Skip to main content

Gene Expression Programming Classifier with Concept Drift Detection Based on Fisher Exact Test

  • Conference paper
  • First Online:
Intelligent Decision Technologies 2019

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 142))

Abstract

The paper proposes to use gene expression programming with metagenes as a base classifier integrated with the Fisher exact test drift detector. The approach assumes maintaining during the classification process two windows, recent and older. If the drift is detected, the recent window is used to induce a new classifier with a view to adapt to the drift changes. The idea is validated in the computational experiment where the performance of the GEP-based classifier with Fisher exact test detector is compared with classifiers using Naïve Bayes and Hoeffding tree as the base learners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. In: CoRR cs.AI/0102027 (2001)

    Google Scholar 

  2. Jedrzejowicz, J., Jedrzejowicz, P.: GEP-induced expression trees as weak classifiers. In: Perner, P. (ed.) Advances in Data Mining. Medical Applications, E-Commerce, Marketing, and Theoretical Aspects, 8th Industrial Conference, ICDM 2008, Leipzig, Germany, 16–18 July 2008, Proceedings. Lecture Notes in Computer Science, vol. 5077, pp. 129–141. Springer (2008)

    Google Scholar 

  3. Jedrzejowicz, J., Jedrzejowicz, P.: A family of GEP-induced ensemble classifiers. In: Nguyen, N.T., Kowalczyk, R., Chen, S. (eds.) Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, First International Conference, ICCCI 2009, Wroclaw, Poland, 5–7 Oct 2009. Proceedings. Lecture Notes in Computer Science, vol. 5796, pp. 641–652. Springer (2009)

    Google Scholar 

  4. Jedrzejowicz, J., Jedrzejowicz, P.: Experimental evaluation of two new gep-based ensemble classifiers. Expert Syst. Appl. 38(9), 10932–10939 (2011)

    Article  Google Scholar 

  5. Jedrzejowicz, J., Jedrzejowicz, P.: Combining expression trees. In: 2013 IEEE International Conference on Cybernetics, CYBCONF 2013, Lausanne, Switzerland, IEEE. 13–15 June 2013. pp. 80–85 (2013)

    Google Scholar 

  6. Jedrzejowicz, J., Jedrzejowicz, P.: Gene expression programming ensemble for classifying big datasets. In: Nguyen, N.T., Papadopoulos, G.A., Jedrzejowicz, P., Trawinski, B., Vossen, G. (eds.) Computational Collective Intelligence—9th International Conference, ICCCI 2017, Nicosia, Cyprus, 27–29 Sept 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10449, pp. 3–12. Springer (2017). https://doi.org/10.1007/978-3-319-67077-5_1

    Chapter  Google Scholar 

  7. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)

    Article  Google Scholar 

  8. de Lima Cabral, D.R., de Barros, R.S.M.: Concept drift detection based on fishers exact test. Inf. Sci. 442–443, 220–234 (2018)

    Article  MathSciNet  Google Scholar 

  9. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996), https://doi.org/10.1007/BF00116900

    Google Scholar 

  10. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)

    Article  Google Scholar 

  11. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Wozniak, M.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)

    Article  Google Scholar 

  12. Polikar, R., Alippi, C.: Guest editorial learning in nonstationary and evolving environments. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 9–11 (2014)

    Article  Google Scholar 

  13. Gama, J., Medas, P., Castillo, G., Rodrigues, P.P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) Advances in Artificial Intelligence—SBIA 2004, 17th Brazilian Symposium on Artificial Intelligence, São Luis, Maranhão, Brazil, 29 Sept–1 Oct 2004, Proceedings. Lecture Notes in Computer Science, vol. 3171, pp. 286–295. Springer (2004)

    Google Scholar 

  14. Baena-Garća, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldà, R., Morales-Bueno, R.: Early drift detection method. In: International Workshop on Knowledge Discovery from data Streams, pp. 77–86 (2006)

    Google Scholar 

  15. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the Seventh SIAM International Conference on Data Mining, Minneapolis, Minnesota, USA, SIAM. 26–28 Apr 2007. pp. 443–448 (2007)

    Google Scholar 

  16. Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing. In: Proceedings of the 10th International Conference on Discovery Science. pp. 264–269. DS’07, Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  17. Barros, R.S.M., Santos, S.G.T.C.: A large-scale comparison of concept drift detectors. Inf. Sci. 451–452, 348–370 (2018)

    Article  MathSciNet  Google Scholar 

  18. Fras-Blanco, I., del Campo-vila, J., Ramos-Jimnez, G., Morales-Bueno, R., Ortiz-Daz, A., Caballero-Mota, Y.: Online and non-parametric drift detection methods based on Hoeffdings bounds. IEEE Trans. Knowl. Data Eng. 27(3), 810–823 (2015)

    Article  Google Scholar 

  19. Barros, R.S., Cabral, D.R., Gonalves, P.M., Santos, S.G.: RDDM Expert Syst. Appl. 90(C), 344–355 (2017)

    Article  Google Scholar 

  20. de Barros, R.S.M., Hidalgo, J.I.G., de Lima Cabral, D.R.: Wilcoxon rank sum test drift detector. Neurocomputing 275(C), 1954–1963 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Jedrzejowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jedrzejowicz, J., Jedrzejowicz, P. (2020). Gene Expression Programming Classifier with Concept Drift Detection Based on Fisher Exact Test. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2019. Smart Innovation, Systems and Technologies, vol 142. Springer, Singapore. https://doi.org/10.1007/978-981-13-8311-3_18

Download citation

Publish with us

Policies and ethics