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 345–353. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Poli, R., Langdon, W., Holland, O.: Extending particle swarm optimisation via genetic programming. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 291–300. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Cramer, N.L.: A representation for the adaptive generation of simple sequential programs. In: Proceedings of the 1st International Conference on Genetic Algorithms, pp. 183–187. L. Erlbaum Associates Inc., Hillsdale (1985)

    Google Scholar 

  9. Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  10. Korns, M.: Large-scale, time-constrained symbolic regression-classification. In: Riolo, R., Soule, T., Worzel, B. (eds.) Genetic Programming Theory and Practice V. Genetic and Evolutionary Computation Series, pp. 53–68. Springer, US (2008)

    Google Scholar 

  11. Korns, M., Nunez, L.: Profiling symbolic regression-classification. In: Genetic Programming Theory and Practice VI. Genetic and Evolutionary Computation, pp. 1–14. Springer, US (2009)

    Google Scholar 

  12. Korns, M.: Abstract expression grammar symbolic regression. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Practice VIII. Genetic and Evolutionary Computation, vol. 8, pp. 109–128. Springer, New York (2011)

    Chapter  Google Scholar 

  13. Luke, S.: Genetic programming produced competitive soccer softbot teams for RoboCup97. In: Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, pp. 214–222. Morgan Kaufmann (1998)

    Google Scholar 

  14. García, L., González, J.A., González, J.C., León, C., Rodríguez, C., Rodríguez, G.: Complexity driven performance analysis. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003. LNCS, vol. 2840, pp. 55–62. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Martínez, D.R., Blanco, V., Boullón, M., Cabaleiro, J.C., Rodríguez, C., Rivera, F.F.: Software tools for performance modeling of parallel programs. In: IEEE International Parallel and Distributed Processing Symposium, IPDPS 2007, pp. 1–8 (2007)

    Google Scholar 

  16. Martínez, D.R., Blanco, V., Boullón, M., Cabaleiro, J.C., Pena, T.F.: Analytical performance models of parallel programs in clusters. In: Bischof, C., Bücker, M., Gibbon, P., Joubert, G.R., Lippert, T., Mohr, B., Peters, F. (eds.) Parallel Computing: Architectures, Algorithms, and Applications. Advances in Parallel Computing, vol. 15, pp. 99–106. IOS Press (2008)

    Google Scholar 

  17. Uy, N.Q., Hoai, N.X., O’Neill, M., Mckay, R.I., Galván-López, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genetic Programming and Evolvable Machines 12(2), 91–119 (2011)

    Article  Google Scholar 

  18. Karaboga, D., Ozturk, C., Karaboga, N., Gorkemli, B.: Artificial bee colony programming for symbolic regression. Information Sciences 209, 1–15 (2012)

    Article  Google Scholar 

  19. Uy, N.Q., Hoai, N.X., O’Neill, M.: Semantics Based Mutation in Genetic Programming: The case for real-valued symbolic regression. In: Mendel 2009, 15th International Conference on Soft Computing, Brno, Czech Republic (2009)

    Google Scholar 

  20. León, C., Miranda, G., Segura, C.: METCO: A Parallel Plugin-Based Framework for Multi-Objective Optimization. International Journal on Artificial Intelligence Tools 18(4), 569–588 (2009)

    Article  Google Scholar 

  21. Dem\(\breve{s}\)ar, J.: Statistical comparison of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Batista, R., Segredo, E., Segura, C., León, C., Rodríguez, C. (2013). Solving the Unknown Complexity Formula Problem with Genetic Programming. In: Rojas, I., Joya, G., Gabestany, J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38679-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38678-7

  • Online ISBN: 978-3-642-38679-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics