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Abstract — Grammatical evolution (GE) is one of the newest 

among computational methods (Ryan et al., 1998), (O’Neill and 
Ryan, 2001). Basically, it is a tool used to automatically generate 
Backus-Naur-Form (BNF) computer programmes. The 
method's evolution mechanism may be based on a standard 
genetic algorithm (GA). GE is very often used to solve the 
problem of a symbolic regression, determining a module's own 
parameters (as it is also the case of other optimization prob-
lems) as well as the module structure itself. A Sum Square Er-
ror (SSE) method is usually used as the testing criterion. In this 
paper, however, we will present the original method, which uses 
a Sum Epsilon Tube Error (STE) optimizing criterion. In addi-
tion, we will draw a possible parallel between the SSE and STE 
criteria describing the statistical properties of this new and 
promising minimizing method. 

 
Index Terms — Grammatical Evolution, SSE, STE, Epsilon 

Tube, Laplace Distribution. 

I.  INTRODUCTION  
  The general problem of optimizing a nonlinear model or a 
specific problem of nonlinear regression in statistics may be 
seen as typical problems that can successfully be approached 
using evolutional optimization techniques. A ge-
netic-algorithm method, for example, may be very efficient 
in determining the parameters of models representing a mul-
timodal or non-differentiable behaviour of the goal function. 
On the other hand, there are numerous mathematical methods 
that may, under certain conditions, be successful in looking 
for a minimum or maximum. The classical optimization 
methods may differ by the type of the problem to be solved 
(linear, nonlinear, integer programming, etc.) or by the actual 
algorithm used. However, in all such cases, the model 
structure for which optimal parameters are to be found is 
already known. But it is exactly the process of an adequate 
model structure design that may be of key importance in 
statistical regression and numerical approximation. 

When a problem of regression is dealt with, it is 
usually split into two parts. First, a model is designed to fit 
the character of the empirically determined data as much as 
possible. Then its optimum parameters are computed for the 
whole to be statistically adequate. In the event of a pure 
approximation problem, the situation is the same: a model is 
designed (that is, its structure such as a polynomial 
P(x)=ax2+bx+c) with its parameters being subsequently op-

timized (such as a, b, c) using a previously chosen minimi-
zation criterion, which is usually a Sum Square Error (SSE) 
one. 
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GE uses such data representation as to deal with the above 
problem in a comprehensive way, that is, combining the 
determination of a model structure and finding its optimum 
parameter in a single process. Such a process is usually called 
the problem of a symbolic regression. The GE optimisation 
algorithm usually uses a GA with the genotype-phenotype 
interpretation using a context-free Backus-Naur-Form based 
grammar [1, 2]. The problem solved is then represented by a 
BNF structure, which a priori determines its scope – an 
automatic computer program generating tool. Further we will 
focus on issues of symbolic regression of trigonometric and 
polynomial data, that is, data that can be described using a 
grammar containing trigonometric functions and/or powers. 

II.  PARAMETERS USED BY GE 
  The advanced GE algorithm implemented was using a 

binary GA. The GA implemented the following operators: 
tournament selection, one- and two-point structural cross-
ing-over, and structural mutations. Numerous modern 
methods of chromosome encryption and decryption were 
used [3, 4]. The following grammar G was used with respect 
to the class to be tested. 
 
Table I: Grammar G which was used with respect of the 

approximation tasks 
 

Approximation task 
Grammar 

and example  
of generating function 

Trigonometric 

G = {+,-,*,/,sin,cos,variables,constants} 
 
notes:  
unsigned integer constants ∈ [0,15], 
real constants ∈ [0,1] 
 

sin( ) sin(2.5 )y x= + x  

Polynomial 

G = {+,-,*,/, variables, constants} 
 
notes:  
unsigned integer constants ∈ [0,15], 
real constants ∈ [0,1] 
 

43 3y x x= − +1  

III.  STE – SUM EPSILON TUBE ERROR 
To keep further description as simple as possible, consider a 
data approximation problem ignoring the influence of a 
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random variable, that is, disregarding any errors of meas-
urement. The least-square method is used to test the quality 
of a solution in an absolute majority of cases. Generally, the 
least-squares method is used to find a solution with the 
squared errors r summed over all control points being 
minimal. A control point will denote a point at which the 
approximation error is calculated using the data to be fitted, 
that is, the difference between the actual y  value and the 
approximation , ( ). ŷ ˆr y y= −
 

                                 (1) 2
i

i

SSE r= ∑
 

However, in the event of a GE problem of symbolic regres-
sion, this criterion may not be sufficient. For this reason a 
new, Sum Epsilon-Tube Error (STE) evaluation criterion has 
been devised. For each value ε, this evaluation criterion may 
be calculated as follows: 
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where ε … is the radius of the epsilon tube, 
   i … is the index set of the control points, 

e … is an objective function determining whether the 
approximated value  lies within the given ep-
silon tube. 

ŷ

 

The workings of this criterion may be seen as a tube of di-
ameter epsilon that stretches along the entire approximation 
domain (see Fig. 1). The axis of such a tube is determined by 
the points corresponding to the approximated values. Such 
points may be called control points. 
 

 
 

Fig.1: The principle of the Epsilon Tube 
 

The actual evaluating function then checks whether an 
approximation point lies within or out of the tube (2). The 
epsilon value changes dynamically during the optimization 
process being set to the highest value at the beginning and 
reduced when the adaptation condition is met. The variable 
parameters of the STE method are listed in Table II. At the 
beginning of the evolution process, the algorithm sets the 
diameter of the epsilon tube. If condition (3), which indicates 
the minimum number of points  that need to be contained in 
the epsilon cube, is met, the epsilon tube is adapted, that is, 
the current epsilon value is reduced. This value can either be 
reduced using an interest-rate model with the current epsilon 

value being reduced by a given percentage of the previous 
epsilon value or using a linear model with the current epsilon 
value being reduced by a constant value. 

 
Table II: Parameters of the STE Minimization Method  
 

Parameter Value Description 

steEpsStart Positive real 
number 

Epsilon initial value. 
(ε-upper bound) 

steEpsStop Positive real 
number 

Final epsilon value. 
(ε-lower bound) 

steEpsReduction Unsigned 
integer 

Percentage of value decrease 
on adapting the value. 

steAdaptaion Unsigned 
integer 

Percentage indicating the suc-
cess rate (control points are in 
the ε tube) at which epsilon is 
adapted. 

steModel 
“Interest-Rate 
Model” 
“Linear Model” 

Model of the computation of a 
new epsilon value if adaptation 
condition is met. 

steIteration Unsigned 
integer 

This may replace the 
steEpsStop parameter, and 
then this parameter indicates the 
number of adaptations until the 
end of the computation. 

 
At the beginning of the evolution process, the algorithm 

sets the diameter of the epsilon tube. If condition (3), which 
indicates the minimum number of points  that need to be 
contained in the epsilon cube, is met, the epsilon tube is 
adapted, that is, the current epsilon value is reduced. This 
value can either be reduced using an interest-rate model with 
the current epsilon value being reduced by a given percent-
age of the previous epsilon value or using a linear model with 
the current epsilon value being reduced by a constant value. 
The condition for the adaptation of the epsilon tube to be 
finished may either be chosen as a limit epsilon value (the 
steEpsStop parameter) or be given by the number of 
adaptive changes (the steIteration parameter). 
 

                     100  
c

steAdaptation
STEε

⋅ ≥  (3) 

 

Where c is the number of control points. 

IV.  STE – EMPIRICAL PROPERTIES 
Practical implementations of the symbolic regression 

problem use STE as an evaluating criterion. The residua 
obtained by applying STE to the approximation problems 
implemented have been statistically analyzed. It has been 
found out that these residua are governed by the Laplace 
distribution (4) with μ = 0 and b = 1/sqrt(2) in our particular 
case. A random variable has a Laplace (μ, b) distribution if its 
probability density function is 
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Here, μ is a location parameter and b > 0 is a scale parameter. 
If μ = 0 and b = 1, the positive half-line is exactly an expo-
nential distribution scaled by ½. 
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Fig 2: Histogram of the standardized residua (from the 

experiment) and the probability density function 
of the Laplace distribution. 

 
An intuitive approach to approximation shows better re-

sults for the STE method mainly because there are no big 
differences between the approximating functions (see Fig. 1, 
Fig. 3). The reason for this is obvious: very distant points 
influence the result of approximation a great deal for SSE 
while, for STE, the weight of such points are relatively in-
significant. 

Next, the main advantages and disadvantages are summa-
rized of the minimization methods using the SSE and STE 
criteria. 
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Fig 3: The final approximations (symbolic regression) of 

polynomial data (see Tab. I). STE method was used 
(above), respectively SEE method was used (down). 

 
SSE (advantages, disadvantages): 

 
o + a classical and well researched 

method both in statistical regression 
and numerical approximation, 

o + a metric is defined, 
o + a N(μ = 0, σ2) residua error distri-

bution may be assumed with descrip-
tive statistics for this distribution being 
available, 

o – more time-consuming, 
o – being used excessively, this method 

hardly provides an incentive for users 
to gain new insights [5]. 

 
STE (advantages, disadvantages): 
 

o + less time consuming, 
o + more intuitive and readable, 
o + when using a GE-based symbolic 

regression, the Laplace distribution 
may be assumed  (which is one of the 
original results of this paper), 

o + better results are generated for the 
problem class, 

o – mathematical processing is worse 
with no metric defined 

o – the method being new, it is not so 
well described 
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Fig 4: The final approximations (symbolic regression) of 

trigonometric data (see Tab. I). STE method was used 
(above), respectively SEE method was used (down). 
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V.  PROBABILISTIC MAPPING OF SSE TO STE  
This part shows how the results obtained by a SSE-based 

minimization method may be used to derive a result corre-
sponding to the values of a STE-based minimization crite-
rion. In other words, a procedure will be shown for using SSE 
to obtain a corresponding STE. The procedure is based on the 
following: 
 

• It is assumed that, when applying the least-squares 
method, the residua are normally distributed with 
N(μ = 0, σ2). Here, the standard deviation may be 
arbitrary, but a reduction to the standardized normal 
distribution N(0, 1) is possible. 

• In order to reach a sufficient statistical significance, 
the experiment simulated 10,000 instances of solu-
tion to an approximation problem (nRUN). This 
problem was discretized using 100 control points. 

• Different sizes eps ={2,1,0.5,0.25,0.125} of epsilon 
tubes were chosen to simulate possible adaptations 
of the epsilon tube by (3). 

• The frequencies were calculated of the values lying 
within the given epsilon tubes. 

 

This simulation and the subsequent statistical analysis were 
implemented using the Minitab software package. Table III 
provides partial information on the procedure used. 
 
Table III: A fragment of a table of the simulated residua 

values with standardized normal distribution and 
the corresponding values. ( )ie rε

 

r i nRUN ε = 
 2 

ε = 
 1 

ε = 
0.5 

ε = 
0.25 

ε = 
0.125 

0.48593 1 1 1 1 1 0 0 

-0.07727 2 1 1 1 1 1 1 

1.84247 3 1 1 0 0 0 0 

-1.29301 4 1 1 0 0 0 0 

0.34326 5 1 1 1 1 0 0 

… … … … … … … … 

0.02298 100 10 000 1 1 1 1 1 

 
where: r … residua°( ), ~ (0,1)X N
i … control point index (i ∈ [1,100] in our particular case), 
nRUN …given implementation (nRUN ∈ [1,10000] in our 
particular case). 
 
Next, for each residuum value, the number of cases will be 
determined of these residua lying in the interval given by a 
particular epsilon tube. This evaluation criterion denoted by 
STE (Sum epsilon-Tube Error) is defined by (2) and, for the 
particular test values, corresponds to (5): 
 

     (5) {
100

1

( ), 2,1,0.5,0.25, 0.125i
i

STE e rε ε ε
=

= =∑ }
 

By a statistical analysis, it has been determined that STE 
behaves as a random variable with a Binomial distribution  
 ( )~ ( , ), where ~ (0,1) [ , ]  K Bi n p p P X Nε ε ε ε= ∈ −
 (6) 
 

For the epsilons chosen, the STE characteristic has a bino-
mial distribution given by (6) where the probabilities pε  are 
calculated from Table IV. For the case of ε = 2, Figure 5 
shows the probability calculation. 
 
Table IV: Table of probabilities ( )(0,1) [ , ]  p P Nε ε ε= ∈ −  
 

ε ( )(0,1)  P N ε< −  ( )(0,1)  P N ε<
 

pε  

2 0.022750 0.977250 0.954500 
1 0.158655 0.841345 0.682689 

0.5 0.308538 0.691462 0.382925 
0.25 0.401294 0.598706 0.197413 

0.125 0.450262 0.549738 0.099476 
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Fig 5: Calculating probability pε with ε = 2. 

 
The figure below shows the probability functions for ep-

silon tubes with value k indicating, with a given probability, 
the number of control points for which the e(r) function takes 
on a value of one, that is, the number of control points con-
tained in a given epsilon tube. 
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Fig 6: STE probability density functions for epsilon tubes 
with ε = {2,1,0.5,0.25,0.125}. 

 
The correctness of the calculation was proved empirically. 

The STE values simulated (10 000 runs) were compared with 
distribution (6). The following figure (Fig. 7) displays an 
empirical probability density function obtained from Table 
III by (5) compared with the probability density function as 
calculated by (6) for ε = 1.  
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It can be seen in Figure 7 that the empirical distribution is 
close the calculated one, which was verified using a good-
ness-of-fit test. 
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Fig 7: Comparing empirical and calculate probability den-
sity functions of occurrences within the epsilon tube 
for ε = 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI.  CONCLUSION 
 A new STE evaluation criterion was introduced using 

epsilon tubes. Based on the experiments conducted, this 
criterion seems to be more appropriate for the symbolic 
regression problem as compared with the SSE method. 

 Using statistical tools, a method was shown of trans-
forming the results obtained by SSE minimization into 
results obtained by STE. 

 Using a particular class implemented using approxima-
tions obtained by an STE minimization, the empirically 
obtained residua were found to be Laplace distributed. 

 The properties of such residua and transformation of the 
STE-based minimization criterion into an SSE-based 
one will be the subject of further research. 
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